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A DISPERSIVE MODEL OF HONEYCOMB BASED COMPOSITES

The paper deals with investigations of overall dynamic behavior of the
linear-elastic honeycomb based microstructured composite solids made of an
isotropic homogeneous matrix reinforced by a hexagonal lattice of fibres or by
a hexagonal skeleton of thin slender walls as shown in Fig. 1. Problems similar
to this one were investigated in a series of papers. In most cases the material
structures under consideration were described by means of certain equivalent
homogeneous solid equations [1, 4, 5], which can be also obtained by the
known asymptotic homogenization method, cf. [6, 9] However, the modelling
procedures used in the aforementioned papers lead to a nondispersive contin-
uum equations and hence are not able to describe the effect of microstructure
size on the overall dynamic solid behavior. Dispersive models of honeycomb-
type structures were discussed in [2, 3, 8, 9] but the attention was restricted
to the hexagonal beam=like systems like gridworks and latticed or perforated
plates. So far, accordingly to the authors’ knowledge, the dispersive models
for overall response of honeycomb based composites have not been investi-
gated. The tensorial notation is used; all small Greek characters run over 1,2
and are related to the plane orthogonal : o e :Ii
Cartesian coordinate system Oxjxs; sum- ]
mation convention holds. Symbols t#
stand for Fig. 1 the unit vectors parallel
to the A-th family of reinforcement ele-
ments where here and in the sequel
A=1, 2, 3; we shall also assume that
t! +t2+t3=0. The vector basis d!, d? in
Fig. 1 determines the periodic structure
of the solid under consideration.

In order to formulate an averaged
continuum model of honeycomb based composites under consideration we
have to restrict ourselves to the cases in which only special kinds of deforma-
tions are investigated. First, the smallest wavelength L of a deformation pat-
tern has to be sufficiently large compared to the microstructure length pa-
rameter l. Second, it is assumed that on these long-wave deformations there
are superimposed locally-periodic deformations which within every repeated
cell of a solid periodic structure can be approximated by the periodic ones, see
[9], Chapter 6. In the first approximation which is applied in this contribution
we shall assume that the locally-periodic superimposed deformations of all fi-
nite triangular elements of the triangulation lattice, shown in Fig. 2, can be

treated as uniform. Let u,(x, t) be a displacement vector field. Moreover, let

Fig. 1.
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d(x) stand for the scalar periodic continuous function, which at the nodes of

periodic triangulation lattice takes the values 0, +0.51, —0.5! indicated on the
right hand side of Fig. 2 and is linear in every triangular element. From the
kinematic assumptions formulated above it follows that

u, (%, 1) = vy (x,1) + 8(x) g, (x,1), (1)
where v (x,1), q,(x,t) are slowly varying vector functions, ie., together with

all spatial derivatives can be approximately treated as constant in every
parallelogram spanned on vectors d!, d? and hence constant in every fibre
segment of the length I That is why the distribution of displacement
gradients in every repetive element will be approximated by [10]:

Up,q (X, 1) = Vg, (X,1) + 3, (X)gp(x,t), (2)
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Fig. 2.

It has to be emphasized that the formulae (1), (2) represent only the first
approximation of superimposed locally-periodic deformations being related to
the triangulation lattice shown in Fig. 2; the possible higher approximations
will be discussed separately.

Independently of the aforementioned kinematic assumptions, leadmg to
the formulas (1), (2), we shall postulate that:
1°  The mass distribution in composite solid under consideration can be ap-

proximated by a system of concentrated masses assigned to the nodes of

triangulation lattice,

2° The thickness of reinforcement in Ox;xy-plane can be treated as negligi-
bly small in the description of geometry of a solid. Roughly speaking, the
fibres and walls of the honeycomb reinforcement lattice are mfmltely
thin in Ox;a9-plane.

We begin with the calculations of averaged values of strain and kinetic

energy densities, both for the matrix and reinforcement. Let a5 5 =1,8,58 ; +

as

+ My, (8, Bgs + 8,5 85,) stand for the matrix elasticity tensor with A, p,,

Lame module either for the plane-strain or plane-stress problem. The matrix
averaged strain energy density of o, by means of Eq. (2) will be given by

O =%[;"maal36?3+um(8 B + 8058y Vs Ursty (7L +Mn)Oup%ap- ()

Let p,, stand for the matrix mass density. The known expression for the
matrix kinetic energy density, under the mass distribution assumption formu-
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lated above and by using formula (1), after simple calculations yields

_1 y B
Km 2 9 Pm (va Ly 6 qa qu) ' 4)
as the averaged kinetic energy of the matrix.

Let v be a fractional concentration of reinforcement and lf, My stand for

Lame module of the reinforcement material Introducing tensors

3
A A - A LA
uﬂyﬁ Zt tB tB ’ 0137 Z ¢ t[i TuB = Z tu tB ’
A=1 A=l
we obtain
2

for the averaged strain energy density of the honeycomb reinforcement lat-
tice.

Let ps be the mass density of reinforcement material. Hence the averaged

mass density of the reinforcement is equal to vp; Bearing in mind that the
mass of reinforcement lattice has to be assigned exclusively to the nods of the
lattice and using formula (1) we arrive to the expression

1 o 3 M &
xf=§vpf(vavu+zqa qa) (6)
for the averaged kinetic energy density of the honeycomb reinforcement lat-
tice.
The crucial point of the theoretical considerations in this contribution is
to show that it is possible to obtain an isotropic continuum model of honey-

comb based composites. It can be proved that tensors T(fﬁ, Taﬂyﬁ are isotropic
and have the form

3 ‘ 3

At the same time the third order tensor Tup., in the two-dimensional space
cannot be isotropic. Let us introduce the coordinate system Ox;xy such that t;
is the versor of Oxj-axis. In this case tl=(1,0), t%=(-1/2, \@/2),
t3 =(-1/2, ——\/5/2). In the above coordinate system we obtain ’1‘1311 = 3/4,
T1312 =-3/4, ’;"1322 =0, Tz%z =0 ; it has to be remembered that TaBY is symmet-
ric with respect to all subscripts and hence the above equalities determine all
components of this tensor. Let us define the second order tensor W,z which is
traceless, Wy, =0, symmetric Wy = Wyp,, and its components in the coordinate
system Oxjx; introduced above are given by W, =-W,,=gq,,
W, = W,; = —q,. In this coordinate system ’

3 3
T; apyParp &y = ("1 n Wiy + Vg Wy + 05 Wy + 0, WZL) =2 % Wag -

Similarly, it can be shown that
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1
5 Wap Wop-

It follows that the expressions (3)—(6) can be respectively replaced by the
following ones

1

1 1
O = E[Rmvm Vpsp + K (Vasp Varp™ Vasp Upa ) + 3 A + 3 W W)
1 WEN
Km = §pm (vu Vo t —gqﬂ‘- qﬂ)'
3
o, = TEK(A’J' o 2“,)(1,:‘}!,0L Vgop + Vosp Yarp + Vasp Vpra + 41:,,,,3 Wug + 2WaﬁWuB),
1 - 12 % i
Ky =3 VPs Uy Uy +15Ps Wop Wop- W
Under the extra denotations

let us define the following material and inertial modulae

5
A=Ay +8& H=p, +§ a=;11-(hm+3um)+§, p=pm+3§§pp n=§pf- 9

Also define the linearized strain tensor by means of the well known expres-
sion

Ep =5 (0up+ V) (10)

[+

The principle of stationary action, based on formulae (7), after neglecting
body forces, leads to the equations of motion

Sepp=PU, =0, (11)
and what will be called dynamic evolution equation
W,y +Hy =0, (12)

together with the constitutive equations
Sap = A8, E, +20E g + 25 W,

Huﬂ = ':sz[i + ngaﬂ, _ (13)
where

1
Dy = Eop ~ 585 By Wog = Wyg, Wi =0, (14)

Equations (10)—(14) with denotations (8), (9) represent the averaged model of

honeycomb based composites under consideration. The main features of the

model are:

1° the isotropic form of constitutive equations (13) which have constant co-
efficients, :

2° the dispersive form of the dynamic evolution equations (12) which de-
pends explicitly on the microstructure length parameter L
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The basis kinematic unknowns are: the averaged displacement vector
field v, and the tensor field Wgg. It has to be emphasized that the the above
model has a physical meaning only under assumption that v,(-, t), Weg(-, t) are
slowly varying functions, ie. their wavelengths are sufficiently large com-
pared to the microstructure length parameter l.

Applications of the above averaged model to the dispersive analysis will
be given in a separate paper, [11]
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Erapucr B’exOuusrmii, Yecnas Boszuax
JUCIEPCINHI MOJEJI CTIJII)H_HKOBHX KOMIIO3UTIB

Cipopmyavoearo ycepedneny mamemamuuny modead ATHIUNHO-NPYICHUT KOMNO3U-
Mi8, AKI MAIOMb OOHOPIOHY I30MPONHY OCHOBY, SMIYHERY DPEYARAPHON WECTNUKYMHOI
CIMKO010 80AOKOH A60 PEZYASAPHUM WECTNUKYMHUM ZHYYKuUM Kicmaxom. Ocnoenuil pe-
3yasmam mpayi noafae y dosedenni taomponnocmi modeni.
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