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VIBRATION ANALYSIS OF BEAMS WITH CRACKS

1. Introduction. In many problems of dynamics structural elements are
modelled by beams. Damages of the structural elements in form of cracks can
appear. The size and localisation of cracks can essentially influence structural
safety. By analysis of influence of size and localisation of crack on eigenfre-
quencies it is usually possible to modify the structure in such a way that the
crack does not enlarge further [1]. A technique based on the sensitivity of the
natural frequencies with respect to the size and positon of cracks in beams is
thus presented in the paper. By assuming that a crack may be modelled by an
effective elastic hinge [2], with' the rotational inertia and shear deformations
taken into account [3], the problem is formulated on the basis of the classic
theory of Timoshenko’s beams. The formulation is illustrated by a number of
numerical results related to three prismatic beams with rectangular cross-
sections.

2. Elastic hinge modelling. Assume that the cross-section bxh of a beam
weakened by a crack of length
(depth) a, Fig. 1, can effectively be
replaced by an elastic hinge of stiff-
ness K being a decreasing function of
the crack length, K = K(a).

The function can be determined
either experimentally or analytically,
basing on deformation hypothesis for one-sided cracks [2, pp. 75-76]

Fig. 1. One- and two-sided cracks.
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and, for two-sided cracks as
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with I, = bh®/12 being the moment of inertia of the cross-section about the

z-axis and E the Young modulus. The distribution of stresses around the
cracks is taken into account in defining the angle a. For example, for one-
sided cracks, [4]

1 n a
and for two-sided cracks
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o= arctg[% (tgg— + 2‘;’;]] (4)

In the context of crack theory the plane-stress-state stiffness K(a) can be
obtained as

a i
K(a) = [ 2—;," J'(K?M)zdg] : (5)
0

where K?M is the stress intensity factor for unit internal bending moment at
cross-section of the beam with the crack. For one-sided cracks, [5]

g 8 =
Kp, = bh? vna F(a/h), (6)
where
F(a/h) = 1.122-14(a/h) + 7.33(a/h)* —13.08(a/h)® +14.0(a/h)* (7)
and for two-sided ones
K} &= b% Jra (1-a/h) 22 G(a/h), (8)
where

a 4 1 a) 3 a}> 5 ay a)t ay
G(E)=~3—n~|il+§[l-'£)+§(l—“ﬁ) +'i'é'(1-'£) ]—047(1—}":) +0.663[1—'E) . (9)

Values of elastic hinge stiffness for steel beams with E = 2.06x105Nmm-2,
h=40mm, b=7mm, are shown in
Fig. 2. Agreement of the results ob-  *¢ "™ |
tained on the basis of beam theory ew; \
as well as by fracture mechanics ap- \ s O
proach is quite good. That is why
further the beam theory will be ap-
plied only.

At the crack position x=x; the seo

conditions of: equilibrium (10), conti-

nuity of deflections (11) and bending @ w o o w e o

moments (12) and shear forces (13), Fig. 2. Elastic hinge stiffness function.

are to be satisfied, [6].
Ely"(xy) = K(a)[y'(xg) - y'(x5)], ; (10)
y(xg) = y(xg), (11)
EL, y"(x)=El, y'(x7), (12)
El,, y"(x5) = El, y"(xp). (13)

3. Numerical results. Starting with the equations of Timoshenko’s beam
vibrations [3, pp. 318-320], calculations were carried out for three types of the
beam supports, depending on the crack position and depth, for one- and two-
sided cracks. The two smallest natural frequencies values obtained were com-
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pared with those calculated by the finite element code NASTRAN, cf. [7] (the
calculations were performed at TASK Academic Computer Centre using

NASTRAN v70). Calculated natural frequencies ©,(§), n= 1,2, for beams with
the cracks we compared to ®,(0), e.i. for corresponding beams without cracks.

The beam was modelled using 960 CQUADS8 elements of 5x5mm, and 2

CRAC2D elements of 2x2mm from the NASTRAN element library. Values of

the basic material parameters were as follows: Young modulus

E =2.06x105Nmm-2, Poisson ratio v = 0.33, mass density p = 7.83x10-% Ns2mm-™.
Below some results of the calculations are presented
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Fig. 3. Cantilever beam.

Fig. 4. Influence of crack position and size  Fig. 5. Influence of crack position and size

on the first natural frequency value. on the second natural frequency value.
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Fig. 6. Simply supported beam.
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Fig. 7. Influence of crack position and size  Fig. 8. Influence of crack position and size
on the first natural frequency value. on the second natural frequency value.
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Fig. 8. Clamped and simply supported beam.

Fig. 10. Influence of crack position and size  Fig. 11. Influence of crack position and size
on the first natural frequency value. on the second natural frequency value.

It can be observed in Figs. 4—5, 7-8 and 10—11 that the values of all
natural frequencies for the one-sided cracked beams are smaller than those
for the two-sided cracked ones. This is because the effective stiffnesses of the
latter are larger than that of the former, but total mass is the same in both

the systems. The differences between @,(£)and ©,(0) are significant — even

up to 25% for §=a/h=0.625 with the crack appeared between two nodal
points of the modal shapes. The eigenvalues are insensitive to the size of the
crack sited at the points coincided with the modal nodes, though.

In the case of statically indeterminate beam (Case 3) an additional nodal
point (apart from the conventional nodal points) can be observed. At such a
singular point the values of natural frequencies are insensitive to the size of
the crack.

The forced vibration problem of WG +—"2 S~ T % T % % 2.
the cracked beam described in Case 2 | "% 3
is analysed by using the beam theory, cvom
based on the elastic hinge concept.

The beam with one- and two-side *
crack is excited by a concentrated .
force, P(t)=PF;sinwt, ®=17507Hz. =« “... oy
The crack as well as loading force are  «' N o~
defined at the same mid-point of the Fig. 12. Beam deflection amplitudes.
beam. Obtained nondimensional values

of deflection amplitudesy, bending moments M and shear forces T, scaled

.-
fea,,, tmm =T

by corresponding static’s quantities y, = P,L° / (48El,,), M,=PRL/4 and
T, = By, respectively, are shown in Figs. 12, 13 and 14.
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Fig. 13. Bending moment amplitudes. Fig. 14. Shear force amplitudes.
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fAn [pesko
AHAJII3 ROJIUBAHD BAJIOK 3 TPIIIIMHAMMU

3anpononosano memod OGUUCAEHHA HACTROM BAACHUT KOAUBAHDL 6arox 3 mpiuwju-
HaMu, AKUl Ipywmyemecs na xaacuuniti meopii Tumowenxa, 8 LKiU MPIUUNRa 3amine~
HA eKEIBAACHMHUM NPYICHUM WAPHIPOM 3 YPATYEAHHAM énausy 06epmoesoi iHepyii ma
Odegpopmayii aminu gopmu. Modeav NPYHHOZO WAPHIPA CMEOPEHA HA OCHOBL METHINHOT
meopii 3zuny 6anox, nopisniwoemvca 3 modeanto mexanixu pytnysanna. Hopemuicms
WaPHIPA 6u3HaueHa 04 NPAMOKYMHOZO NMONEPeUHOz0 nepepidy 3 0OHOCTROPOHHDBOI Mma
960CcMOPOHHBOI0 Winun010. [IPOaHAAI306aHO 6TAUE POIMAULYBARHS | EEAUYUNU WILUNYU
HA HACTOMY 8AACHUX KoaudaHd Gaaxu. Pesyavmamu rnopisnano 3 obuucienumu 3a 0o-
nomozorw naxema NASTRAN dara mprvox npusmamusnur 6a10K 3 NPAMOKYMHUM Nepe-
pisom. IIpodemoOHCMPOBAHO BNAUE WIAUHU HA AMNAIMYBY NPOZURY, HA 3ZUNHAALHUL MO-
MeHM I KA NONepewHy CULY 0AA SUMYULEHUT KOAUBAHD.
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