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1. Introduction. The subject matter of this contribution is a thin linear-
elastic cylindrical shell having a periodic structure (a periodically varying
thickness and/or periodically varying elastic and inertial properties) along its
midsurface. Structures like that are called the substructured shells, cf. [14].

Substructured shells and plates are usually described using homogenized
models. These models from a formal point of view represent certain equiva-
lent structures with constant or slowly varying stiffnesses and averaged mass
densities.

The homogenized models of substructured shells and plates are usually
derived by means of asymptotic methods. In the case of periodic plates, these
asymptotic homogenization methods have been presented by Caillerie [2] (in
this contribution two small parameters — thickness of a plate and the charac-
teristic size of a periodicity cell — are used to investigate periodic plates),
Kohn and Vogelius [6] (this paper deals with thin plates having a rapidly
varying thickness), Lewinski [8] (in this contribution the homogenized stiff-
nesses are analysed) and others. The asymptotic approach to periodic shells
has been proposed by Kalamkarov [5], Lutoborski [10], Lewinski and Telega
[7]; the discussion of the above approach can be found in [14].

The formulation of mathematical models of shells by using the asymp-
totic expansions is rather complicated from the computational point of view.
That is why the asymptotic procedures are restricted to the first approxima-
tion. Within this approximation we obtain models which neglect the effect of
periodicity cell length dimensions on the global structure behaviour (the
length-scale effect). This effect plays an important role mainly in the vibra-
tion and wave propagation analysis. To formulate the length-scale models in
the framework of asymptotic homogenization we could find the higher-order
terms of the asymptotic expansions, cf. [9]. Models of this kind have compli-
cated analytical form and applied to the investigation of boundary-value
problems often lead to the large number of boundary conditions which may
be not well motivated from the physical viewpoint.

The alternative modelling procedure leading to the length-scale models of
periodic structures which are plausible from the engineering standpoint and
may constitute the basis for the numerical analysis, was proposed by WozZniak
in [12] where the length-scale effect described by the extra unknown fields
called internal variables is taken into account in the description of non-
stationary processes. The results of [12] were generalized in [13] where this
effect was taken into account also in the description of stationary processes.
The Above approach has been applied to modelling and dynamic analysis of
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periodic plates in a series of papers, e.g. in [1] (this contribution deals with
plates based on the Reissner-Hencky assumptions), in [3, 4] where Kirchhoff-
type plates are studied and in [11] where wavy-plates are analysed.

A general modelling method based on the concept of internal variables
and leading from 2D equations of thin shells with locally periodic structure to
the averaged equations with slowly varying coefficients depending on the pe-
riodicity cell length dimensions has been proposed by WoZniak in [14]. In the
present contribution this approach is applied to derive the length-scale model
of thin linear-elastic cylindrical shells having the periodic structure along its
midsurface. The length scales will be introduced to the global description of
both inertial and constitutive properties of the shells under consideration.

The proposed length-scale model will be compared with a simplified one,
in which the effect of the periodicity cell size on the overall shell behaviour is
neglected.

We are to show that the introduced length-scale model will be plausible
from the engineering standpoint being able to constitute the basis for numeri-
cal analysis of special problems.

2. Preliminaries. Denote by Q< R? a regular plane region of points
® = (B!, ®%) and let E? be the physical space described by the Cartesian coor-
dinate system Oxlx2x3. Let us introduce the parametric representation of the
undeformed smooth cylindrical shell midsurface M by means of: M := {x = (x!,
x?, x3) € E3 : x=x (O}, ©?), ® € Q }, where x(0!, ®2) is a position vector of an
arbitrary point on M.

Throughout the paper indices a, B, ... run over 1, 2 and are related to
the midsurface parameters ®!, ®%; summation convention holds.

To every ® € QQ we assign a covariant base vectors a, =X,, and covariant
midsurface first and second metric tensors denoted by a.g, b.s, respectively,
which are given as follows:

Qop =2,° 8,3, GQup=cCONSt, bog=m-a.p, beg=const, ' (2.1)
where n is a unit normal to M.

Let 8(®) stand for the shell thickness. We also define t as the time coor-
dinate.

We shell denote by A :=(0,1;) x (0, ;) the region on Q, where the length
dimensions l;, l; are assumed to be sufficiently large compared with the

maximum shell thickness &(-) and sufficiently small as compared to the mid-
surface curvature radius R as well as the smallest characteristic length di-
mension L of the shell midsurface.

Let us assign to every ® € Q a periodicity cell A(®) on O®'®2%-plane by
means of: A(@):=0+A, BeQy QP:={@ecQ : AO®)cQ}, where the point
® € Q; is a centre of cell A(®) and the set Q is said to be the A-interior of Q.
Under given above assumptions for periods lj, I, every shell element having
midsurface x(A(®)) c M constitutes a shallow shell.

A function f(®) defined on Q; will be called A-periodic if it satisfies con-
ditions of the form f(®!, ©2)=f(©®'1 1, ©2) = f(®!, 2+ l5) in the whole domain
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of its definition. It is assumed that the shell thickness and its material proper-
ties are A-periodic functions of ©.

A shell with A-periodic structure satisfying the aforementioned condi-
tions will be referred to as a shell with mesoperiodic structure (a mesostruc-
tured shell, cf. [14]) The size of the mesostructure is described by the

mesostructure length parameter | defined by [:= Jlf +l§ , where sup 8(') <1

<« (R as well as L).

Our considerations will be based on the simplified linear Kirchhoff-Love
theory of thin elastic shells in which terms depending on the second metric
tensor of M are neglected in the formulae for curvature changes.

Let uq(©, t), w(O, t) stand for the midsurface shell displacements in direc-
tions tangent and normal to M, respectively. We denote by £,3(0,t), k.3(®,t) the
membrane and curvature strain tensors and by n“ﬂ(e,t), m®®©,t) the stress
resultants and stress couples, respectively. The properties of shell are de-
scribed 2D-shell stiffness tensors D*@), B*¥®) and let u(®) stand for a
shell mass density per midsurface unit area. Let f,(O,t), f(©,t) be external
force components per midsurface unit area, respectively tangent and normal
to M.

The equations of a shell theory under consideration consist of:

(i) the strain-displacement equations

€15 = Ufy,5) ~ bys W, Kys = = Wy, (2.2)
(ii) the stress-strain relations
B pPle mP=B%0 ¢, (2.3)
(iii)) the equations of motion
n®®, —pa®ii_+ =0, m™® g+ begn™ — piv+ f=0. (2.4)

In the above equations the displacements u,=u,(®,t) and w = w(O,t),
® € Q, are the basic unknowns.

For mesostructured shells, u(®), D**®®) and B*®@), ©® € Q, are highly
oscillating A-periodic functions; that is why equations (2.2)—(2.4) cannot be di-
rectly applied to the numerical analysis of special problems. In order to derive
from Egs. (2.2)—(24) an averaged model of mesostructured cylindrical shells
which has constant coefficients and describes the mesostructure size effect on
the global dynamic shell behaviour the internal variable modelling approach
to the thin shells with a locally periodic structure given by Wozniak in [14]
will be applied. To make the analysis more clear, in the next section we shell
outline the basic concepts of this approach, following the paper [14].

3. Basic concepts. Following [14] we outline below the basic concepts,
which will be used in the course of modelling procedure:

(i) For an arbitrary integrable function ¢(:) : Q > R we define the aver-
aging operation:

(0)X®) = |I¢(Y)J_ ad¥'d¥?, @eQ) ¥=(¥,¥)ecA®), (3.1)

IA(Q)
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where a is a determinant of the midsurface first metric tensor.

If @(-) is a A-periodic function then {(¢(-)) (®) is a constant and will be de-
noted by (@).

(ii) A diferentiable function F(®,t) is called slowly varying, Fe SV(A), if
for every integrable function ¢(-) satisfies conditions of the form:

(©F) (©,t) = (¢) OF(®,1), © ey, (32)
and the similar conditions are also fulfilled by all derivatives of F(©,t).
Roughly speaking, the slowly varying function can be treated as constant on
an arbitrary periodicity cell A. The symbol «=» denotes a certain tolerance re-
lation describing the accuracy of performed calculations.

(iii) By a highly oscillating function, he HO(A), we mean a differentiable
A-periodic function h(-) such that for every Fe SV(A) conditions :

(V(FR)) (@) = (F Vh) (O )], © € Qy, (33)

are assumed to hold. Roughly speaking, in calculations of averages (-), values
of a highly oscillating function can be treated as negligibly small compared to
the values of their derivatives.

For more detailed discussion of the internal variable modelling approach
to periodic and locally-periodic structures the reader is referred to WozZniak
[13, 14].

Using the governing 2D-equations of a shell theory (2.2)—(2.4) and auxil-
iary concepts outlined above as well as modelling hypotheses given in [14], the
length-scale model of a mesostructured cylindrical shell will be derived in the
subsequent section.

4. Governing equations. The idea of the internal variable approach is
based on assumptions which restrict the class of unknown displacement fields
uy(0,t), w(®,t) in (2.2)—(2.4) to a certain subclass, which includes arbitrary mo-
tions with wavelength of an order much larger then Il on which there are su-
perimposed disturbances of displacements caused by the highly oscillating
character of the shell mesostructure.

Using the approach given in [14], we approximate the unknown midsur-
face shell displacements u,(0,t), w(®,t) in equations (2.2)—(2.4) by means of:

- ul(©,t) ~ Uy(O,t) + hA4®) Q2 (8,t),

w(BO,t) ~ W(O,t) + g4(0) VA(O,1), A=1,2,.,N, ©eQ,, - (41)
(here and in the sequel summation convention over A holds), where:

(i) The unknown averaged displacement Uy(®,t) = {(u)™! (nu,) (©,t) and
W(O,t) = (W (uw)(O,t), respectively tangent and normal to M, are slowly
varying functions.

(ii) The unknown fields Qf: (©,1), VA@®,t), A=1,2,.., N, describing from
the quantitative point of view the displacement disturbances, are slowly vary-
ing functions called internal variables.

(iii) Fields h4(®), g4®), A=1,2, .., N, describing from the qualitative
point of view the displacement disturbances, are assumed to be known in
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every problem; they are highly oscillating functions such that {(u h4) (@)=
=(ug) (@) =0 and h4®)eO(l), hj5(®)eO(1), g4®)e O(?), g5(®)c O,

g,gﬁ (®) € O(1). They represent the expected shapes of disturbances and are

obtained as approximate solutions to a special eigenvalue problem related to

free vibrations on the cell A(®) with periodic boundary conditions on 0A(®).
This eigenvalue problem will be presented in the subsequent part of this sec-

tion. Functions h4(®), g4(®) are referred to as the shape functions.

The finite sums h4(@) Q% (©,t), g4(©®)VA(O,t) in Egs. (4.1) represent distur-
bances of displacements and are obtained as an approximate solution to a
problem for vibrations d,(¥,t)=u,-U, and p(¥,t)=w-W, ¥= (¥ ¥?) e
€ A(®), formulated in the cell A(®) under periodic boundary conditions on
8A(®). Denoting f*=fP+D®® (U, 5, ~bsW,)-pna®®U,, f=-BPwW, +

+beg D (U, 5 —bsW)—pW + f and using (2.2)~(2.4), the aforementioned local
problem states as follows:

D (d 5, ~bgpo)-ra®d+ P =0,

~B™Pp s + gD (dy 5 ~bygp) —nB + f= 0, (4.2)
and it is solved by applying the orthogonalization method known in structural
dynamics. Using this method we have to formulate in A(®) the eigenvalue
problem for functions h(¥), g(¥), ¥ € A(®). Under the assumption that every

shell element having midsurface x(A(®)) c M constitutes a shallow shell, the
aforementioned eigenvalue problem for the local problem (4.2) is formulated
as follows:

D b 5o (F) +po®a® hy(¥) =0,

- B g ps(F) + n0?g(¥) = 0, ¥ € A©), (4.3)

where (uh,) (@)=(ng)(®)=0 and periodic boundary conditions for h4(-), g(-)
on OA(®) hold.

The eigenfunctions hu('¥), g(¥), ¥ € A(®), corresponding to the eingen-
value ® can be obtained, in most cases only in the approximate form repre-

sented by certain A-periodic functions hZ (¥), gA(¥), ¥ € A@), A=1, 2, ..., N.
The unknown functions Q‘f (©,t), VA(®,t) in (4.1) are governed by the fol-
lowing orthogonality conditions:
(n®hf +(-pa®® U, - pa®® kB Q2 + f)r4)Q) = 0, (44)

(m™gly + (bygn™ —pW-pg®ve + /g4 )Q) =0, A,B=12,..,N, QeQ,,
where
n*(¥,t) = D*° (U, 5 —bs W)+ D (hF QF - b5 g°VP)
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m®(¢,t) = -B®° W - B g5 VB, ¥ € A©), (4.5)

The unknown averaged displacement fields U,(®,t), W(©,t) in (4.1) are
governed by the following averaging conditions implied by Egs. (4.2):

(n® —pa®, -pa®h® Q2 + FPXQ) =0

(Mm% +bygn®™® —pyW -pg® Ve + HQ) =0, AB=12..,N, QeQ, (46)

where n®® | m® are given by (4.5).

The averaging conditions (4.6) have to be considered together with the
ortogonality conditions (4.4).

Setting N*® = (n®®), M* = (m°?), from Eqs. (4.4), (4.6) we obtain the length-
scale model of mesostructured cylindrical shells. This model is represented by:

(i) the constitutive equations

N = (D"*)(U,5 - b,s W)+ (D™ h3)Qy - (D"g% )bys V7,

M = (B W, — (B gB, VB,

H* = (D™PRA)(U, 5 - b,sW) + (D™ hARS)QF - b, (D hAg®) VE,
G4 = b (DPPgA ) (U, 5 bysW) + (B¥1 g ) Wog — boy (D g*R3) Q7 +

+ (B gGsg7s) + bog(D¥ 949" )bys)V?, A,B=12,..,N, (4.7)

(ii) the system of three averaged partial differential equations of motion

for averaged displacements Uy(®, t),W(@, t)
{N:’f —(Wa®®U, +(f*) =0,

= 4.8
MR +bygN® — (W)W + (f) =0, -

(iii) the system of 3N ordinary differential equations for the internal vari-
ables Q2(®,t), VB(@®,t) called the dynamic evolution equations

A1 B\ v AB AR e S

Rg*g®)VEB+G* +(fg*)=0.

The underlined coefficients in Egs. (4.7), (4.9) depend on the mesostruc-
ture length parameter ! and hence describe the effect of the mesostructure
size on the shell overall behaviour.

The internal variables do not enter the displacement boundary conditions
and hence the number and form of these conditions are similar to those of the
well known 2D-theory which is governed by equations (2.2)—(2.4).

The characteristic features of equations (4.7)—(4.9) are :

(i) All aforesaid equations have constant coefficients.
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(ii) Terms involving {u h*hB), (ug?g®) in dynamic evolution equations
(4.9) are of an order O(I?), O(l%), respectively, and describe the effect of
mesostructure size on the dynamic shell behaviour.

(i) Terms with (D®®g4) (D*"®g AhB) and (D*®g4g®) in constitutive
equations (4.7) are of an order O(12), O(12), O(1%), respectively, and describe this
effect on the shell response also in the quasi-stationary problems.

(iv) Solutions to initial-boundary value problems for above equations
have a physical sense only if they are represented by sufficiently regular

slowly varying functions U,(©,t), W(®,t), QE(©,t), VB(©,1).

Substituting the constitutive equations (4.7) into the equation of motion
(4.8) and the dynamic evolution equations (4.9), under extra denotations

Doprs _ (DﬂﬁTs >’ DAcBr o (Daﬁvs hg )} DABBY - (Daﬂvé hA hB>
FA.ﬂ}'ﬁ <Dﬂﬁ‘¥5h ) LA&BWS (DUB‘YS gA>
Baﬂ'rﬁ Buﬁvﬁ ), KA <Bal315 9?& ),

A8 = (B*¥gs g% + bap (D™ 9% g% ) byy), (4.10)

we obtain the following governing relations for Uy(©,t), W(O,t), QS (®,1),
VE(®,t) as the basic kinematic unknowns:

D WU, 5 —bys W)+ DPP QB — 150 V8 — ()a®T, +(fP) =
B W opys + K Vg —bop D (Uy 5 = bgW) ~ by D Q7' +

+byg L2 b VB + ()W - (f) =0, (4.11)
D®PU, 5 - b W)+ DAY QP — FABL (VB + (uh*h®)a®QP + (fPR4) =

— by LU, 5 ~ bsW) + KAPW,, — b g FAPUQP + LAPVE + (ugg®) VB +(fg*) =

Thus, the class of length-scale models of mesostructured cylindrical shells
has been obtained the form of which is determined by the choice of the shape
functions hA4(-), g4(-), A=1, .., N, describing from the qualitative point of view
the expected shapes of oscillations.

The underlined coefficients in Eqs. (4.11) describe the effect of the
mesostructure size on the shell overall behaviour.

It can be shown that for homogeneous structures with constant thickness
and for homogeneous initial conditions for internal variables, Eqs. (4.9) have

only trivial solution Qﬁ =V4=0 and Egs. (4.7), (4.8) reduce to the well-known

linear elastodynamic relations for cylindrical shells. Thus we conclude that the
internal variables describe the effect of heterogeneity on the shell global be-
haviour.
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5. Asymptotic equations. The simplified model of the mesostructured cy-
lindrical shells can be derived directly from the length-scale model by a limit

passage l— 0, ie. by neglecting the underlined terms which depend on the
mesostructure length parameter I. Hence, Eqgs. (4.11)34 yield :

DA® Q) = -D¥P (U, 5 - b W), LYPV4 =-KPPW,, (5.1)

From the positive definitenees of the strain energy it follows that Nx N
matrix LA is non-singular as well as the linear transformation determined

by components DA% is always invertible. Hence a solution to equations (5.1)
can be written in the form:

QY =-Gpi DM (U, 4 —bW), VA =-EABKPRW (5.2)
where G‘f‘f and E42 are defined by
G D7 =glpRe, PN -8, (5.3)
Setting

5 _ R B 5 _ RaPyd _ prAcf mAB B
DZP = D¥P. pAba iS5 DB, BIEP = BR . KA FAB B, (5.4)
and substituting the expression (5.2) into Egs. (4.11);2 and Egs. (4.7);9, in
which the underlined terms are neglected, we arrive at the asymptotic shell
model governed by:

(i) equations of motion

B:f[?a Wapys ~ bap D o U,s —bsW) + (WW - (f) = 0,

ff

D (U, 50 = bys W) - (1)U, +(f*) = 0, (5.5)
(ii) constitutive equations

N® =DZP (U,5 -bsW), M*® =-BIPw,, (5.6)

where Dg}}"a, B:‘l}"s are called the effective stiffnesses.

The obtained above asymptotic shell model governed by Egs. (5.5), (5.6) is
not able to describe the length-scale effect on the overall dynamic shell be-
haviour being independent of the mesostructure length parameter .

6. Conclusions. In this paper an averaged 2D-model of thin mesostruc-
tured cylindrical shells, which describes the effect of periodicity cell length
dimensions on the global dynamic shell behaviour (the length-scale effect) has
been derived. In order to derive it the internal variable modelling approach to
the thin shells with a locally periodic structure proposed by Wozniak in [14]
has been applied. The resulting length-scale model is governed by Egs. {4.7)—
(4.9) or by Egs. (4.7) and (4.11) with denotations (4.10). From this model by a
limit passage l— 0, ie. by neglecting the underlined terms which depend on
the mesostructure length parameter I, the asymptotic model of the shell un-
der consideration has been obtained. This simplified model is governed by Egs.
(5.5), (5.6) with denotations (5.4). Contrary to the length-scale model, the sim-
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plified one is not able to describe the effect of mesostructure size being inde-
pendent of the mesostructure length parameter L

Using the aforementioned internal variable approach, the unknown mid-
surface shell displacements u, = 4,(0,t) and w = w(O,t), ©® € Q, in governing
equations of linear Kirchhoff-Love shell theory (2.2)—(2.4) are assumed to be
obtained by a superimposition of displacement disturbances caused by the
highly oscillating character of the shell mesostructure on arbitrary motions
with wavelength of an order much larger then L In the resulting length-scale
and asymptotic models, the overall shell motions are described by unknown
averaged over A slowly varying displacement fields U4(©,t), W(©,t), ® € Q
The cell oscillating parts of displacements are described by highly oscillating
functions hA4(:), g4(-), A=1, ..., N, representing the expected shapes of cell os-
cillations and obtained as approximate solutions to a certain eigenvalue prob-
lem for free vibrations on the cell A under periodicity boundary conditions

and by unknown slowly varying fields Qf (©,t), VB®,t), B=1,..,N, ® e Qq,

called internal variables. The internal variables do not enter the displacement
boundary conditions. This fact is essential for the applications of these models,
since for the boundary-value problems formulated within a framework of
both length-scale and simplified models, we deal with boundary conditions
imposed only on averaged displacements U,(-,t), W(-,t). The number and physi-
cal sense of these conditions are similar to those of the well known 2D-theory
which is governed by equations (2.2)—(2.4). Moreover, in the framework of as-
ymptotic approximation approach, the internal variables are governed by a
system of linear algebraic equations and hence they can be easily eliminated
(which is always possible) from the asymptotic model.

The main features of the resulting length-scale model governed by Egs.
(4.7)—(4.9) are:

(i) The form of it is relatively simple; it is represented by constitutive
equations (4.7) and by a system of three partial differential equations (4.8) for

averaged displacements U,(0,t), W(©,t), ® € Q,, coupled with ordinary differ-
ential equations (4.9) for internal variables Qf (©,t), VB@®,), B=1,..,N,

® € Q, involving only time derivatives. All aforementioned equations have
constant coefficients, which can be easily determined by calculations the inte-

grals over A. Hence, they can be effectly applied to engineering problems.

(ii) The inertial properties of this model are described not only by an av-
eraged mass density (1) but also by averages (h4hB), (ug#gB), A,B=1, ..., N,
which depend on the mesostructure length parameter ! and hence describe
the effect of the mesostructure size on the global dynamic shell behaviour.
The elastic properties of the shell under consideration also depend on the pe-
riodicity cell length dimensions and hence the length-scale effect on the shell
response is also described in quasi-stationary problems.

The main features of the resulting asymptotic model governed by Egs.
(5.5), (5.6) are:
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(i) The form of it is very simple; the internal variables Qf (-,t), VB(-t),

B=1, .., N, are governed by a system of 3N linear algebraic equations (5.1)
and after eliminating them by means of Eqgs. (5.2), we arrive at the governing
equations expressed only in terms of averaged displacements U,, W. These
equations consist of a system of three partial differential equations (5.5) for
averaged displacements U,(0,t), W(0,t), ® € Qg and constitutive relations (5.6).

(i) The constant coefficients Dg}°, BJ®, which are found in the Egs.

(5.5), (5.6), are called the effective stiffnesses and we calculate them from Eqgs.
(5.4).

(ili) It does not take into account the length-scale effect being independ-
ent of the mesostructure length parameter 1.

Solutions to problems formulated for length-scale and asymptotic models
have a physical sense only if they are répresented by sufficiently regular
slowly varying functions U,(©,t), W(©,t), Qf (©,t), VEO,t), B=1,..,N, © € Q.
This requirement imposes certain restrictions on the class of problems de-
scribed by the models under consideration.

The comparison of solutions to special problems, obtained within the
framework of both length-scale and asymptotic models, will make it possible
to evaluate the effect of the mesostructure size on the global dynamic shell
behaviour. Carrying out this analysis we have to determine the length-scale
and simplified models, using the same shape functions hA(-), g4(-), A=1, ..., N.

Problems related to various applications of Egs. (4.7)—(4.9) and Egs. (5.5),
(5.6) to dynamics of mesostructured cylindrical shells are reserved for sepa-
rate papers.
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Bap6apa Tomunk

MACIUTABHUM E®EKT 3A BIBPAIIl ME3OCTPYKTYPHUX
IUJITHAPUYHUX OBOJOHOK

Jocaidoceno MOHKY AMHIUHO-NPYNCHY YUATHOPULHY 0B0AOHKY, AKA MAE NepioduuHy
cmpyxmypy & nanpamaxr, domunnuxr 0o cepedunnoi nosepxui. Chopmyavosano deosu-
MIDHY YcepedreHy modend Maxoi 060NOHKU, WO 8PAX0BYE 6NAUE POIMIPIE KOMIPKU ne-
pioduvynocmi Ha 2a00aavHy OuHamivny moeedinky obosonku (efexmu macwmaby). 3za-
danum ehexmom Hexmyoms Y 8i00OMUXT ACUMNMOMUYHUL TEOPILT NAUM MaA 060A0HOK.
Modeas nobydosano 3sa donomozoro 3anpononosanozo Boswaxom [14] memody modenro-
6aHHA MOHKUT 060A0HOK 3 A0KAABHOW Mepioduunon cmpyxkmyporo. Odepicany modeas
TOPIGHANRO 3 ACUMNIMOMULHON MOTean1o, 8 axil eexm macwmady aidcymmiil.
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