УДК 517.518.34

OKSANA KARABYN

NST-RIESZ BASIS IN A HILBERT SPACE

1.Notion of nst-equivalent bases. Denote by \mathbb{H} a standard separable complex Hilbert space. Bases $(\varphi_i)_{i\in\mathbb{N}}$, $(\tilde{\varphi}_i)_{i\in\mathbb{N}}$ of \mathbb{H} are said to be equivalent iff $\forall i\in\mathbb{N}$ $\tilde{\varphi}_i=U\varphi_i$ for some $U\in\mathcal{B}(\mathbb{H})$ such that $\ker U=\{0\}$ and $U^{-1}\in\mathcal{B}(\mathbb{H})$. If this holds U is called the equivalency of (φ_i) and $(\tilde{\varphi}_i)$. Equivalent bases (φ_i) , $(\tilde{\varphi}_i)$ are said to be nst-equivalent iff its equivalency U and U^{-1} are uniformly nearstandard operators, i.e. there exist standard operators ${}^{\circ}U$, $({}^{\circ}U)^{-1}\in\mathcal{B}(\mathbb{H})$ (${}^{\circ}U$ is the shadow of U) such that $\|U-{}^{\circ}U\|\approx 0$, $\|U^{-1}-({}^{\circ}U)^{-1}\|\approx 0$ (read "is infinitesimal" for " ≈ 0 "). Note that the above defined relation is a genuine equivalency.

Observe that bases (ψ_i) , $(\tilde{\psi}_i)$, associated biorthogonal to nst-equivalent bases (φ_i) , $(\tilde{\varphi}_i)$ are also nst-equivalent.

For $x \in \mathbb{H}$ such that $||x|| \ll \infty$ there exists a unique standard vector ${}^{\circ}x \in \mathbb{H}$ (shadow of x) such that for any standard $y \in \mathbb{H}$ (${}^{\circ}x|y$) $\approx (x|y)$. For a given sequence $(\varphi_i) \subset \mathbb{H}$ such that for standard $i \in \mathbb{N}$ $||\varphi_i|| \ll \infty$, there exists, by standardization principle, a unique standard sequence $(\mathring{\varphi}_i)_{i \in \mathbb{N}}$, such that $\mathring{\varphi}_i = {}^{\circ}\varphi_i$ for standard $i \in \mathbb{N}$. This sequence $(\mathring{\varphi}_i)$ is called the shadow of the sequence (φ_i) .

Let (φ_i) be a basis of \mathbb{H} for which $||\varphi_i|| \ll \infty$ for standard $i \in \mathbb{N}$. Suppose that its shadow $(\mathring{\varphi}_i)$ is also a basis and (φ_i) , $(\mathring{\varphi}_i)$ are equivalent with equivalency U, such that $||U - I|| \approx 0$. Then (φ_i) is said to be a nearstandard basis.

It is easy to see that a basis (ψ_i) associated to a nearstandard basis (φ_i) is near-standard too. Indeed, $||U - I|| \approx 0$ implies $||(U^*)^{-1} - I|| \approx 0$.

1.1. Proposition. Let (φ_i) and $(\tilde{\varphi}_i)$ are nst-equivalent bases of \mathbb{H} . Then (φ_i) is nearstandard iff so is $(\tilde{\varphi}_i)$. The shadow U of the equivalency U of φ_i and $\tilde{\varphi}_i$ is the equivalency of $(\tilde{\varphi}_i)$ and $(\tilde{\varphi}_i)$.

Proof. Assume that $\mathring{\varphi}_i = V\varphi_i$, where $||V - I|| \approx 0$ and $\tilde{\varphi}_i = U\varphi_i$, where U is uniformly nearstandard. Define $\forall i \in \mathbb{N}$ $\hat{\varphi}_i = (^{\circ}U)\mathring{\varphi}_i$. Then $(\hat{\varphi}_i)$ is a standard basis of \mathbb{H} which is equivalent to $(\mathring{\varphi}_i)$ with the standard equivalency $^{\circ}U$. Set $V_1 := (^{\circ}U)VU^{-1}$. Then $^{\circ}V_1 = (^{\circ}U)I^{\circ}(U^{-1}) = I$ and $||V_1 - I|| \approx 0$. It is easy to check that $\hat{\varphi}_i = V_1\tilde{\varphi}_i$. Therefore, $(\tilde{\varphi}_i)$ is nearstandard and $(\hat{\varphi}_i) = (\mathring{\varphi}_i)$.

It is also so easy to prove the following

[©] Karabyn Oksana, 1999

1.2. Proposition. The shadow of a nearstandard orthonormal basis is an orthonormal basis.

Let (φ_i) be a nearstandard basis of \mathbb{H} . Consider an arbitrary vector $x \in \mathbb{H}$ and denote by (c_i) the sequence of coordinates of x: $x = \sum_{i \in \mathbb{N}} c_i \varphi_i$. Suppose that $||x|| \ll \infty$, then $|c_i| \ll \infty$ for standard $i \in \mathbb{N}$ and there exists a unique standard $c_i \in \mathbb{C}$ such that $c_i \approx c_i$ By standardization principle of IST there exists a unique standard sequence c_i in \mathbb{C} such that $c_i = c_i$ for standard $i \in \mathbb{N}$.

1.3. Proposition. In the above assumption we have

$$^{\circ}x = \sum_{i \in \mathbb{N}} \overset{\circ}{c}_{i} \overset{\circ}{\varphi}_{i}, \tag{1.1}$$

where $(\mathring{\varphi}_i)$ is the shadow of the basis (φ_i) .

Proof. As it was noted the assosiated basis (ψ_i) is nearstandard too. Hence $\forall i \in \mathbb{N}$ $\|\mathring{\psi}_i - \psi_i\| \approx 0$. Whence $\|\psi_i\| \ll \infty$ for standard $i \in \mathbb{N}$. Because $\|x\| \ll \infty$ we have $|(x|\psi_i)| \ll \infty$ for standard $i \in \mathbb{N}$. Therefore indeed $|c_i| \ll \infty$ and the sequence (\mathring{c}_i) is well defined above. Observe that ${}^{\circ}x = \sum_{i \in \mathbb{N}} ({}^{\circ}x|\mathring{\psi}_i) \mathring{\varphi}_i$, but for standard $i \in \mathbb{N}$ we

have $({}^{\circ}x|\mathring{\psi}_i) = {}^{\circ}(x|\mathring{\psi}_i) = {}^{\circ}(x|\psi_i) = \overset{\circ}{c}_i$.

- 2. nst-Riesz basis. Recall that a basis (φ_i) is said to be a Riesz basis iff it is equivalent to an orthonormal basis [2]. A basis which is nst-equivalent to a Riesz basis is called an *nst-Riesz basis*. Obviously, each nst-Riesz basis is a Riesz basis.
- 2.1. Proposition. (i) A basis is an nist-Riesz basis iff it is nearstandard and its shadow is a Riesz basis.
- (ii) A basis is an nst-Riesz basis iff it is nst-equivalent to some standard orthonormal basis.
- Proof. (i) Let (φ_i) be an nst-Riesz basis. Denote by U the (uniformly nearstandard) equivalency of (φ_i) and a standard Riesz basis $(\tilde{\varphi}_i)$. Set $\hat{\varphi}_i := ({}^{\circ}U)^{-1}\tilde{\varphi}_i$. Since $U\varphi_i = \tilde{\varphi}_i$, we have $({}^{\circ}U)^{-1}U\varphi_i = \hat{\varphi}_i$. Therefore $({}^{\circ}U)^{-1}U$ is an equivalency of (φ_i) and $(\hat{\varphi}_i)$. But $||({}^{\circ}U)^{-1}U I|| \approx 0$ and $\hat{\varphi}_i$ is standard. Hence $(\hat{\varphi}_i)$ is the shadow $(\hat{\varphi}_i)$. Because $(\tilde{\varphi}_i)$ are equivalent, $(\hat{\varphi}_i)$ is a Riesz basis. The converse is evident.
- (ii) Let (φ_i) be an nst-Riesz basis. Then $(\mathring{\varphi}_i)$ is a standard Riesz basis. By definition and transfer principle, $(\mathring{\varphi}_i)$ is equivalent to the standard orthonormal basis (e_i) with a standard equivalency. By transitivity of the nst-equivalence, (φ_i) and (e_i) are nst-equivalent. Since each orthonormal basis is a Riesz basis, the converse is evident.
- **2.2.** Corollary. Let (φ_i) be an nst-Riesz basis. Then the constants γ_1 , γ_2 in the Parseval inequality

$$\forall x \in \mathbb{H} \quad \gamma_1 ||x||^2 \leqslant \sum_{i \in \mathbb{N}} |(x|\psi_i)|^2 \leqslant \gamma_2 ||x||^2,$$
 (2.1)

are appreciables numbers i.e. $0 \ll \gamma_1 < \gamma_2 \ll \infty$.

Proof. Let U be the uniformly nearstandard equivalency of (φ_i) and standard orthonormal basis (e_i) . Therefore $\sum_{i \in \mathbb{N}} |(x|\psi_i)|^2 = ||Ux||^2$. Because $||Ux|| \leq ||U||||x||$ and

 $||x|| \leq ||U^{-1}|| ||Ux||$, (2.1) holds for $\gamma_1 = ||U^{-1}||^{-1}$ and $\gamma_2 = ||U||$. Since U and U^{-1} are uniformly nearstandard, the constants γ_1 and γ_2 are appreciables.

Recall that a vector $x \in \mathbb{H}$ such that $||x|| \ll \infty$ is said to be (strongly) nearstandard iff $||x - {}^{\circ}x|| \approx 0$.

2.3. Theorem. Let (φ_i) be an nst-Riesz basis. A vector $x \in \mathbb{H}$, such that $||x|| \ll \infty$ is nearstandard iff for any infinite $n \in \mathbb{N}$

$$\sum_{i>n} |c_i|^2 \approx 0,\tag{2.2}$$

where (c_i) is the sequence of coordinates of x: $x = \sum_{i \in \mathbb{N}} c_i \varphi_i$.

Proof. As it is well known (see e.g. [4] or [5]), a vector $x \in \mathbb{H}$, such that $||x|| \ll \infty$ is nearstandard iff for a standard orthonormal basis $(e_i) \sum_{i>n} |(x|e_i)|^2 \approx 0$ holds for any

infinite $n \in \mathbb{N}$. Let (ψ_i) be the associated basis for (φ_i) and a standard orthonormal basis (e_i) . It easy to check that $c_i = (x|\psi_i) = (Ux|e_i)$. Therefore (2.2) is a necessary and sufficient condition for Ux to be nearstandard. Because the equivalency U (and also U^{-1}) is uniformly nearstandard, Ux is nearstandard iff so is x. (Note that (Ux) = (Ux)(Ux)).

2.4 Remark. For each orthonormal sequence (e_i) in \mathbb{H} , by standardization principle we can construct a unique standard sequence (\hat{e}_i) , such that $\hat{e}_i = {}^{\circ}e_i$ for standard $i \in \mathbb{N}$. By transfer principle, (\hat{e}_i) is orthonormal. It is not difficult to prove (using Robinson's lemma) that (\hat{e}_i) is a basis iff so is (e_i) and $\sum_{i>n} |(x|e_i)|^2 \approx 0$ holds for any standard x and any infinite $n \in \mathbb{N}$.

2.5 Remark. Let (φ_i) be a basis of \mathbb{H} . As it is known (see e.g. [2]), (φ_i) is a Riesz basis iff for any bijection $\pi: \mathbb{N} \to \mathbb{N}$ $(\varphi_{\pi(i)})_{i \in \mathbb{N}}$ is a basis as well. Suppose that the basis (φ_i) is nearstandard. Then $(\varphi_{\pi(i)})_{i \in \mathbb{N}}$ is a nearstandard basis iff the bijection π is standard. For proof use the following

Remark. Let f, g be bijections with dom f = im g. Suppose that f is standard. Then $f \circ g$ is standard iff so is g.

3. Infinitesimal perturbation of basis. Introduce the following notion. A sequence (γ_i) in \mathbb{H} is said to be uniformly infinitesimal iff for arbitrary $(c_i) \in \mathbb{C}$, $n \in \mathbb{N}$

$$\sum_{i \leqslant n} |c_i|^2 \leqslant 1 \implies \|\sum_{i \leqslant n} c_i \gamma_i\| \approx 0.$$
 (3.1)

3.1. Lemma. Let (γ_i) be an uniformly infinitesimal sequence in \mathbb{H} . Then for any $c = (c_i) \in \ell_2$ the series $\sum_{i \in \mathbb{N}} c_i \gamma_i$ is convergent. The operator Γ , defined by

$$\forall c \in \ell_2 \ \Gamma c = \sum_{i \in \mathbb{N}} c_i \gamma_i \tag{3.2}$$

belongs to $\mathcal{B}(\ell_2; \mathbb{H})$ and $||\Gamma|| \approx 0$.

Proof. Let ε be the lest upper bound of $\|\sum_{i \leq n} c_i \gamma_i\|$ for $n \in \mathbb{N}$ and $\sum_{i \in \mathbb{N}} |c_i|^2 \leq 1$. By (3.1) $\varepsilon \approx 0$. At first define Γ by (3.2) for c satisfying $(\exists n \in \mathbb{N})(\forall i > n)(c_i = 0)$. Then $\|\Gamma c\| \leq \varepsilon \|c\|$. Because such c are dense in ℓ_2 we can extend Γ onto all $c \in \ell_2$ and get $\Gamma \in \mathcal{B}(\ell_2, \mathbb{H})$, $\|\Gamma\| \approx 0$.

3.2 Definition. Sequences (φ_i) , $(\tilde{\varphi}_i)$ in \mathbb{H} are said to be (uniformly) infinitely close iff the sequence $(\varphi_i - \tilde{\varphi}_i)$ is uniformly infinitesimal.

3.3. Proposition. Let (φ_i) be a Riesz basis in \mathbb{H} . Suppose that for an equivalency U of (φ_i) and some orthonormal basis (e_i)

$$||U|| \ll \infty \tag{3.3}$$

holds. Then each infinitely close to (φ_i) sequence $(\tilde{\varphi_i})$ is a Riesz basis.

Proof. Denote by (ψ_i) the basis associated whith (φ_i) and set

$$\forall x \in \mathbb{H} \quad \Delta x = ((x|\psi_i))_{i \in \mathbb{N}}. \tag{3.4}$$

Since $\psi_i = U^* e_i ||\Delta x||^2 = \sum_{i \in \mathbb{N}} |(Ux|e_i)|^2 = ||Ux||^2$. In particular $||\Delta|| = ||U|| \ll \infty$.

Let Γ be operator (3.2) for $\gamma_i := \varphi_i - \tilde{\varphi}_i$. It is easy to check that

$$\tilde{\varphi}_i = (I + \Gamma \Delta) \varphi_i. \tag{3.5}$$

But $||\Gamma\Delta|| \approx 0$. Therefore $\ker(I + \Gamma\Delta) = \{0\}$ and $(I + \Gamma\Delta)^{-1} \in \mathcal{B}(\mathbb{H})$. Since $\tilde{\varphi}_i = (I + \Gamma\Delta)U^{-1}e_i$, $(I + \Gamma\Delta)U^{-1}$ is an equivalency of (e_i) and $(\tilde{\varphi}_i)$.

3.4. Theorem. A sequence $(\tilde{\varphi}_i)$ which is infinitely close to nst-Riesz basis (φ_i) is an nst-Riesz basis.

Proof. Let U be the uniformly nearstandard equivalency of (φ_i) and a standard orthonormal basis (e_i) (see 2.1 (ii)). Since $U\varphi_i = e_i$, by (3.5) we have $U(I + \Gamma\Delta)^{-1}\tilde{\varphi}_i = e_i$ (notation as above). Thus $U(I + \Gamma\Delta)^{-1}$ is an equivalency of $(\tilde{\varphi}_i)$ and (e_i) . But $||U(I + \Gamma\Delta) - {}^{\circ}U|| \approx 0$ (because $||\Gamma\Delta|| \approx 0$). Therefore $U(I + \Gamma\Delta)^{-1}$ is uniformly nearstandard.

Remark. In condition of theorem 3.4, (φ_i) and $(\tilde{\varphi}_i)$ have common shadow. This follows from proposition 1.1, because $(U(I + \Gamma \Delta)) = U$.

Example.(Contribution to some Paley-Wiener theorem; see [6], [7]). Consider the functions $\varphi_n(t) = (2\pi)^{-1/2} \exp(i\lambda_n t)$ as elements of the standard Hilbert spase $\mathbb{H} = L_2(-\pi, \pi)$. Suppose that $\max_{n \in \mathbb{Z}} |\lambda_n - n| \ll \pi^{-1} \ln 2$. Denote by $(\mathring{\lambda}_n)_n \in \mathbb{Z}$ the (unique) standard sequence of complex numbers such that $\mathring{\lambda}_n \approx \lambda_n$ for standard $n \in \mathbb{N}$. Assume that $\sum_{i \in \mathbb{N}} |\lambda_n - \mathring{\lambda}_n| \approx 0$. Then (φ_n) is an nst-Riesz basis of $L_2(-\pi, \pi)$

with the shadow which consists of $(2\pi)^{-1/2} \exp(i\overset{\circ}{\lambda}_n t)$, $n \in \mathbb{Z}$. The proof is almost the same as in [7].

4.Diagonal operators. Note that each operator $A \in \mathcal{B}(\mathbb{H})$ such that $||A|| \ll \infty$, has a shadow $^{\circ}A$ which is defined as a standard element of $\mathcal{B}(\mathbb{H})$, such that $(^{\circ}Ax|y) \approx (Ax|y)$ for arbitrary standard $x, y \in \mathbb{H}$. If for any standard $x \in \mathbb{H}$ $||(A - ^{\circ}A)x|| \approx 0$ then A is said to be nearstandard, and if $||A - ^{\circ}A|| \approx 0$ then A is said to be uniformly nearstandard. Let (φ_i) , $(\tilde{\varphi}_i)$ be biorthogonal bases in \mathbb{H} . Then to $A \in \mathcal{B}(\mathbb{H})$ there corresponds the matrix with elements $a_{i,j} = (A\psi_j|\varphi_i)_{j\in\mathbb{N}}$. Suppose that the basis (φ_i) is nearstandard (therefore so is (ψ_i)), and $||A|| \ll \infty$. It is easy to check that $(\mathring{a}_{i,j})$, defined as a standard matrix such that for standard $i,j \in \mathbb{N}$ $\mathring{a}_{i,j} = {}^{\circ}(a_{i,j})$, is the matrix of the shadow $^{\circ}A$ with respect to the shadows of bases (φ_i) , (ψ_i) , i.e. $\mathring{a}_{i,j} = ({}^{\circ}A\mathring{\psi}_{i,j}|\mathring{\varphi}_i)$.

Somewhat more concrete information concerns operators of the form

$$\forall x \in \mathbb{H} \quad Ax = \sum_{i \in \mathbb{N}} \lambda_i(x|\psi_i)\varphi_i. \tag{4.1}$$

4.1. Theorem. Let (the eigenvectors of A) φ_i forms an nst-Riesz basis of \mathbb{H} . Then A is (strongly) nearstandard, iff $\forall i \in \mathbb{N} \ |\lambda_i| \ll \infty$. Denote by $(\mathring{\lambda}_i)$ a standard sequence in \mathbb{C} such that $\mathring{\lambda}_i \approx \lambda_i$ for standard $i \in \mathbb{N}$. Then A is uniformly nearstandard iff $\forall i \in \mathbb{N}$ $\mathring{\lambda}_i \approx \lambda_i$.

Proof is not difficult, it is based only on theorem 2.3 and Robinson lemma.

4.2 Warning. Let p be some bijection $\mathbb{N} \to \mathbb{N}$. For operator (4.1) define $(pA)x := \sum_{i \in \mathbb{N}} \lambda_{p(i)}(x|\psi_i)\varphi_i$. Then A and pA are similar. Suppose $\forall i \in \mathbb{N} \ |\lambda_i| \ll \infty$ and (φ_i) is an nst-Riesz basis. Assume that the bijection p is standard. Then A and pA a both (strongly) nearstandard and so are their shadows A and pA. But in general this is not true.

Remark. Recall that an operator $A \in \mathcal{B}(\mathbb{H})$ is said to be S-compact iff $||x|| \ll \infty$ implies that Ax is nearstandard. Suppose that (φ_i) is an nst-Riesz basis. Then operator (4.1) is S-compact, iff $\forall i \in \mathbb{N} \ |\lambda_i| \ll \infty$ and $\lambda_i \approx 0$ for nonstandard $i \in \mathbb{N}$. If this holds, then $^{\circ}A$ is a standard compact operator.

- 5. Unbounded operators. In order to define the shadow $^{\circ}A$ whenever $A \in \mathcal{B}(\mathbb{H})$ but $||A|| \approx \infty$ use the concept of graph-nearstandardness [9]. Denote by $\mathrm{dom}_{nst}A$ the set of nearstandard $x \in \mathbb{H}$ for which Ax is nearstandard. Suppose that for each infinitesimal $u \in \mathrm{dom}_{nst}A$ the vector Au is infitesimal. Then the shadow of the graph of A is the graph of some standard map, which by definition is the shadow $^{\circ}A$ of A. This $^{\circ}A$ is optionally an element of $\mathcal{B}(\mathbb{H})$, but it is a standard closed operator. Thus $A \in \mathcal{B}(\mathbb{H})$ is graph-nearstandard iff $^{\circ}(\operatorname{graph} A) = \operatorname{graph}(^{\circ}A)$.
- 5.1. Theorem. Let (φ_i) be a nst-Riesz basis and $|\lambda| \ll \infty$ for any standard $i \in \mathbb{N}$. Then the operator (4.1) is graph-nearstandard. Its shadow is the standard closed densely defined operator ${}^{\circ}A$ such that $\operatorname{dom}({}^{\circ}A)$ is the set of $x \in \mathbb{H}$ for which the series $\sum_{i \in \mathbb{N}} |\lambda_i(x|\psi_i)|^2$ converges, and for $x \in \operatorname{dom}^{\circ}A$ (${}^{\circ}A$) $x = \sum_{i \in \mathbb{N}} \lambda_i(x|\psi_i) \varphi_i$.

Proof. Let $u \approx 0$ and $u \in \text{dom}_{nst}A$. By Robinson lemma there exists an infinite $k \in \mathbb{N}$ such that $\sum_{i \leqslant k} |\lambda_i(u|\psi_i)|^2 \approx 0$. By theorem $2.3 \sum_{j > k} |\lambda_j(u|\psi_j)|^2 \approx 0$. By the Parseval inequality for nst-Riesz basis $Au \approx 0$. Thus A is graph-nearstandard. Let $x \in \mathbb{H}$ be standard and the series $\sum_{i \in \mathbb{N}} |\lambda_i(x|\psi_i)|^2$ converges. Set $y := \sum_{i \in \mathbb{N}} \lambda_i(x|\psi_i) \mathring{\varphi}_i$, this y is standard (as a sum of a standard convergent series). Find infinite $k \in \mathbb{N}$ for which $\sum_{i \leqslant k} ||(x|\psi_i)\mathring{\varphi}_i - (x|\psi_i)\varphi_i|| \approx 0$ and $\sum_{i \leqslant k} ||\mathring{\lambda}_i(x|\mathring{\psi}_i)\mathring{\varphi}_i - \lambda_i(x|\psi_i)\varphi_i|| \approx 0$. For this k define $x_1 := \sum_{i \leqslant k} (x|\psi_i)\varphi_i$. Then $x_1 \approx x$, in particular x_1 is nearstandard. It is easy to check that $Ax_1 \approx y$. This means that $(x,y) \in {}^{\circ}(\text{graph}A)$, i.e. $({}^{\circ}A)x = y$. For the transfer principle the part (\Longrightarrow) is proved. Conversely, suppose that $x \approx x_1$, where $x_1 \in \text{dom}_{nst}A$. Then $({}^{\circ}A)x = {}^{\circ}(Ax_1) = {}^{\circ}(\sum_{i \in \mathbb{N}} \lambda_i(x|\psi_i)\varphi_i)$. Since ${}^{\circ}(\lambda_i(x|\psi_i)) = {}^{\circ}\lambda_i(x|\psi_i)$, for standard $i \in \mathbb{N}$ by Proposition 1.3 ${}^{\circ}(Ax_1) = \sum_{i \in \mathbb{N}} \lambda_i(x|\mathring{\psi}_i)\mathring{\varphi}_i$. In particular

we see that $\sum_{i \in \mathbb{N}} |\mathring{\lambda}_i(x|\mathring{\psi}_i)|^2$ converges.

5.2 Example. Denote by T the interval $[0, 2\pi[$ considered as an additive group with the addition $\text{mod}(2\pi)$. Let $\mathbb{H} = L_2(T)$ with the standard Lebesgue measure. For an

infinitesimal h > 0 define

$$\forall x \in \mathbb{H} \quad Ax(t) = \frac{1}{h^2} [x(t+2h) - 2x(t+h) + x(t)], t \in T.$$
 (5.1)

Then $A \in \mathcal{B}(\mathbb{H})$ but $||A|| = \frac{1}{h^2} \approx +\infty$. Rewrite (5.1) as $A = \frac{1}{h^2}(S-I)^2$, where S is the shift Sx(t) = x(t+h). The eigenvalues and eigenfunctions of S are e^{int} and $t \longmapsto e^{int}$, $n \in \mathbb{Z}$. Therefore the eigenvalues of A are $\lambda_n = \frac{1}{h^2}(e^{inh}-I)^2$ with the same eigenfunctions. We see that A is unitary equivalent to the operator \widehat{A} in $\widehat{H} = \ell_2(\mathbb{Z})$ of multiplication by λ_n . Since $\lambda_n \approx -n^2$ for standard $n \in \mathbb{Z}$, $|\lambda_n| \ll \infty$ for such n. Therefore \widehat{A} (and A) is graph-nearstandard. Its shadow \widehat{A} is the multiplication by $\widehat{\lambda}_n = -n^2$ in \widehat{H} and $\operatorname{dom}(\widehat{A}) = \{(c_n) \in \ell_2(\mathbb{Z}): \sum |n^2 c_n|^2 \operatorname{converges} \}$.

Hence dom(°A) = $\{x \in \mathbb{H} : x', x'' \in \mathbb{H}\}$, °Ax = x''. Observe that λ_n are placed on infinitely large cardioid with the equation $\rho = \frac{2}{h^2}(1 + \cos\varphi)$ in polar coordinates. The shadow of this curve is the union of the right and left shores of negative real semiaxis \mathbb{R}_- on which the eigenvalues $\mathring{\lambda}_n = -n^2$ of °A are placed.

- 1. Krein M. On the Bary bases of the Hilbert spases// Uspekhi mat. nauk. 1957. Vol. 12. N 3. C. 333-341 (in Russian).
- 2. Gohberg I.C., Krein M.G. Introduction to the theory of linear non-self-adjoint operators. M., 1965 (in Russian).
- 3. Nelson E. Internal set theory: a new approach to nonstandard analysis// Bull. Amer. Math. Soc. 1977. Vol. 83. P.1165-1198.
- 4. Davis M. Applied nonstandard analysis. M., 1980 (in Russian).
- 5. Diener F., Reeb G. Analyse Nonstandard. Hermann, Paris, 1989.
- Paley R.E.A., Wiener N. Fourier transforms in complex domain. New York, 1934.
- 7. Duffin R.J., Eachus J.J. Some notes on an expansion theorem of Paley and Wiener// Bul. Amer. Math. Soc. 1942. Vol. 48. P.850-855.
- Bary N.K. Biorthogonal systems and bases in Hilbert spase// Uch. Zap. Moscow State University. - 1951. - Vol. 4. - N 148. - C.69-107.
- 9. Lyantse V. Nearstandardness on finite set. Dissert. Math. CCCLXIX, Warszawa, 1997
- Lyantse V., Kudryk T. Introduction to nonstandard analysis. Mathematical Studies, Monograph Series, 1998.

Карабін О.

NST-БАЗИ РІСА У ГІЛЬБЕРТОВОМУ ПРОСТОРІ

Розглянуто деякі нестандартні аспекти теорії баз, введено поняття nst-бази Ріса. На підставі праці Нельсона про внутрішню теорію множин наведено умови колостандартності вектора в базі Ріса, розглянуто бази, нескінченно близькі до nst-баз Ріса, означена тінь необмеженого оператора.

Стаття надійшла до редколегії 09.06.99