УДК 512.58+515.12

ON EXTENSION OF THE CONTRAVARIANT FUNCTOR C_p ONTO CATEGORIES OF MULTIVALUED MAPS

V. S. LEVYTS'KA

Levyts'ka V. S. On extension of the contravariant functor C_p onto categories of multivalued maps. It is proved that the contravariant functor C_p (the pointwise convergence function functor) has an extension onto the category of Tychonov spaces and finite-valued maps and has no extension onto the category of Tychonov spaces and compact-valued maps.

1°. Introduction

The general problem of extension of (covariant) functors onto the Kleisli category of a monad (see the definitions below) has been investigated by many authors (see [1],[2] for categorical results and [3] for the case of categories of compacta). In [4] the author considered the problem of extension of contravariant functors to the Kleisli categories and found a criterion for existence of such an extension.

In this note we consider the contravariant functor C_p acting in the category Tych of Tychonov spaces and continuous maps and the problem of extension of this functor onto the categories of finite-valued and compact-valued maps. These categories can be naturally identified with the Kleisli categories of the finite hyperspace monad and the hyperspace monad respectively.

2°. DEFINITION AND AUXILARY RESULTS

A monad on a category \mathcal{C} is a triple $\mathbb{T} = (T, \eta, \mu)$, where $T : \mathcal{C} \to \mathcal{C}$ is a covariant functor and $\eta : 1_{\mathcal{C}} \to T$, $\mu : T^2 \to T$ are natural transformations satisfying the conditions: $\mu \circ \eta T = \mu \circ T \eta = 1_T$ and $\mu \circ \mu T = \mu \circ T \mu$. The Kleisli category of \mathbb{T} is the category $\mathcal{C}_{\mathbb{T}}$ defined as follows: $|\mathcal{C}_{\mathbb{T}}| = |\mathcal{C}|$, $\mathcal{C}_{\mathbb{T}}(X,Y) = \mathcal{C}(X,TY)$, and the composition g * f of morphisms $f \in \mathcal{C}_{\mathbb{T}}(X,Y)$, $g \in \mathcal{C}_{\mathbb{T}}(Y,Z)$ is given by $g * f = \mu Z \circ T g \circ f$.

Define the functor $I: \mathcal{C} \to \mathcal{C}_{\mathbb{T}}$ by $IX = X, X \in |\mathcal{C}|$ and $If = \eta Y \circ f$ for $f \in \mathcal{C}(X, Y)$.

A functor $\overline{F}: \mathcal{C}_{\mathbb{T}} \to \mathcal{C}_{\mathbb{T}}$ called an extension of the functor $F: \mathcal{C} \to \mathcal{C}$ on the Kleisli category $\mathcal{C}_{\mathbb{T}}$ iff $IF = \overline{F}I$.

The following proposition gives a criterion for existence of extension of contravariant functors onto the Kleisli categories [2].

¹⁹⁹¹ Mathematics Subject Classification. 18C20, 54B30, 54C40.

Proposition 1. There exists a bijective correspondence between the extensions of a contravariant functor F onto the category $C_{\mathbb{T}}$ and the natural transformations $\xi: F \to TFT$ satisfying the conditions:

- (i) $TF\eta \circ \xi = \eta F$;
- ii) $TF\mu \circ \xi = \mu FT^2 \circ T\xi T \circ \xi$.

The proof is given in [4]; here we only note that the extension which corresponds to ξ is defined as follows: $\overline{F}f = TFf \circ \xi Y$, for $f \in \mathcal{C}_{\mathbb{T}}(X,Y)$

In this situation, the natural transformation ξ is called associated to the extension \overline{F} .

Let Tych denote the category of Tychonov spaces and their continuous maps. For a Tychonov space X we denote by C_pX the space of real-valued functions on X endowed with the topology of pointwise convergence. This construction determines a contravariant functor in Tych: for a map $f: X \to Y$ we have $C_p f(\varphi) = \varphi \circ f$, $\varphi \in C_p Y$.

3°. FINITE HYPERSPACE MONAD

Let X be a Tychonov space. We denote by $\exp X$ the space of all non-empty compact subsets of X equipped with the Vietoris topology. Recall that the sets

$$\langle U_1, \ldots, U_n \rangle = \{ A \in \exp X \mid A \subset U_1 \cup \cdots \cup U_n, A \cap U_i \neq \emptyset, \}$$

for all i = 1, ..., n, where U_i run over the topology of X, form a base of the Vietoris topology. For a continuous mapping $f: X \to Y$ the mapping $f: \exp X \to \exp Y$ is defined by the formula: $\exp f(A) = f(A) \in \exp Y$, $A \in \exp X$. Define the natural transformations $f: T_{Ych} \to \exp X$ and $f: \exp^2 X$ are a follows: $f: S_X(x) = \{x\}$ for each $f: S_X(x) = \{x\}$ for each f:

We consider also its submonad $\mathbb{H}_f = (\exp_f, s, u)$ of hyperspace of finite sets on the category Tych. Here $\exp_f X = \{A \in \exp X \mid A \text{ is a finite set}\}.$

Note that the morphisms of the Kleisli category of the monad \mathbb{H} (respectively \mathbb{H}_f) are compact-valued (respectively finite-valued) maps.

We consider the following problem: is there an extension of the contravariant functor C_p on the Kleisli category of the monad $\mathbb{H}_f = (\exp_f, s, u)$?

Let $\mathbb{T} = (T, \eta, \mu)$ be a monad on Tych and (\mathbb{R}, α) a \mathbb{T} -algebra. Define the map $\xi X : C_p X \to TC_p TX$ as follows:

$$\xi X(\varphi) = \eta C_p T X(\alpha \circ T \varphi) \quad \varphi \in C_p X.$$

Lemma 1. Suppose ξX is the continuous mapping for every Tychonov space X. Then $\xi = \xi_X|_{X \in |Tych|}$ is a natural transformation which satisfies conditions (i) and (ii) from Proposition 1.

Proof. Check that ξ is a natural transformation. Let $f \in Tych(X,Y)$ and $\varphi \in C_pY$. Then

$$\xi X(C_p f(\varphi)) = \eta C_p T X(\alpha \circ T C_p f(\varphi)) = \eta C_p T X \circ C_p T f(\alpha \circ T \varphi)$$
$$= T C_p T f(\varphi) T Y(\alpha \circ T \varphi) = T C_p T f(\xi Y(\varphi)).$$

Show that ξ satisfies conditions (i) and (ii) from Proposition 1. Let $\varphi \in C_nX$, then

$$TC_p\eta X \circ \xi X(\varphi) = TC_p\eta X \circ \eta C_p TX(\alpha \circ T\varphi) = \eta C_p X \circ C_p \eta X(\alpha \circ T\varphi)$$
$$= \eta C_p X(\alpha \circ T\varphi \circ \eta X) = \eta C_p X(\alpha \circ \eta \mathbb{R} \circ \varphi) = \eta C_p X(\varphi),$$

thus, (i) is satisfied.

We have to check (ii):

$$\begin{split} TC_p\mu X \circ \xi X(\varphi) &= TC_p\mu X \circ \eta C_p TX(\alpha \circ T\varphi) = \eta C_p T^2 X \circ C_p \mu X(\alpha \circ T\varphi) \\ &= \eta C_p T^2 X(\alpha \circ T\varphi \circ \mu X) = \eta C_p T^2 X(\alpha \circ \mu \mathbb{R} \circ T^2 \varphi) = \eta C_p T^2 X(\alpha \circ T\alpha \circ T^2 \varphi), \end{split}$$

and

$$\mu C_p T^2 X \circ T \xi T X \circ \xi X(\varphi) = \mu C_p T^2 X \circ T \eta C_p T^2 X (\eta C_p T^2 X (\alpha \circ T(\alpha \circ T\varphi)))$$
$$= \eta C_p T^2 X (\alpha \circ T \alpha \circ T^2 \varphi).$$

Consider the mapping $\alpha : \exp_f \mathbb{R} \to \mathbb{R}$, $\alpha(A) = \max A$, where $A \in \exp_f \mathbb{R}$. It is easy to see that the pair (\mathbb{R}, α) is an \mathbb{H}_f -algebra (see [5]).

By Lemma 1, the natural transformation ξ associated to the extension of C_p onto $Tych_{\mathbb{H}_f}$, can be considered as the composition of mappings,

$$\xi = \eta C_p \exp_f \circ \xi',$$

where $\xi'X: C_pX \to C_p \exp_f X$ is defined as follows: $\xi'(\varphi) = \alpha \circ \exp_f(\varphi), \varphi \in C_pX$.

Show that the mapping $\xi'X$ is continuous.

Let $\varphi_0 \in C_p X$ i $\xi'(\varphi_0) = \Phi_0$. Base neighbourhoods of Φ_0 in $C_p \exp_f X$ are sets of the form

$$O(\Phi_0;A_1,\ldots,A_k;\varepsilon)=\{\Phi\in C_p\exp_fX||\Phi(A_i)-\Phi_0(A_i)|<\varepsilon \text{ for all } i=1,\ldots,k\}.$$

Let $A_1 \cup \cdots \cup A_k = \{x_1, \ldots, x_l\}$. Consider the neighbourhood

$$O(\varphi_0; x_1, \dots, x_l; \varepsilon) = \{ \varphi \in C_p X | |\varphi(x_i) - \varphi_0(x_i)| < \varepsilon \text{ for all } i = 1, \dots, l \}$$

of φ_0 in C_pX . It is easy to see that $\xi'(O(\varphi_0; x_1, \ldots, x_l; \varepsilon)) \subset O(\Phi_0; A_1, \ldots, A_k; \varepsilon)$. Summing up, we have

Theorem 1. There exists an extension of contravariant functor C_p onto the Kleisli category of the monad \mathbb{H}_f .

Note that the structure of \mathbb{H}_f -algebra on \mathbb{R} is not uniquely determined (we can consider, e. g., min instead of max in the above expressions). Thus, the extension of C_p onto $Tych_{\mathbb{H}_f}$ is not unique.

4°. Hyperspace monad

The following question naturally arizes: is there an extension C_p onto the category $Tych_{\mathbb{H}}$? Recall that the category $Tych_{\mathbb{H}}$ is a category of Tychonov spaces and compact-valued maps.

Lemma 2. Suppose there is a natural transformation $\xi: C_p \to \exp C_p \exp$ associated to an extension of C_p onto the category $Tych_{\mathbb{H}}$. For $c \in \mathbb{R}$ let $\varphi \in C_pX$ be such that $\varphi(x) = c$ for all $x \in X$. Then $\xi X(\varphi) = \{\Psi\}$, where $\Psi \in C_p \exp X$ is such that $\Psi(A) = c$ for every $A \in \exp X$. (Thus, ξX preserves the constants.)

Proof. Fix any one-point space $\{*\}$ and consider the only mapping $f: X \to \{*\}$. Since ξ is a natural transformation, we have $\xi X \circ C_p f = \exp C_p \exp f \circ \xi \{*\}$. Denote by $\chi_c \in C_p \{*\}$, $\chi'_c \in C_p \exp \{*\}$ the constant functions with the value $c \in \mathbb{R}$. Let $\chi_c \in C_p \{*\} \equiv \mathbb{R}$. Considering condition (i) of Proposition 1, we obtain:

$$\exp C_p \eta \{*\}(\xi \{*\}(\chi_c)) = \exp C_p \eta \{*\}(\{\chi'_{c_\alpha} \in C_p \exp \{*\} | \alpha \in \Gamma\}) = \{C_p \eta \{*\}(\chi'_{c_\alpha}) | \alpha \in \Gamma\}$$

$$= \{\chi'_{c_\alpha} \circ \eta \{*\} | \alpha \in \Gamma\} = \eta C_p \{*\}(\chi_c) = \{\chi'_c\}.$$

Hence $\xi\{*\}(\chi_c) = \{\chi'_c\}.$

Obviously, $C_p f(\chi_c) \in C_p X$ is the constant function with the value c on X. We denote this mapping by φ . Then

$$\xi X \circ C_p f(\chi_c) = \xi X(\varphi) = \exp C_p \exp f(\xi \{*\} (\chi_c)) = \exp C_p \exp f(\{\chi_c'\}) = \{C_p \exp f(\chi_c')\}$$

$$= \{\chi_c' \circ \exp f\} = \{\Psi\},$$

where $\Psi(A) = c$ for each $A \in \exp X$.

Theorem 2. There is no extension of C_p onto $Tych_{\mathbb{H}}$.

Proof. Suppose the opposite. Let K denote the middle-third Cantor set and let $\varphi \in C_p K$ be a function for which $\varphi(K) = \{0,1\}$. Obviously there exist two sequences of homeomorphisms $h_i: K \to K, g_i: K \to K$ such that $\varphi \circ h_i \longrightarrow 0, \varphi \circ g_i \longrightarrow 1$, if $i \longrightarrow \infty$.

Let $\xi K(\varphi) = \{\Phi_{\alpha} \in C_p \exp K | \alpha \in \Gamma\}$. Since ξ is a natural transformation, we have:

$$\exp C_p \exp h_i \circ \xi K(\varphi) = \exp C_p \exp h_i \{ \Phi_\alpha | \alpha \in \Gamma \} = \{ \Phi_\alpha \circ \exp h_i | \alpha \in \Gamma \} = \xi K(\varphi \circ h_i).$$

Consider the element $K \in \exp K$. We have

$$\xi K(\varphi \circ h_i)(K) = \{ \Phi_{\alpha} \circ \exp h_i(K) | \alpha \in \Gamma \} = \{ \Phi_{\alpha}(K) | \alpha \in \Gamma \}.$$

Similary for the sequence (g_i) we have

$$\exp C_p \exp g_i \circ \xi K(\varphi) = \{ \Phi_\alpha \circ \exp g_i | \alpha \in \Gamma \} = \xi K(\varphi \circ g_i).$$

Since $\exp C_p \exp h_i \circ \xi K(\varphi)(K) = \exp C_p \exp g_i \circ \xi K(\varphi)(K)$, we see that $\xi K(\varphi \circ g_i)(K) = \xi K(\varphi \circ h_i)(K)$ for any $i \in \mathbb{N}$.

By Lemma 2 we have: $\{\Phi(K)|\Phi\in\xi K(\varphi\circ g_i)\}$ $\underset{i\to\infty}{\longrightarrow}$ $\{\xi K(\chi_1')(K)\}=\{1\}$, and, on the other hand, $\{\Phi(K)|\Phi\in\xi K(\varphi\circ h_i)(K)\}$ $\underset{i\to\infty}{\longrightarrow}$ $\{\xi K(\chi_0')(K)=\{0\}$. We have obtained a contradiction.

5°. Remarks and open question

Note that the method used in the proof of Theorem 1 works also in some other situations. Given a monad $\mathbb{T} = (T, \eta, \mu)$ on Tych such that \mathbb{R} is a \mathbb{T} -algebra and T is a functor with finite supports (see, e. g., [6] for the results concerning functors in Tych) we can argue similarly as in the proof of Theorem 1 in order to prove the existence of extensions of C_p onto $Tych_{\mathbb{T}}$.

It is well-known that the probability measure functor determines (a unique) monad onto the category Comp (see, e. g., [7]). In [8] it is shown that the related functor P_{τ} of τ -smooth measures determines a unique monad on Tych that extends the probability measure monad.

Question. Is there an extension of the functor C_p onto the Kleisli category of the monad of τ -smooth probability measures?

- Arbib M., Manes E. Fuzzy machines in a category// Bull. Austral. Math. Soc. 1975. -Vol. 13. - P. 169-210.
- 2. Vinárek J. On extension of functors to the Kleisli category// Comment. Math. Univ. Carol. 1977. Vol. 18. P. 319-327.
- 3. Zarichnyi M. M. Topology of functors and monads in the category of compacta. Kiev: Institute of System Investigations, 1993.
- 4. Levyts'ka V. On extension of contravariant functors onto the Kleisli category// Matem. studii. 1998. Vol. 9. P.125-129.
- 5. Wyler O. Algebraic theories of continuous lattices// Lect. Notes in Math. 1981. Vol. 871. P. 390-413.
- 6. Zarichnyi M. M. On topological covariant functors, II// Q&A in Gen. Top. 1991. Vol. 9. P. 1-32.
- 7. Świrszcz T. Monadic functors and convexity// Bull. Acad. Pol. Sci. 1974. Vol. 22. P.39-42.
- 8. Banakh T. O. Topology of spaces of probability measures, II// Matem. studii. 1995. Vol. 5. P.88-106.

Стаття надійшла до редколегії 10.06.1998