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NST-RIESZ BASIS IN A HILBERT SPACE

1.Notion of nst-equivalent bases. Denote by H a standard separable complex
Hilbert space. Bases (;)ien, (i )ien of H are said to be equivalent iff Vi € N@; = Ug;
for some U € B(H) such that ker U = {0} and U~! € B(H). If this holds U is called
the equivalency of (¢;) and (@;). Equivalent bases (y;), (¢i) are said to be nst-
equivalent iff its equivalency U/ and U~! are uniformly nearstandard operators, i.e.
there exist standard operators °U, (°U)~! € B(H) (°U is the shadow of U) such that
U -°U|| =0, U - ("U)-1 || & 0 (read ”is infinitesimal” for "a 0”). Note that
the above defined relation is a genuine equivalency.

Observe that bases (v;), (I.E,‘], associated biorthogonal to nst-equivalent bases (y;),
(#i) are also nst-equivalent.

For z € H such that ||z|| € oo there exists a unique standard vector °z € H
(shadow of z) such that for any standard y € H (°z|y) = (z]y). For a given sequence
(pi) C H such that for standard i € N [|¢;|| < oo, there exists, by standardization

principle, a unique standard sequence [copg);em, such that <:7; = °¢p; for standard ¢ € N.
This sequence (@;) is called the shadow of the sequence (g;).

Let (i) be a basis of H for which ||¢;|] < oo for standard ¢ € N. Suppose that
its shadow (@;) is also a basis and (g;), (i) are equivalent with equivalency U, such
that ||U — I|| = 0. Then (y;) is said to be a nearstandard basis.

It is easy to see that a basis (1;) assosiated to a nearstandard basis (p;) is near-
standard too. Indeed, ||U — I|| ~ 0 implies ||(U*)™" = I|| ~ 0.

1.1. Proposition. Let (p;) and (@;) are nst-equivalent bases of H. Then (p;) 1s
nearstandard iff so is (¢;). The shadow °U of the equivalency U of ¢; and @; is the
equivalency of (¢;) and (,'o?,- 4

Proof. Assume that {2’; = Vi, where ||V - I|| ~# 0 and @; = Uyp;, where U
is uniformly nearstandard. Define Vi € N ¢; = (°U)@i. Then ($;) is a standard
basis of H which is equivalent to (@;) with the standard equivalency °U. Set V; :=
(CU)VU~'. Then °V; = (°U)I°(U~1) = I and ||V4 — I|| = 0. It is easy to check that
@i = V1p;. Therefore, (¢;) is nearstandard and (¢;) = (é,-).

It is also so easy to prove the following
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1.2. Proposition. The shadow of a nearstandard orthonormal basis is an orthonor-
mal basis.

Let (i) be a nearstandard basis of H. Consider an arbitrary vector z € H and

denote by (c;) the sequence of coordinates of z: £ = Y eip;. Suppose that ||z|| € oo,
ieN

then [¢;| <« oo for standard ¢ € N and there exists a unique standard °¢; € C such that

¢; = °c; By standardization principle of IST there exists a unique standard sequence

(2.) in C such that g:,- = °¢; for standard 7 € N.
1.3. Proposition. In the above assumption we have
c= i, (1.1)
ieN
where (@;) is the shadow of the basis (;).
Proof. As it was noted the assosiated basis (1;) is nearstandard too. Hence Vi €

N ||'t2, — ¥;|| & 0. Whence [|¥;]] € oo for standard i € N. Because ||z|| < oo we
have |(z|¢:)| < oo for standard i € N. Therefore indeed |¢;| « oo and the sequence
o ]
(¢;) is well defined above. Observe that °z = Z(°xi1,b,-)t§:,-, but for standard i € N we
ieN

have (°z|¢) = °(e|¥s) = °(z|wi) = &

2. nst-Riesz basis. Recall that a basis (¢;) is said to be a Riesz basis iff it is
equivalent to an orthonormal basis [2]. A basis which is nst-equvalent to a Riesz basis
is called an nst-Riesz basis. Obviously, each nst-Riesz basis is a Riesz basis.

2.1. Proposition. (i) A basis ts an nst-Riesz basis iff it is nearstandard and its
shadow 1s a Riesz basis.

(i1) A basis is an nst-Riesz basis iff it is nst-equivalent to some standard orthonor-
mal basis.

Proof. (i) Let (¢;) be an nst-Riesz basis. Denote by U the (uniformly nearstandard)
equivalency of (p;) and a standard Riesz basis (&;). Set ¢; := (°U)~'@;. Since
Ugp; = @i, we have (°U)~1U¢p; = @;. Therefore (°U)~'U is an equivalency of ()
and (¢;). But [|(°U)~'U — I|| ~ 0 and ¢; is standard. Hence (;) is the shadow (9:).
Because (@;) and ($;) are equivalent, (;) is a Riesz basis. The converse is evident.

(ii) Let (¢;) be an nst-Riesz basis. Then (g;) is a standard Riesz basis. By

definition and transfer principle, (;9,) is equivalent to the standard orthonormal basis
(e;) with a standard equivalency. By transitivity of the nst-equivalence, (y;) and
(e;) are nst-equivalent. Since each orthonormal basis is a Riesz basis, the converse is
evident.

2.2. Corollary. Let (p;) be an nst-Riesz basis. Then the constants v;, 72 in the
Parseval inequality

Ve e H mllel? <) I(=les)® < rlizll?, (2.1)
ieN
are appreciables numbers i.e. 0 K 71 < 72 K 0.

Proof. Let U be the uniformly nearstandard equivalency of (¢;) and standard or-

thonormal basis (e;). Therefore ¥ |(z|v:)|? = |[|[Uz||%. Because |[Uz|| < [|U]|||z|| and
iEN
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|zl < JU~Y|I|U=]|, (2:1) holds for v; = [[U~}||~! and ¥, = ||U||. Since U and U~}
are uniformly nearstandard, the constants v; and <, are appreciables.

Recall that a vector z € H such that ||z|| <« oo is said to be (strongly) nearstandard
iff ||z — °z|| =~ 0.
2.3. Theorem. Let (p;) be an nst-Riesz basis. A vector ¢ € H|, such that ||z|| < oo
is nearstandard iff for any infinite n € N

> laf? 0, (22
i>n
where (c;) is the sequence of coordinates of x: ¢ = Y ¢ip;.
ieN
Proof. As it is well known (see e.g. [4] or [5]), a vector z € H, such that ||z|| <« oo
is nearstandard iff for a standard orthonormal basis (e;) ¥ |(z|e:)|? = 0 holds for any
i>n
infinite n € N. Let (4;) be the associated basis for (¢;) and a standard orthonormal
basis (e;). It easy to check that ¢; = (z|v;) = (Uz|e;). Therefore (2.2) is a necessary
and sufficient condition for Uz to be nearstandard. Because the equivalency U (and
also U~! ) is uniformly nearstandard, Uz is nearstandard iff so is z. (Note that
(Uz) = (V) (2).
2.4 Remark. For each orthonormal sequence (e;) in H, by standardization principle
we can construct a unique standard sequence (é;), such that é; = °e; for standard
i € N. By transfer principle, (€;) is orthonormal. It is not difficult to prove (using

Robinson’s lemma) that (¢;) is a basis iff so is (e;) and 5 |(z|ei)|* = 0 holds for any
i>n
standard z and any infinite n € N.

2.5 Remark. Let (yp;) be a basis of H. As it is known (see e.g. [2]), (¢:) is a Riesz
basis iff for any bijection 7 : N -5 N [50,,{,-)],-51\1 is a basis as well. Suppose that the
basis (¢;) is nearstandard. Then (fp,r{.'))"eﬁ is a nearstandard basis iff the bijection
is standard. For proof use the following

Remark. Let f, g be bijections with domf = img. Suppose that f is standard.
Then f o g is standard iff so is g.

3. Infinitesimal perturbation of basis. Introduce the following notion. A
sequence (v;) in H is said to be uniformly infinitesimal iff for arbitrary (c;) € C,

neN
Yl <1 = X el w0, (31)
isn Isn
3.1. Lemma. Let (v;) be an uniformly infinitesimal sequence in H. Then for any
¢ = (e;) € &y the series Y ¢;7yi is convergent. The operator T', defined by
i€N
Vee by Te= Zc,-‘y.- (3.2)
ieN
belongs to B(£3;H) and ||T'|| = 0.
Proof. Let ¢ be the lest upper bound of || 3_ ¢;%|| for n € Nand ¥ |¢;|? < 1. By
i<n ieN
(3.1) e =~ 0. At first define I’ by (3.2) for ¢ satisfying (3n € N)(Vi > n)(¢; = 0). Then
[|ITe|| < €lle||. Because such c are dense in £, we can extend I' onto all ¢ € £; and get
I € B(ty, E), (IT}| ~ 0.
3.2 Definition. Sequences (¢;), (#;) in H are said to be (uniformly) infinitely close
iff the sequence (¢; — @;) 1s uniformly infinitesimal.
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3.3. Proposition. Let (p;) be a Riesz basis in H. Suppose that for an equivalency
U of (¢i) and some orthonormal basis (e;)

Ul < oo (33)
holds. Then each infinitely close to (p;) sequence ($;) is a Riesz basis.
Proof. Denote by () the basis associated whith (¢;) and set

VzeH Az = ((z]¥:))ien- (3.4)

Since ¢; = U*e; [|Az|)* = 3 |(Uzle:)|* = ||Uz||*. In particular [|A]] = [|U]] < oo.
Let T be operator (3.2) for “)i-N:: @i — @i. It is easy to check that

@i = (I +TA)g;. (3.5)

But ||[TA|| = 0. Therefore ker (I + TA) = {0} and (/ + TA)~! € B(H). Since
@i = (I + TA)U e, (I + TA)U! is an equivalency of (e;) and (@;).

3.4. Theorem. A sequence (p;) which is infinitely close to nst-Riesz basis (p;) is
an nst-Riesz basis.

Proof. Let U be the uniformly nearstandard equivalency of (¢;) and a standard or-
thonormal basis (e;) (see 2.1 (ii)). Since Ug; = e;, by (3.5) we have U(/+TA)"1p; =
e; (notation as above). Thus U(I + T'A)~! is an equivalency of (&;) and (e;). But
|U(I + TA) = °U|| = 0 (because |[TA|| ~ 0). Therefore U(I + T'A)~! is uniformly
nearstandard.

Remark. In condition of theorem 3.4, (¢;) and ($;) have common shadow. This
follows from proposition 1.1, because °(U(I + T'A)) = °U.

Example.(Contribution to some Paley-Wiener theorem; see [6], [7]). Consider
the functions @, (t) = (27)~/2exp(il,t) as elements of the standard Hilbert spase

o
H = Ly(—m, 7). Suppose that meagc]/\n ~n| € 7~ 'In2. Denote by (An)n € Z the

(unique) standard sequence of complex numbers such that j\n ~ A, for standard
n € N. Assume that ) |\, — As| = 0. Then () is an nst-Riesz basis of Ly(—, )
ieN

with the shadow which consists of (27)~1/2 exp(i;nt], n € Z. The proof is almost the
same as in [7].

4.Diagonal operators. Note that each operator A € B(H) such that ||Af| < oo,
has a shadow ° A which is defined as a standard element of B(H), such that (°Az|y) ~
(Az|y) for arbitrary standard z,y € H . If for any standard z € H [|(A—-°A)z||~ 0
then A is said to be nearstandard, and if ||A — ° A|| = 0 then A is said to be uniformly
nearstandard. Let (g;), (@:) be biorthogonal bases in H. Then to A € B(H) there
corresponds the matrix with elements a; ; = (Av;|pi)jen. Suppose that the basis
(#:) is nearstandard (therefore so is (%;)), and [|A|] < oco. It is easy to check that

(3,-,3-), defined as a standard matrix such that for standard 4,7 € N 3,-,3- =t}
is the matrix of the shadow °A with respect to the shadows of bases (y;), (¥i), i.e.
Q
a; ; = (° A; ;19:).
Somewhat more concrete information concerns operators of the form

VeeH Az=Y Ni(elb)ei. @)
ieN "
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4.1. Theorem. Let (the eigenvectors of A) p; forms an nst-Riesz basis of H. Then A
L]
is (strongly) nearstandard, iff Vi € N |)\;| « oo. Denote by ();) a standard sequence
o
in C such that \; ~ \; for standard i € N. Then A is uniformly nearstandard iff Vi € N
4]
/\,‘ ~ k{.

Proof is not difficult, it is based only on theorem 2.3 and Robinson lemma.

4.2 Warning. Let p be some bijection N — N. For operator (4.1) define (pA)z :=
> Api)(z|ti)pi. Then A and pA are similar. Suppose Vi € N |\;| € oo and () is
ieN

an nst-Riesz basis. Assume that the bijection p is standard. Then A and pA a both
(strongly) nearstandard and so are their shadows °A and °(pA). But in general this
is not true.

Remark. Recall that an operator A € B(H) is said to be S-compact iff |jz|] < oo
implies that Az is nearstandard. Suppose that (y;) is an nst-Riesz basis. Then
operator (4.1) is S-compact, iff Vi € N |\;| < co and A; &~ 0 for nonstandard i € N.
If this holds, then °A is a standard compact operator.

5. Unbounded operators. In order to define the shadow ° A whenever A € B(H)
but ||A|| & oo use the concept of graph-nearstandardness [9]. Denote by domy ;A the
set of nearstandard ¢ € H for which Az is nearstandard. Suppose that for each
infinitesimal u € domy ;A the vector Au is infitesimal. Then the shadow of the graph
of A is the graph of some standard map, which by definition is the shadow °A of A.
This ° A is optionally an element of B(H), but it is a standard closed operator. Thus
A € B(H) is graph-nearstandard iff °(graphA)= graph(®A).

5.1. Theorem. Let (p;) be a nst-Riesz basts and |A\| K€ oo for any standard i € N.
Then the operator ({.1) is graph-nearstandard. Iis shadow is the standard closed
densely defined operator ° A such that dom(°A) is the set of ¢ € H for which the

° g 2 o
series Y |Xi(z|wi)|? converges, and for z € dom®A (°A)z = 3 Ai(e|vi)ei.
ieN €N

. Proof. Let u ~ 0 and u € dom,,;+A. By Robinson lemma there exists an infinite
k € N such that 3 [Xi(u|y:)]? ~ 0. By theorem 2.3 i [A;(ul¥;)|? = 0. By the
Parseval inequalit;gi{‘or nst-Riesz basis Au ~ 0. Thus ff ;i’: graph-nearstandard. Let
¢ € H be standard and the series 2 |i,‘($|:b,;)|2 converges. Set y := E i,- (a:]v};)fo,-,
this y is standard (as a sum of a st‘a.el?dard convergent series). Find inﬁlelliqte k € N for

4] o 1+l Q .
which % (zli)ei — (z|¥i)eil] = 0 and % [|A,-(a:]w,-);z,- — X (z|¥s)eill = 0. For this

k define z, := Y (z|¥:)pi. Then z; ~ z, in particular z, is nearstandard. It is easy
i<k

to check that Az, ~ y. This means that (z,y) € °(graphA), i.e. (°A)z = y. For

the transfer principle the part ( = ) is proved. Conversely, suppose that z ~ =i,

where z; € dom,A. Then (°A)z = °(Azy) = °(3 Ai(=|v:)i). Since °(Ai(z|ws)) =
iEN

] Q o ] °
Ai(z|v;), for standard ¢ € N by Proposition 1.3°(Az1) = ) Ai(z|¥:)@;. In particular
iEN
<] 4]
we see that 5 |Xi(z|t:)]? converges.
i€EN

5.2 Example. Denote by T the interval [0, 2| considered as an additive group with

the addition mod(27). Let H = L,(T') with the standard Lebesgue measure. For an
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infinitesimal A > 0 define

VeeH Az(t) = hl—z[z(t +2h) — 2z(t + h) + z(t)], t€ T. (5.1)

1 : 1

Then A € B(H) but ||A|| = 73~ +oo. Rewrite (5.1) as A = -EE(S— 1)?, where S
is the shift Sz(t) = z(t + h). The eigenvalues and eigenfunctions of S are e'™* and
t —> €™, n € Z. Therefore the eigenvalues of A are \,, = ~}f—2(6£ﬂh— I)? with the same
eigenfunctions. We see that A is unitary equivalent to the operator Ain H = £5(Z)
of multiplication by \,. Since A, ~ —n? for standard n € Z, |A\,| < oo for such n.
Therefore A (and A) is graph-nearstandard. Its shadow °A is the multiplication by
An = —n? in H and dom(°A) = {(c,) € £2(Z) : Y |n%cn|? converges }.

Hence dom(°A) = {zx e H: 2/, 2" € H}, °Az = z". Observe that A, are placed

on infinitely large cardioid with the equation p = % (1 + cosp) in polar coordinates.
The shadow of this curve is the union of the right and left shores of negative real

(/]
semiaxis R_ on which the eigenvalues A, = —n? of °A are placed.
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Kapa6iu O.
NST-BA3U PICA Y TINIBBEPTOBOMY INPOCTOPI

PosraanyTo jeaki HecTaHAapTHI acnekTu Teopil 6a3, BBeJeHO MOHATTA nst-6a3m
Pica. Ha nmigctasi npani Heabcona npo BHYTPIUIHIO TeOpilo MHOXUH HaBeJeHO YMOBH
KoJIOCTaHAapTHOCTI BekTopa B 6a3i Pica, posrasnyTo 6a3u, HeCKIHYEHHO 6AM3BK] O
nst-6a3 Pica, osHadeHa TiHb HeoOMeXeHOro onepaTopa.
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