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BARRIERS ON CONES FOR DEGENERATE
QUASILINEAR ELLIPTIC OPERATORS

M. V. BORsuk, D. V. PORTNYAGIN

Borsuk M. V., Portnyagin D. V. Barriers on Cones for Degenerate Quasilinear Elliptic
Operators. Barrier functions of boundary value problems are constructed for quasilinear elliptic
second order operator of divergent form on the cone.

Lately many mathematicians have been considering nonlinear problems for elliptic degenerate
equations (see e.g. [1] and the extensive bibliography in it). In the present paper we take the
first step to the investigation of the behaviour of solutions of boundary value problems for a
quasilinear elliptic second order equation with triple degeneracy:

Lu = 2= (Iel[ul' IVl ?uz, ) = plal"ul"sgn ulVul™, = € Go,

dz;

(1)

-l<pu<0, ¢g20, m>1, 7>m-—n,

where Gy is an n—dimensional convez circular cone with the vertex at the origin of coordinates
O, T its lateral area, and 2 = Go N S™~! is a domain on the unit sphere S™~! with a smooth
boundary 92. Exactly, we shall construct functions playing the fundamental role in the study
of behaviour of solutions to elliptic boundary value problems in the neighbourhood of the
irregular boundary point (see [2-6]). The special structure of the solution near a conical point
is of particular interest for physical applications (cf. [7-9]). It can be used also to improve
numerical algorithms (cf. [10-12]).

The proof of the estimates for the solution itself are based on the
observation that the function |z|*®(w) is usable as barrier for the problem. By weak com-"
parison principle (see Theorems from chapt. 10 [2]; it is possible to verify that assumptions of
this principle are fulfilled if we observe that the equation (1) is equivalent to

d o . - = m
= (1961 ) + 7l2l Ve V) + (g - ] sgn ulTul™ =0,

z€Gy, —-1<u<0, ¢=20, m>1, 7>m-—n

on the set where u # 0), one might obtain then the bound of solution near conical boundary
point. In this connection the finding of exact value of the exponent ) is very important and
most difficult. In the case of planar bounded domain with corner boundary points the exact
value of the exponent A will be calculated explicitly.

Let us transfer to the spherical coordinates with the pole at the
point O :

T1 =Trcosw), 2 = rcoswssinwy, ...,

1991 Mathematics Subject Classification. 35J25.
© M.V. Borsuk, D.V. Portnyagin, 1998

70



BARRIERS ON CONES FOR DEGENERATE ELLIPTIC OPERATORS 71

Tp—] =T COSWp—1 SINWp_2...5I0Wy, Tp = TsSilWny_1...5I0wW;

0<r=z|<o00; O0LSwr<m k<n—-2; 0<wp1 <2n. The differential operator takes
the form:

1 = d i q m—2 J 31},
J IZ; dég (?" |u| |vuf H? ag‘) ]
where

J=r""1sin® 2wy ... sinwa—g, Hi=1, & =1, Ep1=wi Hiy=rJa,
i={I,n—-1}, ¢ =1, ¢ = (sinw;...sinw;)%, i={2,n—1}.

We shall seek the solution of the

problem (1) as u = r*®(w) with
®(w) = 0. Then ®(w) satisfies the equation:

n—1

L ( (A?@? 4 |V, &) T |q>|q6q’)+
Hw) o
+AMg+m—-1)+7+n-m](N2®* + |V, @]) <I>|l1>|“'—
= u|2|'? (V97 + VL)%, (2)
n—1 2
where |V, ®|? = ;§1 -q—l; (g—:) s j(w) =sin" 2wy ... sinwp_s.
The Dirichlet problem

Let Go = {z| 0 S w1 < %, wo € (0,7)}, coswy; = z1|z|™}. First we consider the Dirichlet
problem for the equation (1): ulr, = 0. Hence, it obviously follows that: ®(w) = 0, w € 9.
Multiplying (2) by ®(w) and integrating by parts over Q we get:

f (3287 + [v.@?) """ |27V, 8[2d0 =
Q

=AMg+m—-1)+7+n— m]/(A2@2 +[V,2) ™V 13240
—,u/|¢1? (3282 + |V, 82) ™ da =
Q
zf(/\24>2+ivw¢|2)(’“‘2”2 1819 {A\(g +m — 1) + 7 + n — m]®2—
Q

—u(N29? +[V,0[)} d0.
Hence it follows that

1 +,U. / /\2@2 o ;qu)lz)(m—ﬂﬂ ](I)|q|qu)|2dQ -
Y]

= MM+ m—1=p)+r+n=m] [ (2 + [V.8P) "D pjr+2an,
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Since ®(w) # 0, p > —1, we have
AMg+m—1-p)+7+n—m]>0. (3)

We shall consider the case of ®(w) not depending on ws,...,w,—1 and so @ be a function of
single angular coordinate w; = w € (0,%2),0 < wp < 7. Such &(w) satisfies the boundary value
problem for ordinary differential equation: :

[(m —1)8" + /\2@2] BD" 4 (,\2@2 N cp*?) {(q'— 0) 24
+AAMg+m—1—p)+ T4n— m]®? + (n — 2)®P'ctg w} +
+(m —2)\?8%0"% =0, we (0,4);

3'(0) = ®(wo/2) = 0. (ODE)

By making the substitution y = ®'/®, y' + y? = 3" /®, we arrive at:

[(m—1)" + ]y + (m—1+q—p)(y® + 1)+

+AMr4+n—m)+ (n-2yetg (¥ +2*)=0; we (0, %) : (4)
Since ctg w > 0 on (0,wp/2), from equation (4) and condition (3) it follows that:
[(m — 1)y + Ny’ + (n - 2y(y? + N)ctgw <0, we (0, %) - (5)

Let us solve the Cauchy problem:
{ [(m —1)7" + N7’ + (n = 2)7(7° + M)etg w =0, w € (0,9);

7(0) = 0.

We get:
(m = 1)7° + X\
/Wdﬁ=-(n—2)fctgwdw+const =
. 2\ T5 _ e (2-1)
y(0) =0

Comparing the solution of inequality (5) with that of the Cauchy problem, we deduce that
y(w) <0.
Since ctg w > 0 and y < 0 on our interval, by (4) we have:

[(m=1y" + Ay +[(m—1+q—p)AN +y*) + M7 +n—m)|(A\2 4+ y?) =

=—(n-2)y(y* + N)ctgw >0, we (0, %) )

Thus:
{ [(m = 1)y + X2y’ > —[(m — 1+ g — p)(A2 + y?) + M7 + n — m)](A\? + ?),
y(0) =0, we (0,%).

By the comparison theorem, similarly we obtain y(w) > z(w), where z(w) is the solution of
the following Cauchy problem:

{ [(m —1)2% + Mz’ = —[(m = 1+ ¢ = p)(A* + 22) + A7 + n — m)|(\? + 22),
2(0) =0, we (0,%).
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Solving the latter, we obtain the expression for z in the implicit form:

( nl‘;l +A r—_z ) z m—2 z
K arctg +w+ marctg (-X) =0. (6)
2 Trn—m 2 Trn—m — —
\/,\ R i N

By joining the results obtained, we arrive at the conclusion that:
0> y(w) > 2(w). (7)

Let us now return to the equation for y(w). On making the substitution ¥ = In &, w(¥) =
y*(9), w'(¥) = 2yy'(¥) = 2y Fv' () = 2¢/'(w), we get:

L{m = D+ A2+ [(m = 1+ g — (X + ) + M+ n = m)J(32 + )
—(n = 2)vVw(w + A)ctgw =0

(here we use y = +y/w and y < 0). Acting similarly, as it have been shown above, we get the
differential inequality for w :

1
:?—[(m —Dw+ A +[(m=-1+g-p)A? +w)+ AT +n-m)](3 +w)>0
Integrating the respective differential equation:

S1m — 1) + N0 + [(m — 14 q = ) (M + ) + A7 +n - m))(3? +7) = 0

we get:
22w+ ( m—-1
m—n—‘rn m-—1+q—p
m—2
| =k = TR _ _
T T+n_m)ln((m 1+¢—p)(A? +@) + AT +n—-m))+2ln&=1InC.

Solving the latter expression with the respect to & we obtain:

iy or [ BT+ e~ H0 LB P Mr o —m) *%x
M +T

x [(m=14q—p)(N\? + ) + A7 +n — m)] 777

Now it’s evident that W = 2%(¥), w = y?(¥). From (7) it follows that w < @. Then we can
rewrite: P} (w) =

m=—2 m—1

AT+ n—m) AR~ iten
@+ %) '

=Cz(zz+/\2)m_-lﬁ% (m-1+q—p+

Whence it follows that:

1
®(w) ~ —=—— for |z| = 400
|o| 7w
Since y? < 22, then 1/2% < 1/y?, and it’s now clear that li_rg z(w) = —oo (since (L) = 0).
w->"'2 -0

Further, since y = '% <0and ® > 0on (0,), ®' < 0on (0, %), i.e. ®(w) decreases on (0, L)
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from some positive value ®(0) up to ®(%2) = 0. & doesn’t vanish anywhere else in (0, *3),
otherwise it should increase somewhere. From the equation we have:

' %
' — TS P o W A)
y==[(m-1+q—p)(y"+ )+ X7 +n m)](m—l)y2+/\2
2 2
y + A .
_[n—Z)y(m_l)y2+,\2Ltgw—+—oo for y— —oo.

That’s to say y(w) decreases in the vicinity of the point @, where y — —oo. It is possible only
at @ = wo/2( passing w — %2 — 0). Passing to the limit w — % — 0 in (6) and taking account
of the fact that z = —oo, we get:

m—1 4 m—2

Wwo m—2 m—1+q—p r+n—m
e _}_ —_— — N
T T+n—-m \/A[A(m—1+q—;.c)+r+n—m]
m—1+gq—p
Hence we obtain the ezplicit exzpression for A
if m220r1<m<2,ﬁ2t%’17é%%
X T {m(m—?)—-2(m—2)t—1§2
T 2wo(m —14q—p) t+2(m—2) ;
5 VIt2 4 2(m — 2)t + m?][t2 + 2(m — 2)t + (m — 2)?] ®)
t+2(m—2) ’
where t = (1 +n — m);
if leewn €9, SR 2X .
)= 2m(m — 1) . ()
wom(m — 1+ q— )
In the case of n =2, T = 0 we obtain the result
% (m—1) 2 (r—wg)[m(rr—wo)+\/(_m—2)2(1r—w0)2+4(m~1)1r2]l (10)

(m—1—pu+q) 2wo(2m —wo)(m —1—p+q)

In the case of T = = q¢ = 0, n = 2 we get the known result. If m = n = 2 we have from

(8)
)

A=
2(1+q—4p)

Now we consider the case n = 3. We shall assume the 7 = 0. We shall seek solution of a form
u = r*®(w)sin* , where ¢ € (0,7); w € (—wo/2,wo/2). Then we obtain for $(w) the problem
which coincides with (ODE) for n = 2 and so we have for A the expression (10).

The mixed boundary value problem
Now we consider te mixed boundary value problem in planar domain Gy = {(r,w)| r >
0, 0 < w < wp < 7} with corner boundary point:

e (1l 1Vul™ ) = lul*sgn V", 2 € G,
Ou

ul = -
w=wg ? 61'2

=0,

w=0
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where wg is an angle with the vertex at the point 0. By analogy with abovestated we come to
the following expression for A :

(m—1)

X =
(m—-1-p+gq)

+ (m — 2wo)[m(m — 2wo) + 1/(m — 2)2(7 — 2wp)? + 4(m — 172
Buwo(m —wo)(m —1—p+q) '

It is clear that this expression coincides with (9) for the Dirichlet problem, if in the latter we
set 2wp instead of wg.

Thus, there are constructed barrier functions w = r*®(w) of the first boundary value problem
for the equation (1) and also of the mized boundary value problem for (1) by T = 0.
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