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APPLICATIONS OF THE THERMOELASTICITY WITH MICROLOCAL
PARAMETERS IN CERTAIN THREE-DIMENSIONAL INTERFACE
CRACK AND RIGID INCLUSION PROBLEMS IN COMPOSITES

1. The homogenized model of a microperiodic two-layered space. Let us
consider a microperiodic laminated medium consisting of alternating layers of
two homogeneous, isotropic and linear-elastic materials, characterized by the

Lamii constants A;, y;, the thermal conductivities k;, the coefficients of the
volume expansion B; /(A; +-§-p.3) and the thicknesses 8;; here l=1 and I=2 re-
fer to the sublayers denoted by 1 and 2, forming a thin repeated fundamental
layer with the thickness 6 = 8, + 8, (see Figure).

V- A
i ' -
fig usion o e S oy et e i et =
-~
\‘\ ~
., Ve
N Ve A%
- b e e .
S P S
3 = % ¢ -
rd ¥ % A —— — e
— <
-~ w2 ‘(‘.
i ) il \‘\/p_—.‘l—h‘_"‘\
TR i S = —
P
- 7
A At By
A S T
- P
~
7 o A, Wn B K,
oz T b B K,
-~ /F' LR
-~ ” ~,
f'/ two-layered
< .. periodic.
N N composite

Two-layered periodic space with an interface plane defect. -

Referring to the Cartesian coordinate system (xj, &9, x3) with the x3 —
axis normal to the layering, denote at point x = (x;, xy, x3) the displacement
vector by u=(uy, uy, u3), the stresses by o;;, 05, Oy, Oy, O3, O3y, O33 and
the temperature (strictly speaking, the deviation of temperature from a refer-

ence state) by 6.

We use the specific method of homogenization called the linear thermo-
elasticity with microlocal parameters [8, 11] leading to the macro-homoge-
neous model of the treated body with the following approximations
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u; = wy, ui,a = wi,(:; 0= 9’ 9,(1 = 9.&1 ’
u‘-‘3 ~ witg + h(l)d‘ 3 9'3 ~ 3,3 + h(l)r. (1)

Here the indices z, j run over 1, 2, 3 and are related to the Cartesian co-
ordinates while the indices a, f run over 1, 2. Subscripts preceded by a
comma indicate partial differentiation with respect to the corresponding coor-
dinates. Moreover, w;, 8 and d; I' are the unknown functions interpreted as
the macrodisplacements, macrotemperature and microlocal parameters, re-
spectively, and

F t ’
B0 _ 1 i 1=1 (x el® layer),
—1]/(1 =) o =2 (x s 3 layer),
n=38,/8 (2)
is the derivative of the assumed 8 — periodic, sectionally linear shape function.
The asymptotic approach to the macro-modelling of this laminated body
leads to the governing relations of certain macro-homogeneous medium (ho-
mogenized model), given in terms of the macrotemperature 3 and the macro-
displacements w; (after eliminating all microlocal parameters and in the ab-
sence of heat sources and body forces) [3]:

9o +Hg? 945 =0, (3a)
3(c +c12) Wypo +3(C11 ~ C12) Wopp +Caq We 3z +(C13 +C4q) Wy3y = K; 8,
(1) + Caq) Wy g3 + Caq Wy gq + Ca3 Wy g3 = K3 93, (3b)

The components of stress tensor c(” and heat density vector q¥ are ex-
pressed as follows
Ou3 = Cqq (wu,s T w3,u)’ O33 = C13 Wy +C3 W3 — K3 3,

092) =K (wl,z + wz,l)-

1 1 1 1 1
°'§L) = dfl) Wy + d{:z) Wy g + dfz} W33 — Ké ) 9,

ng] - d?z) Wy, + (11) W + dg) L Kg) S,
@ =k S, g3 =-K3, )

The positive coefficients appearing in Egs. (3, 4), describing the material
and geometric properties of the composite constituents, are given in the Ap-
pendix. Note that the condition of ideal contact between the layers is satisfied.

By assuming p; =p,=p, A=A, =% and B, =B,=8, k =k, =k we get
¢y =C3=A+21, ¢y=c3=A, cy=W, Ki=K;=p, K=k, k; =1, passing
directly to the well-known equations of uncoupled thermoelasticity for a ho-
mogeneous isotropic body [9].

According to the results given in [3], the general solution of the govern-
ing equations (3) is dependent on the material constants of the sublayers and
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in the general case p, #u,, t, #k; (the other cases are detailed in [3, 4]; all
constants appearing are given in the Appendix) may be expressed in terms of
three harmonic potentials ¢;(x,x5,2;), 2; =t;x; and the temperature har-

monic potential o(x;,x,,2;), 2y = kyx; related to the solution of (3a) as follows

wy = (¢ +y +c,0); —d3, Wy =(§) +by +0,0), +3,

wy =M t, ?b _czk“az[, ' (5)
From the chonstltutive relations (4) we obtain

O31 = Cyq h(1+ma)t — =+ (q "Cz)koazo ! -t3£_2i;’

0'32_ =Cy :(1+ma)ta g%:"*‘(cl ‘cz)ko% ’ +13 %,

O33 = Cyq :(1+ma)?;:-+ao ?::(;} (6)

For the purpose of further discussion the remaining stresses cfﬂ} are not

of immediate interest.

2. Interface problem formulation and solution. We are interested in the
problem of determining the temperature, heat flux, stress and displacement
fields in a bimaterial periodically layered space weakened by a crack (denoted
by C) or a rigid sheet-like inclusion (denoted by I) occupying an area .S (with
a smooth boundary) of the x;xy — plane being one of the interface of materi-
als (see Figure).

Owing to a complicated geometry of the body and complex boundary
conditions, the closed solution of the problem under study cannot be obtained.
Thus we apply the homogenized model presented in Section 1 to seek an ap-
proximate solution and within this model we are faced with the boundary-

value problem: find the scalar functions 9 and w; suitable smooth on R® - S
such that Eqs (3) hold and satisfy on S the following global conditions — stress
~-free faces for crack C or displacement-free faces for inclusion I:

O31 =033 =033 =0 for C, w, =w,=w;=0 for I. : (7)

Moreover, certain conditions resulting from a given external loading
(thermal and mechanical) have to be specified.

The procedure for obtaining the solution follows along the same line of
reasoning as that used in classical theory of thermal stresses applied to crack
(inclusion) problem [1, 6, 7]. The steady-state temperature field is first seeking
and a knowledge of potential ® is required to determine the induced thermal
stresses by using the displacement representation given by (5). Upon utilizing
the appropriate boundary conditions on the region S and using the superposi-
tion principle, we focus attention at the non-trivial perturbed problem solu-
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tion to which tends to zero at infinity and satisfies the necessary boundary
condition resulting from the prescribed temperature T“h (or temperature
gradient qw}) and the known stresses 0'(0) and displacements w{-‘n , generated

at the prospective crack (inclusion) faces in the multilayered space in the ab-
sence of the defect with the applied external loads. Proceeding as in the ho-
mogeneous case (cf. [7, 10]) it is convenient to resolve the general problem into
the symmetric part (denoted by A) and the skew-symmetric problem (denoted
by B) related to the half-space x; 20 with the following thermal and me-

chanical boundary conditions

s sls =1® o 8;|5=4q®
19:l(2-8)=0 3 ;1(Z-8)= 0’
Galiz 0 0321220, w1|Z=0, w212=0,
for C: {033 IS = ——53?3), for I: {w, IS = —wg}),

wy[(Z-S) =0, oyul(Z-S8)=0,

s IS" (0) 63$IZ=0 w3[2=0’

3|0 =9, : for s 40y ]S =, forI:{w |S —O (8)
Sl (Z—S) =D, o o a a
wnl(z_S)=0! G3ul(z_S)=0}

where Z denotes the entire x;x5 — plane.

The thermoelastic problem is now reducing to its mechanical counterpart
by constructing the potential functions well suited to the above boundary
conditions. Only the results for the symmetric problem A will be presented (a
complete analysis is given in [3, 4]).

An appropriate displacement crack (rigid inclusion) representation in

terms of a single harmonic function f¢( fl),is obtained by taking in (5):
bg = (D [+ m)t, ] [ £€ + gty 0],
s = (-D*[f' + b, 0], $ =0 9)

The constants a,, b, can be chosen (see the Appendix) so as to reduce the
crack (inclusion) problem to the classical mixed problems of potential theory

(see [7]) for finding the functions fC(f') as follows

S A
c il T, (0) ;
f3s 2gmt Cast. [(az o + au)(9|13 ) Ois ] fa et 0;
I s (mytyby — mytiby ~ czkn)(“),a ’ ) +w {B) " ] z-.s'0 -
3 fa3=0* — m,t, — mit, d f:33 Sl T (10)

Explicit solutions of resulting potential problems are possible to obtain
only for elliptical shape of surface of separation S. Similarly to the plane
problems [2, 5], stress intensification in the close neighborhood of the crack
(rigid inclusion) border is measured by the stress intensity factors. For instan-
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ce, for a stress-free penny-shaped crack S =({(x;, x,, 0): 2’ +x2 = r’ < a?%
the stress intensity factor in the symmetric system is given by (see [3] )

ky = lim [2(r - a)]"2 635 (7,0) = —2(ay — a; + 0g ) cggn '™V Ir T(O)(r)/\’a - ridr

‘I'-)ﬂ

or k' (ag -y + o) ey @™V’ Ir qO (r) dr. (11)
0 :

3. Concluding remarks. In this contribution, the homogenized model with
microlocal parameters of two-layered periodic space is applied analyze three-
dimensional problems of thermal stresses around interface crack or rigid
sheet-like inclusion. Within the framework of this model, the thermoelastic
problems are reduced to the corresponding ordirary problems dealing with
mechanical loading in homogeneous isothermal elasticity. Formulation in terms
of integral equations for an arbitrary shaped rigid inclusion is given in [4].

Appendix
1. Denoting by B =MN+2y (1=L2), n=3§,/6, B=(1-1)B,+nB,,

K =(1-n)k +nk,, the positive coefficients in Egs. (3a), (3b), (4) are
given by the following formulae:

ko = [("‘1’511-E +(1-n) k‘zk)/klkz]m , ¢33 =B, B,/B,
AnQ-—m) (u — )M =hg +1y )

Cip = C33 + B
_MA+2[np, + (- T]_)HL]["IM +(1-n)A,]
B ]
- {1-n) 7\-23_1 +n\B, Co = KMo
B Q=n)p; +npy

K; =[nBir, +(1- T])lell/ﬁ +2[(1=-n)p; +nuy][np; + (1 - ﬂ)ﬁz]/é,
K; =[(1-n)B,B, +nB,B,)/B, K=kiy/K , K =(2uB, +MK,)/B,,
d = [ (0 +w) + Mes)/By, dY = (2 + Mey)/B), dfla) = Mic33/B; .
2. The constants in Egs. (6), (9), (10), (11) are defined as
ty =[(1-n)p, + "W-z]vrz (Cas )—1;’2; My = (‘-'11 +t; —‘-'44)/(313 +Cy);
L= (t+ —t_)/z, L= (t+ & t_)/2
provided t, =[(A, £2cy)A,/ 033044]U2 . Ay = () £ ey,
5 Jeg [(e13 + cag) Ky ~ cyKi ] + ey K
C33C4q (k(? -t )(ke - 5 )
K |.(°13 + 44 ) K3 — 0, K5 + kchKi_]
g e 2 2 kS
C33C44 | Ko ( -4 )( e tz)

51
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ay = ("“—'1 Cj3 — €y C33 kg + Ka)/°44 )
a = [k (1 +m;) (eymy + ¢,)]/ty (my - my),
ay = [ky 1+ my) (emy + ¢3)]/ty (my - my);
bl = [cl (1 e = mz) - uo]/(mz " ml),
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Anppiit Kagauacsxkuit, Cranicnas Marucak
3ACTOCYBAHHA TEPMOIIPYIKHOCTI 3 MIKPOJIOKAJIbHUMM
NAPAMETPAMM 10 JEAKUX 3AIAY IIOAO0 TPIIIUH
I 3ROPCTKMUX BEJIOYEHD ¥ KOMIIO3UTAX

ITodano pose’sasxu deaxuxr cmayioHaAprUX npocmoposux 3aday Os Wiaun i 6xaro-

Uens Y MIKPOMepioduuKuUX wapyeamuxr xomnosumax. Pose’sswu 6ydyroms 3 euxopuc-
MAHHAM ANAPAMY MEOPIT MEPMONPYICHOCMI 3 MIKDOAOKAABHUMYU NAPAMEMPAMU.

Crarra mapiitmna no pexkonerii 09.09.99


http://www.tcpdf.org

