УДК 512.58+515.12

ON LIFTING OF CONTRAVARIANT FUNCTORS ONTO THE EILENBERG-MOORE CATEGORY.

V. S. LEVYTS'KA

Levyts'ka V.S. On lifting of contravariant functors onto the Eilenberg-Moore category. We consider the problem of lifting contravariant functors onto the category Eilenberg-Moore of a monad. The results are applied to the monad in the category of Tychonov spaces generated by the second iteration of the functor C_p (the space of functions in the topology of pointwise convergence).

1°. A monad on a category $\mathcal C$ is a triple $\mathbb T=(T,\eta,\mu)$, where $T:\mathcal C\to\mathcal C$ is a covariant functor and $\eta:1_{\mathcal C}\to T,\ \mu:T^2\to T$ are natural transformations satisfying the conditions: $\mu\circ\eta T=\mu\circ T\eta=1_T$ and $\mu\circ\mu T=\mu\circ T\mu$. A couple (X,ξ) , where $\xi:TX\to X$ is a morphism, is called a $\mathbb T$ -algebra iff $\xi\circ\eta X=1_X$

A couple (X, ξ) , where $\xi : TX \to X$ is a morphism, is called a \mathbb{T} -algebra iff $\xi \circ \eta X = 1_X$ and $\xi \circ T\xi = \xi \circ \mu X$. A morphism $f : X \to X'$ is called a morphism of a \mathbb{T} -algebra (X, ξ) into a \mathbb{T} -algebra (X', ξ') if $f \circ \xi = \xi' \circ Tf$. \mathbb{T} -algebras and their morphisms form a category which is usually denoted by $\mathcal{C}^{\mathbb{T}}$ (the Eilenberg-Moore category). We can define the forgetful functor $U^{\mathbb{T}} : \mathcal{C}^{\mathbb{T}} \to C$ by $U^{\mathbb{T}}(X, \xi) = X$, $U^{\mathbb{T}}(f) = f$. (For details see [1].)

A lifting of functor $F: \mathcal{C} \to \mathcal{C}$ on the category $\mathcal{C}^{\mathbb{T}}$ is a functor $\overline{F}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}}$ such that $U^{\mathbb{T}}\overline{F} = FU^{\mathbb{T}}$

It is easy to see that the couple $(TX, \mu X)$ is a T-algebra (the free T-algebra).

In [5] M. Zarichnyi considered the following problem. Suppose $F: \mathcal{C} \to \mathcal{C}$ is a covariant functor; is there a covariant functor $\overline{F}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}}$ such that $U^{\mathbb{T}}\overline{F} = FU^{\mathbb{T}}$ (the problem of lifting of functor onto the category of \mathbb{T} -algebras)?

In this paper we consider the corresponding problem for a contravariant functor F.

2°. In what follows we fix a monad $\mathbb{T} = (T, \eta, \mu)$ on a category \mathcal{C} . The following result is a counterpart of a result of Zarichnyi [5].

Proposition 1. There exists a bijective correspondence between the lifting of a contravariant functor F onto the category $C^{\mathbb{T}}$ and the natural transformations $\delta: TFT \to F$ satisfying the conditions: (i) $\delta \circ \eta FT = F\eta$; (ii) $\delta \circ \mu FT = \delta \circ T\delta T \circ T^2 F\mu$.

Proof. Suppose there is a natural transformations $\delta: TFT \to F$ such that conditions (i) and (ii) are satisfied. For every $(X,\xi) \in |\mathcal{C}^{\mathbb{T}}|$ put $\overline{F}(X,\xi) = (FX,\overline{\xi})$, where $\overline{\xi} = \delta X \circ TF\xi$ and for every $f \in \mathcal{C}^{\mathbb{T}}(X,Y)$ put $\overline{F}f = Ff$.

It is easy to see that $FU^{\mathbb{T}} = U^{\mathbb{T}}\overline{F}$. We have to check that $(FX, \overline{\xi})$ is a T-algebra:

¹⁹⁹¹ Mathematics Subject Classification. 18C20, 54B30, 54C40.

 $\overline{\xi} \circ \eta FX = \delta X \circ TF\xi \circ \eta FX = \delta X \circ \eta FTX \circ F\xi = F\eta X \circ F\xi = F(\xi \circ \eta X) = F(1_X) = 1_{FX}.$ Besides,

 $\overline{\xi} \circ \mu FX = \delta X \circ TF\xi \circ \mu FX = \delta X \circ \mu FTX \circ T^2F\xi = \delta X \circ T\delta TX \circ T^2F\mu X \circ T^2F\xi = \delta X \circ T\delta TX \circ T^2F(\xi \circ \mu X) = \delta X \circ T\delta TX \circ T^2F(\xi \circ T\xi) = \delta X \circ T\delta TX \circ T^2FT\xi \circ T^2F\xi = \delta X \circ TF\xi \circ T\delta X \circ T^2F\xi = \overline{\xi} \circ T\overline{\xi}.$

Denote by f a morphism of a \mathbb{T} -algebra (X, ξ) into a \mathbb{T} -algebra (X', ξ') . Show that $\overline{F}f$ is a morphism of the \mathbb{T} -algebra $(FX', \overline{\xi}')$ into the \mathbb{T} -algebra $(FX, \overline{\xi})$:

 $\overline{\xi} \circ TFf = \delta X \circ TF\xi \circ TFf = \delta X \circ TF(f \circ \xi) = \delta X \circ TF(\xi' \circ Tf) = \delta X \circ TFTf \circ TF\xi' = Ff \circ \delta X' \circ TF\xi' = Ff \circ \overline{\xi}'.$

It is easy to see that $\overline{F}(g \circ f) = \overline{F}f \circ \overline{F}g$.

Summing up we see that \overline{F} is a lifting F contravariant endofunctor on the category $\mathcal{C}^{\mathbb{T}}$.

On the other hand, suppose $\overline{F}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}}$ is a lifting of F onto $\mathcal{C}^{\mathbb{T}}$. Since $(TX, \mu X)$ is a free \mathbb{T} -algebra, we see that $\overline{F}(TX, \mu X) = (FTX, \overline{\mu}X)$ is a \mathbb{T} -algebra.

Put $\delta = F\eta \circ \overline{\mu} : TFT \to F$.

Show that $\delta = (\delta X)$ is a natural transformation from TFT to F. Given $f \in \mathcal{C}(X,Y)$, we obtain

 $\delta X \circ TFTf = F\eta X \circ \overline{\mu}X \circ TFTf = F\eta X \circ FTf \circ \overline{\mu}Y = F(Tf \circ \eta X) \circ \overline{\mu}Y = F(\eta Y \circ \sigma f) \circ \overline{\mu}Y = Ff \circ F\eta Y \circ \overline{\mu}Y = Ff \circ \delta Y.$

Show that (i) holds. We have

 $\delta X \circ \eta FTX = F\eta X \circ \overline{\mu} X \circ \eta FTX = F\eta X.$

Finally, we have to check (ii):

 $\begin{array}{l} \delta X \circ T \delta T X \circ T^2 F \mu X = F \eta X \circ \overline{\mu} X \circ T F \eta T X \circ T \overline{\mu} T X \circ T^2 F \mu X = F \eta X \circ \overline{\mu} X \circ T F \eta T X \circ \sigma T F \mu X \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ T F (\mu X \circ \eta T X) \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ \sigma T F (\mu X \circ \eta T X) \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ \overline{\mu} X \circ \sigma T F (\mu X \circ \eta T X) \circ T \overline{\mu} X = F \eta X \circ \overline{\mu} X \circ \overline$

Show that the above correspondence is a bijection. Given a natural transformation $\delta = (\delta X)$ satisfying (i) and (ii) consider the lifting \overline{F} defined by $\overline{F}(X,\xi) = (FX,\delta X\circ TF\xi)$, $\overline{F}f=Ff$. Then \overline{F} determines the natural transformation $\hat{\delta}=(\hat{\delta}X)$, $\hat{\delta}X=F\eta X\circ \overline{\mu}X$ and we have $\hat{\delta}X=F\eta X\circ \overline{\mu}X=F\eta X\circ TF\mu X=\delta X\circ TFT\eta X\circ TF\mu X==\delta X\circ TF(\mu X\circ T\eta X)=\delta X$.

Conversely, given a lifting \overline{F} of F onto the category $\mathcal{C}^{\mathbb{T}}$, consider the natural transformation $\delta = (\delta X)$ defined by $\delta X = F\eta X \circ \overline{\mu} X$, $X \in |\mathcal{C}|$. The natural transformation δ determines the lifting \hat{F} of F onto $\mathcal{C}^{\mathbb{T}}$ by the formula $\hat{F}(TX, \mu X) = (FTX, \delta TX \circ TF\mu X)$.

We have

 $\hat{F}(TX, \mu X) = (FTX, \delta TX \circ TF\mu X) = (FTX, F\eta TX \circ \overline{\mu}TX \circ TF\mu X) = (FTX, F\eta TX \circ \overline{\mu}TX \circ \overline{\mu}TX) = (FTX, \overline{\mu}TX) = \overline{F}(TX, \mu X).$

Let $(X,\xi) \in |\mathcal{C}^{\mathbb{T}}|$. Since ξ is a morphism of a T-algebra $(TX,\mu X)$ into the T-algebra (X,ξ) , we see that $\hat{F}\xi = F\xi$ is a morphism of the T-algebra $\hat{F}(X,\xi) = (FX,u)$ into the T-algebra $\hat{F}(TX,\mu X) = \overline{F}(TX,\mu X) = (FTX,\overline{\mu}X)$. Thus, $F\xi \circ u = \overline{\mu}X \circ TF\xi$,

 $F\eta X \circ F\xi \circ u = F\eta X \circ \overline{\mu} X \circ TF\xi$, and we obtain $u = F\eta X \circ \overline{\mu} X \circ TF\xi$.

Thus, $\hat{F}(X,\xi) = (FX, F\eta X \circ \overline{\mu} X \circ TF\xi) = (FX, \delta X \circ TF\xi) = \overline{F}(X,\xi)$.

We see that any lifting of a contravariant functor onto $\mathcal{C}^{\mathbb{T}}$ is completely determined by its values onto the free algebras.

Remark. From the proof of Proposition 1 we see that a bijective correspondence between lifting \overline{F} of F onto $\mathcal{C}^{\mathbb{T}}$ and natural transformations δ satisfying (i) and (ii) can be given by:

```
given \delta, we set \overline{F}(X,\xi) = (FX, \delta X \circ TF\xi) for (X,\xi) \in |\mathcal{C}^{\mathbb{T}}|; given \overline{F} we set \delta = F\eta \circ \overline{\mu}.
```

Recall that T is said to be projective [4] provided there exists a natural transformation $\pi: T \to 1$ (projection) such that $\pi \circ \eta = 1$ and $\pi \circ \mu = \pi \circ \pi T = \pi \circ T\pi$. The following is a counterpart of a result of Zarichnyi.

Proposition 2. For any contravariant functor F and any projective monad \mathbb{T} there exists a lifting of F onto the category $C^{\mathbb{T}}$.

Proof. Put $\delta = F\eta \circ \pi FT$ (here π denotes the projection), then $\underline{\delta} \circ \eta FT = F\eta \circ \pi FT \circ \eta FT = F\eta$.

Besides,

3°. Suppose $C: \mathcal{C} \to \mathcal{C}$ is a contravariant functor such that there exists a natural transformation $\eta: 1 \to C^2$ satisfying the property: $C\eta \circ \eta C = 1_C$. Put $T = C^2$ and define the natural transformation $\mu: T^2 = C^4 \to C^2 = T$ by the formula: $\mu = C\eta C$. Remark that the triple $\mathbb{T} = (T, \eta, \mu)$ is a monad on the category \mathcal{C} (see [2]).

Proposition 3. The natural transformation $\delta = C\eta \circ C^3\eta : TCT = C^5 \to C$ satisfies conditions (i) and (ii) from Proposition 1.

Proof. We have

 $C\eta \circ C^3\eta \circ \eta C^3 = C\eta \circ \eta C \circ C\eta = C\eta.$

To prove (ii), we see that

To prove (ii), we see that $C\eta \circ C^3\eta \circ C^3\eta C^2 \circ C^5\eta C^2 \circ C^6\eta C = C\eta \circ C^3\eta \circ C^3(C^2\eta C^2 \circ \eta C^2) \circ C^6\eta C = C\eta \circ C^3\eta \circ C^3(\eta C^4 \circ \eta C^2) \circ C^6\eta C = C\eta \circ C^3\eta \circ C^3\eta C^2 \circ C^3\eta C^4 \circ C^6\eta C = C\eta \circ C^3\eta \circ C^3\eta C^2 \circ C^4\eta C \circ C^3\eta C^2 = C\eta \circ C^3\eta \circ C^3\eta C^2 = C(C^2\eta \circ \eta) \circ C^3\eta C^2 = C(\eta C^2 \circ \eta) \circ C^3\eta C^2 = C\eta \circ C\eta C^2 \circ C^3\eta C^2 \circ C^3\eta C^2 \circ C^2\eta C^2\eta C^2 \circ C^$

Let Tych denote the category of Tychonov spaces and their continuous maps. For a Tychonov space X we denote by C_pX the space of real-valued functions on X endowed by the topology of pointwise convergence. This construction determines a contravariant functor in Tych: for a map $f: X \to Y$ we have $C_pf(\varphi) = \varphi \circ f$, $\varphi \in C_pY$.

It is well-known that there exists a natural transformation $\eta: 1_{Tych} \to C_p C_p = C_p^2$.

It is defined by the condition:

 $\eta X(x)(\varphi) = \varphi(x)$, where $x \in X$, $\varphi \in C_p X$.

It is known that $C_p \eta \circ \eta C_p = 1_{C_p}$ (see [2]). We see that the functor $T_p = C_p^2$ determines a monad on the category Tych (see [3]).

Corollary. The contravariant functor C_p has a lifting onto the category $Tych^{\mathbb{T}}$.

- Barr M., Wells Ch. Toposes, triples and theories. Berlin, Springer-Verlag. 1985.
- 2. Levyts'ka V. On extension of contravariant functors onto the Kleisli category // Matemaтичні студії. - 1998. - Т. 9, N 2. - С. 125-129.
- 3. Pikhurko O.B., Zarichnyi M.M. On lifting of functors to the Eilenberg Moore category of the triple generated by the functor $C_p C_p // \, \text{Укр.}$ мат. журн. – 1992. – Т. 44, N9. – С. 1290-1292.
- 4. Vinárek J. On extensions of functors to the Kleisli category // Comment. Math. Univ. Carolinae. - 1977. - Vol. 18, N2. - P. 319-327.
- 5. Zarichnyi M.M. Topology of functors and monads in the category of compacta. Kiev, Institute of System Investigations. – 1993.