УДК 512.553

VITALIJ BONDARENKO

INFINITELY REPRESENTED BUNDLES OF TWO SEMICHAINS HEREDITARY RINGS

In this paper we study representations of bundles of semichains. These representations were classified (in the invariant form) in [1]. A history of solving this classification problem and its applications was presented in [2].

We associate a bigraph with a bundle of two semichains and give (in its terms) a necessary and sufficient condition that a bundle is infinitely represented, i.e. that it has (up to isomorphism) infinitely many indecomposable representations.

Throughout the paper, k denotes an arbitrary field; all partially ordered sets (posets) are finite and all vector spaces are finite-dimensional and right. Considering linear maps, morphisms and so on, we use the right-side notation.

1. The category of representations of a bundle of two semichains. For a poset A with involution * and a field k, $\operatorname{mod}_{(A,*)}k$ denotes (by analogy with the category of finite-dimensional vector k-spaces $\operatorname{mod} k$) the category of (A,*)-spaces over k [3], i.e. the category with objects the vector k-spaces $U = \bigoplus_{a \in A} U_a$, where $U_a \cdot = U_a$ (for all $a \in A$), and with morphisms $\delta : U \to U'$ the linear maps $\delta \in \operatorname{Hom}_k(U,U')$ for which $\delta_a \cdot a \cdot = \delta_{aa}$ and $\delta_{bc} = 0$ if $b \not\leq c$. Here δ_{xy} denotes (as usual in analogous situations) the linear map of U_x into U'_y induced by δ . We identify (A,*) with A if the involution * is trivial.

Recall that a semichain is a poset of the form $Y = \bigcup_{i=1}^{s} Y_i$, where each Y_i consists of either one point or two incomparable points, and $Y_1 < Y_2 < \cdots < Y_s$ (i.e. $y_1 < y_2 < \cdots < y_s$ for all $y_i \in Y_i$); the subsets Y_i are called the links of the semichain Y (if each link consists of one point, the set Y is called a chain).

Let A and B be disjoint semichains $(A \cup B \neq \emptyset)$. A bundle of the semichains A and B is a triple $\overline{S} = (A, B, *)$, where * is an involution of $A \cup B$ such that $x^* = x$ for each x belonging to a two-point link. The representations of the bundle $\overline{S} = (A, B, *)$ over k are the triples (U, V, φ) , where $U \in \operatorname{mod}_A k$, $V \in \operatorname{mod}_B k$, $U \oplus V \in \operatorname{mod}_{(A \cup B, *)} k$ and φ is a linear map of U into V ($A \cup B$ is the poset with the smallest order relation containing the order relations of A and B). A morphism from (U, V, φ) to (U', V', φ') is determined by a pair (α, β) of linear maps $\alpha : U \to U'$ and $\beta : V \to V'$ such that $\alpha \in \operatorname{mod}_A k$, $\beta \in \operatorname{mod}_B k$, $\alpha \oplus \beta \in \operatorname{mod}_{(A \cup B, *)} k$ and $\varphi \beta = \alpha \varphi'$. The representations of the bundle $\overline{S} = (A, B, *)$ over k form a (Krull-Schmidt) category which we will denote by $\mathcal{B}_k(\overline{S})$ or $\mathcal{B}_k(A, B, *)$.

A bundle of two semichains $\overline{S} = (A, B, *)$ is called finitely represented (over k) if the category $\mathcal{B}_k(\overline{S})$ has only finitely many isomorphism classes of indecomposable objects; otherwise, \overline{S} is called infinitely represented.

[©] Bondarenko Vitalij, 1999

2. Formulation of the main result. Let \overline{S} be a bundle of semichains A and B. Define two symmetric binary relations, \sim and -, on $A \cup B$ by putting $x \sim y$ if and only if $x^* = y$, $x \neq y$, and x - y if and only if either $x \in A$, $y \in B$ or $x \in B$, $y \in A$.

With a bundle $\overline{S} = (A, B, *)$ we associate the following (nonoriented) bigraph $G = G(\overline{S})$:

- a) the vertices of G are the symbols e_x , $x \in A \cup B$;
- b) G has edges of two type "~" and "–"; the edge $e_x \sim e_y$ (respectively, $e_x e_y$) exists if and only if $x \sim y$ (respectively, x y) in $A \cup B$.

A subgraph of G is determined as usual: it is a bigraph with a set of vertices $E \subset \{e_x | x \in A \cup B\}$ and some edges from G (between vertices $e_x, e_y \in E$). If the bigraph $G(\overline{S})$ is geometrically given, we identify e_x with x.

In the sequel, we denote links of semichains by lower case letters, and identify the one-poits links with the points themselves; the points of a two-point link x is denoted by x^+ and x^- .

The main theorem. A bundle \overline{S} of two semichains is infinitely represented if and only if the bigraph $G(\overline{S})$ contains one of the following subgraphs:

1)
$$x \simeq y$$
; 2) $\begin{vmatrix} x^{+} & -y^{+} & x_{1} \sim x_{2} \\ y^{-} & -x^{-} & y_{1} \sim y_{2} \end{vmatrix}$; 3) $\begin{vmatrix} x_{1} & x_{1} & x_{2} \\ y^{-} & -x^{-} & y_{1} & x_{2} \end{vmatrix}$; 4) $\begin{vmatrix} y^{+} \\ x_{1} & x_{2} \\ y^{-} & y^{-} \end{vmatrix}$.

3. Invariants of indecomposable representations of the bundle \overline{S} . Let $\overline{S} = (A, B, *)$ be a bundle of semichains A and B; let L(A) or L(B) be the set of links of the semichain A or B, respectively; denote by L(S), or simply L, the union of the sets L(A) and L(B). We denote the number of points of a link x by r(x).

Define two symmetric binary relations, α and β , on the set L by putting $x\alpha y$ if and only if either $x \neq y$, r(x) = r(y) = 1 and $x^* = y$, or x = y and r(x) = 2; and $x\beta y$ if and only if either $x \in L(A)$ and $y \in L(B)$, or $x \in L(B)$ and $y \in L(A)$.

We call an L-chain (respectively, L-cycle) an expression g of the form $x_1\lambda_1x_2\lambda_2\ldots x_{m-1}\lambda_{m-1}x_m$, $m\geqslant 1$ (respectively, $x_1\lambda_1x_2\lambda_2\ldots x_{m-1}\lambda_{m-1}x_m\lambda_m$, $m\geqslant 2$), where $x_i\in L$, $\lambda_j\in\{\alpha,\beta\}$, $x_j\lambda_jx_{j+1}$ in L and $\lambda_j\neq\lambda_{j+1}$ for all $i=1,\ldots,m$ and $j=1,\ldots,m-1$ (respectively, $i,j=1,\ldots,m$); notice that for cycles the subscripts p>m and p<1 are considered modulo m (in particular $x_{m+1}=x_1$ and $\lambda_{m+1}=\lambda_1$). The number m is called the length of an L-chain (respectively, L-cycle) and is denoted by |g|. Denote by g^* , where g is an L-chain (respectively, L-cycle), the L-chain $x_m\lambda_{m-1}x_{m-1}\ldots\lambda_2x_2\lambda_1x_1$ (respectively, the L-cycle $x_m\lambda_{m-1}x_{m-1}\ldots x_2\lambda_1x_1\lambda_m$); for an L-cycle g, g(i) denotes the L-cycle $x_i\lambda_i\ldots x_{i+m-1}\lambda_{i+m-1}=x_i\lambda_i\ldots x_m\lambda_mx_1\lambda_1\ldots x_{i-1}\lambda_{i-1}$.

L-chains (respectively, L-cycles) g and h are called isomorphic if either g = h or $g = h^*$ (respectively, either g = h(i) or $g = h^*(i)$ for some i). An L-chain (respectively, L-cycle) is called symmetric if |g| > 1 and $g = g^*$ (respectively, $g(i) = g^*$ for some i); an L-cycle g is called periodic if g = g(i) for some i, $1 < i \le m$.

L-subchains (or, simply, subchains) of an L-chain (respectively, L-cycle) g is called the L-chains h of the form $x_i\lambda_{i+1}\ldots\lambda_{i+s-1}x_{i+s}$, where $0\leqslant s\leqslant m-i$ (respectively, $0\leqslant s\leqslant m+i-1$).

An L-chain g will be called admissible if $x_i \alpha y$ in L, $x_i \neq y$, imply either $\lambda_{i-1} = \alpha$ or $\lambda_i = \alpha$. The left end x_1 (respectively, the right end x_m) of an L-chain g of length m > 1 will be called double if $\lambda_1 = \beta$ and $x_1 \alpha x_1$ in L (respectively, $\lambda_{m-1} = \beta$ and

 $x_m \alpha x_m$ in L); for m = 1, the end x_1 will be called double if $x_1 \alpha x_1$ (in L). The number of double ends of g will be denoted by d(g) (if m = 1 and $x_1 \alpha x_1$, then d(g) = 1).

In the case when h is an L-chain and d(h) = 2, we denote by $h^{[s]}$ the L-chain of the form $h^{(1)}\alpha h^{(2)}\alpha \dots \alpha h^{(s)}$, where $h^{(i)} = h$ for odd i and $h^{(i)} = h^*$ for even i; if only the right end of h is double, then $h^{[s]}$ can be constructed only for s = 1, 2 (in the remaining cases only for s = 1). An L-chain g will be called composite if it can be represented in the form $g = h^{[s]}$ for s > 1, and simple otherwise. An L-cycle is called simple if it is nonperiodic.

Denote by $G_1(L)$ the set of simple admissible L-chains, and by $G_2(L)$ the set of simple L-cycles; put $G(L) = G_1(L) \cup G_2(L)$. For an L-cycle $g \in G_2(L)$ denote by $\delta(g)$ the number of $i \in \{1, \ldots, m\}$ such that $x_i \neq x_{i+1}$ and either $x_i, x_{i+1} \in L(A)$, or $x_i, x_{i+1} \in L(B)$ (m = |g|); put $\delta_0(g) = \delta(g)/2$ for an symmetric L-cycle g, and $\delta_0(g) = \delta(g)$ otherwise.

Let k be an arbitrary field. In [2] (see § 1) we associate to the L-chains $g \in G_1(L)$ and L-cycles $g \in G_2(L)$ certain special representations (over k) of the bundle $\overline{S} = (A, B, *)$. Namely, to an L-chain $g \in G_1(L)$, we associate the representation $U_1(g)$ if d(g) = 0, the representations $U_s(g)$, s = 1, 2, if d(g) = 1, and the representations $U_s(g, p)$, s = 1, 2, 3, 4, if d(g) = 2, where p is any natural number. To an L-cycle $g \in G_2(L)$, we associate the representation U(g, f), where f = f(t) is a power of a monic polynomial f_0 , irreducible over k, such that $f_0 \neq t$ if g is nonsymmetric, and $f_0 \neq t, t+1$ (respectively, $f_0 \neq t, t-1$) if g is symmetric for an even (respectively, odd) $\delta_0(g)$.

These representations (whose explicit form were indicated in [1, 2]) are all the indecomposable representations of the bundle $\overline{S} = (A, B, *)$. More precisely, the following statement holds.

Theorem. Choose one representative in each isomorphism class of L-chains and L-cycles belonging to G(L). Then the set of representations of the form $U_s(g)$, $U_s(g,p)$ and U(g,f) associated to the chosen L-chains and L-cycles is a complete set of pairwise nonequivalent indecomposable representations of the bundle $\overline{S} = (A, B, *)$.

The Theorem was proved in [1].

4. Proof of the main theorem. Prove first the following lemma.

Lemma. The following conditions are equivalent:

- a) $G_2(L) = \emptyset$;
- b) $G_1(L)$ contains only finitely many L-chains and does not contain L-chains with two double ends.

Proof. Obviously, conditions a) and b) are equivalent, respectively, to the following conditions:

- a') the set $\overline{G}_2(L)$ of all (not necessarily simple) L-cycles is empty;
- b') the set $\overline{G}_1(L)$ of all (not necessarily simple) admissible L-chains contains only finitely many elements.
- $a') \Rightarrow b'$). Let $\overline{G}_2(L) = \varnothing$. Then $\overline{G}_1(L)$ does not contain an L-chain $g = (x_1\lambda_1x_2...\lambda_{m-1}x_m)$ such that $x_i = x_{i+s}$ and $\lambda_i = \lambda_{i+s}$ for some s > 0 (otherwise, $(x_i\lambda_ix_{i+1}...x_{i+s-1}\lambda_{i+s-1}) \in \overline{G}_2(L)$). Hence $|\overline{G}_1(L)| < \infty$.
- $b')\Rightarrow a')$. Let $|\overline{G}_1(L)|<\infty$. Show that $\overline{G}_2(L)=\varnothing$. Assume the contrary and consider some L-cycle $g=(x_1\lambda_1x_2\dots x_m\lambda_m)$ in $\overline{G}_2(L)$; denote by g' the L-chain $x_1\lambda_1x_2\dots x_m$. Then $g^ng'\in\overline{G}_1(L)$ for any natural n, contradicting the assumption that $|\overline{G}_1(L)|<\infty$. The lemma is proved.

Proposition. A bundle $\overline{S} = (A, B, *)$ is infinitely represented if and only if the set $G_2(L)$ contains an L-cycle of length 2 or 4.

Proof. It follow from the Theorem and Lemma that \overline{S} is infinitely represented if and only if $G_2(L) \neq \emptyset$. Show that if the set $G_2(L)$ is not empty, then it contains some L-cycle of length 2 or 4.

Let $(x_1\lambda_1x_2...x_m\lambda_m) \in G_2(L)$, where m > 4; obviously, we can assume that $\lambda_1 = \alpha$. If for some odd i either $x_i \in L(A)$ and $x_{i+1} \in L(B)$, or $x_i \in L(B)$ and $x_{i+1} \in L(A)$, then $x_i\alpha x_{i+1}\beta$ is a simple L-cycle (of length 2). Otherwise, $x_1\alpha x_2\beta x_3\alpha x_4\beta$ is a simple L-cycle (of length 4).

The proposition is proved.

The Main theorem follows from the proposition: if $(x\alpha y\beta) \in G_2(L)$, then the bigraph $G(\overline{S})$ contains a subgraph of the form 1); if $(x\alpha x\beta y\alpha y\beta) \in G_2(L)$, then $G(\overline{S})$ contains a subgraph of the form 2); if $(x_1\alpha x_2\beta y_1\alpha y_2\beta) \in G_2(L)$, where $x_1 \neq x_2$ and $y_1 \neq y_2$, then $G(\overline{S})$ contains a subgraph of the form 3); if, finally, $(x_1\alpha x_2\beta y\alpha y\beta) \in G_2(L)$, where $x_1 \neq x_2$, then $G(\overline{S})$ contains a subgraph of the form 4).

- Bondarenko V.M. Bundles of semichained sets and their representations // Kiev: Inst. Math. Acad. Sci. Ukrainian SSR, 1988 (Preprint 88.60). - 32 p. (in Russian).
- Bondarenko V.M. Representations of bundles of semichained sets, and their applications // Algebra and Analysis. 1991. Vol.3. N 5. P. 973-996 (in Russian).
- 3. Bondarenko V.M. On classifications of linear operators up to S-similarity // Dokl. Acad. Sci. of Ukraine. 1997. N 10. P. 16-20 (in Russian).

Бондаренко В.

В'ЯЗКИ ДВОХ НАПІВЛАНЦЮГІВ НЕСКІНЧЕННОГО ТИПУ

У статті кожній в'язці двох напівланцюгів поставлено у відповідність деякий біграф і в його термінах сформульовано необхідні і достатні умови того, щоб в'язка мала нескінченне число нерозкладних зображень.

Institute of Mathematics, National Academy of Science of Ukraine, Kiev.

Стаття надійшла до редколегії 17.04.99