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CONTINUUM MODELLING THE DYNAMIC PROBLEMS
FOR LATTICE-TYPE PLATES

Introduction. In this paper we deal with the formulation and application
of a continuum model to study linearized elastodynamics for lattice-type
plates having an arbitrary complex periodic lay-out in Ox;xs-plane; two ex-
amples of this lay-out are shown in Fig. 1. It is assumed that the length di-
mensions of a representative cell of the periodic structure are small compared
to the minimum characteristic length dimension of the whole latticed plate
and that the mass distribution in this plate can be approximated by assigning
concentrated masses and inertia moments to every nodal joint of a lattice.
Hence the lattice-type plate under consideration is represented by a certain
plane periodic system of mutually interacting rigid joints.
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Fig. 1. Examples of periodic lattice-type plates and their representative elements.

It is known that a direct approach to dynamics of periodic systems with a
very large number of interacting rigid bodies leads to computational difficul-
ties due to a large number of ordinary differential equations describing the
problem under consideration. That is why different averaged continuum mod-
els have been proposed in order to reduce the number of basic unknowns and
to simplify the analysis of particular problems. From many results obtained in
this manner, let us mention those related to frame-type lattice structures,
summarized in [2], where the analysis was restricted to static problems. More
sophisticated modelling approach, based on the asymptotic procedures of the
homogenization theory, leads to the formulation of continuum models for pe-
riodic structures but neglects the effect of the unit cell size on the global be-
haviour of discrete system.
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The model proposed is based on the concept of internal variables, [3], be-
ing able to describe dynamics of lattice-type plates of an arbitrary complex
lay-out. It is assumed that the length dimension in Ox;xs-plane of every rigid
nodal joint are negligibly small as compared with the spans of interconnecting
beams. The obtained model involves the effect of size of the representative
periodicity cell on the global behaviour of plate under consideration. The gov-
erning equations of the model are applied to the analysis of free vibrations in
the rectangular lattice structure.

Denotations. Subscripts 1, j, k, I run over 1, 2 and are related to Cartesian
orthogonal coordinates x;, 3 in the Ox,xy-plane. Indices a and A run over 1,
...,n and 1, ..., N, respectively; indices o, B take the values 1, ..., n— 1. Summa-
tion convention holds for all aforementioned indices unless otherwise stated.
Points on the Ox,xs-plane are denoted by x = (x;, x3) and t is the time coordi-
nate.

Preliminaries and modelling assumptions. Let A=(-0.51;, 0.51;) x (-0.51,,
0.51;) represent a cell on Ox;xy-plane which is assumed to be representative
for a whole periodic lattice, cf. Fig. 1. It means that A contains the representa-
tive structural element for the lattice-type plate. It has to be emphasized that
the choice of this element is not unique and depends on the class of motions
we are investigate. It is assumed that the underformed representative ele-
ment is made of N prismatic linear-elastic beams B4, A=1, .., N axes of
which are situated on the plane Ox;x; The beams B4 in the representative
cell are interconnected by n rigid joints j¢, a=1, ..., n. It is assumed that Ox,x,
is a symmetry plane, both for every beam and every rigid joint treated as
certain spatial (3-dimensional) elements. The beams are subjected to bending
and torsion in the planes perpendicular to Ox;x,-plane and the rigid joints ro-
tate in the aforementioned planes and their centers displace in the direction
normal to Ox;x;-plane. By Q we define a region on Ox;x,;-plane obtained as
an interior of a union of all closures of repeated cells. It has to be remembered
that the periodic structure of the whole lattice-type plate can be disturbed in
the structural elements situated near the boundary o6Q of Q.

Denoting by L the smallest characteristic length dimension of Q and set-
ting 1= 2 +12 it will be assumed that I/L < 1. This is why I will be re-
ferred to as the microstructure length parameter of the lattice-type plate.

Significant properties of a beam B4 will be given by the flexural stiffness

ol EI4, the torsional stiffness GI# and the span I4.

t4 ¥y The concentrated mass assigned to a joint j¢ will
be denoted by M? . The rotational moment of in-
BA ertia of a joint j* will be represented by the sec-

jo ond order tensor Ji. To every beam B4 we shall
A

L assign unit vectors t4, n4 shown in Fig. 2.
_ _ _ Let us denote by w® a displacement (deflec-
Fig. 2. Orientation of beam B4. tijon) of the joint j* in the direction of x3-axis and
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by ¢2 and ¢! rotations of j¢ in the planes normal to t4, n# , respectively. As-
suming that joints j¢ and j® are interconnected by a beam B4 denote

Agw = (w® - w14, 9, = 0505 +0h) Au0, =05 - 0%, A0, =0 -0f, (1)
Let us also assume that every beam B4 can be considered in the frame-

work of the Euler-Bernoulli beam theory. Then the strain components related
to BA can be taken in the form (no summation over A in formulae (2)~(4))

AR AD Ty B mAD,, ¥ =80, (2)
Hence, using additional notations

M =12ET404, KA=EIf@Y!, KA=GIA@YT, (3)
the strain energy o® assigned to a beam B4 is equal to

gt = %RA(EA)Z - —%KA(KA)Z + %IEA(EA)z. (4)

It has to be remembered that all aforementioned denotations and formulae
are related to an arbitrary but fixed repeated element of the periodic lattice-
type plate under consideration (possibly except some elements situated near

boundary 6Q of Q).

Let us denote by £ set of all points on the plane Ox;x; which are centers
of all mutually disjoined cells constituting the region Q. Then the deflection
and rotation vector of the joint j* belonging to a cell with center z, z € £, at
an arbitrary instant t, will be denoted by w%(zt), ¢°(z,t) respectively. All ex-
ternal loads acting on the medium are assumed to be applied exclusively to
the centers of rigid joints. The resultant external force and external couples

applied to the joint j* in a cell with a center z € £ will be denoted by f%(z,t)

and m°%(z,t), respectively. Introducing the action functional A=9-K-W
where

[A% (6 @ 0)" + KA (x* G 0) + KA (7 1),
K= % zu: [Ma (wﬂ (z, t))z +J5 9; (z,1) ¢ (z, t)],

W=y Y[ @t)w @) +m(z1)e] z1)], (5)

zef a=1
and taking into account formulae (1), (2), from the principle of stationary ac-
tion we derive equations of motion for w®(z,t), ¢{(zt),z€ £, a=1,..,n,i=1,
- 2. These equations represent a discrete model of a periodic lattice-type plate
but are not convenient in investigations of its global dynamic behaviour since
the number of points £ is very large. That is why relations (1), (2), (5) to-

gether with assumptions formulated below will be treated only as a basis for
deriving a continuum model of the lattice-type plate under consideration.
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In order to pass from the discrete model of the periodic lattice-type plate
under consideration to a certain refined continuum model we have to recall
two auxiliary concepts of the theory of periodic materials and structures in-
troduced in [1,3). The first from them is the concept of a slowly varying func-

tion. Let F(-, t) be a sufficiently regular real-valued function defined on Q and
depending on time t, the values of which for every t and every x,y € Q such
that |lx - y|| <1 satisfy conditions |F(x,t) - F(y,t) <&y , where g, is a positive
number determining the accuracy of calculations of F. If similar conditions
hold also for all derivatives of F (including time-derivatives) then F(,t) will
be called a regular slowly varying function (related to the microstructure
length parameter I and to certain accuracy parameters &g, &gp,€; , -..).

The second auxiliary concept is that of an oscillation-shape matrix. Define
v:i=n-1 and let h**, g% a=1, .., v be the real numbers constituting n x v
matrices of a rank v and satisfying conditions

iM“hm =0, iJ;;. g =0, a=1L.v, 4j=12 (6)

a=] a=1
The physical meaning of theses concepts will be explained below.

The first modelling hypothesis interrelates the deflection w®(z,t) and the
rotations ¢{(zt) of the joint j% in a cell with the center z, z € £, with certain
regular slowly varying functions W(,t), Q*(;t), ®,(,t), R}(,t) which will be

treated as basic kinematic unknowns. This hypothesis will be assumed in the
form

w'(z,t) = W(x,t) + Lh**Q%(x,1),

9i(z,t) = D (x,t) +1g* R} (x,t), ze B, xeQ (M
where x is a position vector of the joint j% Bearing in mind conditions (6) im-
posed on h®, ¢°* and because of [W(x,t) - W(zt) < &y, |@,(x,8)-D,(zt) <tq,,

n n
etc., under denotations M = ZM", Jy = ZJ;‘k we obtain

a=1 a=1

W(z t) = M‘Izn: M® w*(z,1) + O(ey ) + Ofeg),

a=1

D, (z,t) = J‘.'klz Th 07 (z,t) + Oeg) + O(eg), ze B, (8)

a=1

where J™! is the inverse of the matrix J with components Jg - It can be seen
that the fields W(z,t), ®,(zt) represent respectively weighted averaged de-
flections and rotations of repeated elements of the structure, while Q%(z,t),

R} (z,t) describe respectively the disturbances in deflections and rotations at a
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time t within these elements caused by the complex lay-out of the lattice-

type plate under consideration. Fields Q% R} will be called internal vanables,

the meaning of this term will be explamed below.

The second modelling hypothesis is related to the concept of slowly vary-
ing function on the basis of which we shall approximate finite differences of
these functions by the values of appropriate derivatives and we shall neglect
increments of introduced functions inside an arbitrary cell in calculation of
averages over this cell. From this hypothesis we obtain the formulae for strain
components in an arbitrary beam B4 belonging to a cell with the center z. To
this end, under assumption that joints j¢, j° are interconnected by a beam B4,
define h%* = h™ —h%, g% =05(g* +g¢*), g4 =g" -¢*® and M =114 .
Also define

Li(x,t) = W, (x,1) + £,D,(x,1), xe ) (9)

where ¢, stand for the Ricci symbol. After simple calculations from (2), (7)

and (9) we obtain (no summation over A!)
g4(z,t) = t! T)(z,t) + A* h4* Q%(z,t) + I nf g% R¥(z,¢),

k4(z,t) =14 nf t;.‘ D, (2, t)+1nf g% R%(z,t),

Kz t) =142 tf‘ D, (z,t) +1 td g8* R¥(z,t), ze £ (10)
It has to be emphasized that restrictions imposed on the class of motions un-
der consideration reduce to the requirement that the basic unknown fields
W(,t), Q*(,t), ®,(,t), R*(,t) have to be regular slowly varying functions for

every t. Let us also observe that the oscillation-shape matrices h®*, g**, a=1,

M, v=1 ..,n-1, are not uniquely determined but their choice is irrelevant.
Governing equations. The governing equations for the deflection W, ro-

tations ®; and the extra unknowns Q% R will be obtained from the princi-

ple of stationary action under the assumptions formulated above. It can be
seen that the finite sums over £ in formulae (5) can be approximated by inte-
grals over Q. Setting |A| = L, let us introduce the notations

N N
Agm WY A ¢844, Cs = l;ﬁl‘lz:(l“‘)2 (KAnAn2 + K“t;“tﬁ)tft{‘,
A= A=1
N
af ._ IA!"ZOLA)Z AA hAa hAB,
A=l

Aa;s IAI_IZ [AAnA nA g2 gﬁ (KAnA,nA & KAtA tA)gAugAB]
A=l

e =1A” Z(KA)_I(K“n + RAtAeA)ehghe,
A=1
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N - N
DZ =AY A A% 1 hAe, DE =AY Ahthnf o,
) A=l ' A=1
N - e ;3
=Y AT RS gt p =AY Mo, 5 = h73Al 12 &
A=1 a=1 a=1
n
B Y MR RS, x5 =R lz (11)
a=1

where h stands for mean height of the beams in the direction normal to
Oxx9-plane.

Moreover, let us assume that there exist continuous functions f(,t),
£, t), m,(,t), ml(,t) defined on Q for every t being the slowly varying func-
tions, such that the conditions

1 t) = IS £z, )+ 0, ), @t = WY @ one < of,),  (12)

a=1 a=l

L n
mz,t) = hIAY mi@,0) + 0,,), mE@t)=hAY miz 1) g + Ofc,,)
a=1 a=1
hold for every z € £. After substituting to (5) the right-hand sides of equa-
tions (7), (10), (12) and taking into account the approximation hypothesis (re-
lated to calculations of averages), as well as the conditions (6) and the nota-
tions (11), we arrive at the integral form of the action functional

A= - K- W, where now
g = f(% AyTiT;+5C @, @ +3 A% Q QP + JIPAP RERY +
% 12 BY, Ry @, + D? T, Q* +1DET; R? + 1D Q* RP)da,dx,,
% = '[(-2-;:.WW+§z2 0™ QG +%h2xﬁ b, &, + 2h? %% RY RY) dda,
& |
= [(fW +1f* Q* + hm, @, + him? RY)da,da,. (13)

From the principle of stationary action we obtain the following equations
for a deflection W and rotations @,

(A;T; + D} Q* +IDE RY),, —pW+f =0, (14)

(o @, + By RY)+ & (Aijrj + DFQ® + IDZRE) - h? y,; ; + hm, = 0,
which are coupled with equations for extra unknowns 6% -l
120°® QP + A°PQP + DO, +ID®RP = 172,

W42 xR + PAPRY +IDST; + B0, +1DIQP = him?, (3)
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where I is defined by Eq. (9). The obtained equations have to be satisfied for

every t in the region Q of Ox;x; and represent a continuum model of the pe-
riodic lattice-type plate under consideration.

It can be seen that the extra unknowns Q% R{ are governed by the or-

dinary differential equations (15). Hence in general Q% R{ do not enter

boundary conditions and that is why they have been called internal variables.
Similarly, the obtained continuum model will be referred to as the internal
variable model (IV-model).

The governing equations (14), (15) can be also written in the alternative
form given by:
(i) Equations of motion

Pi-pW+f=0, My, +e,P —h¥,®, +hm, =0 | (16)
(ii) Dynamic evolution equations
1209808 + S* =179, hzlle%ﬁﬁ? + H® = hlmY. (17)

(iii) Constitutive equations

P[4, o D DLI[E

Mol _| 0 G 0 UB||%y (18)
s*|"|pf 0o A% ID¥||Q|
HY| -(ID§ PBY WD PAF|| R}

which have to be considered together with I =W, +¢,®,. From a formal

viewpoint equations (16) are similar to the known plate-type Cosserat contin-
uum equations, [2]. However, contrary to the Cosserat media, we also deal
“here with dynamic evolution equations (17) which are coupled with Cosserat
equations (16) via the constitutive equations (18).

Let us observe that the nonasymptotic modelling procedure applied above
leads to the occurrence of the microstructure length parameter ! in equations
(16)-(18); that is why the effect of cell size on the dynamic behaviour of struc-
ture can be described in the framework of proposed model.

The governing equations of internal variable model describe dynamics of
lattice-type plate of an arbitrary complex periodic lay-out in the Ox;xy-plane.
If we deal with the latticed plate of a simple lay-out, ie, having only one

rigid joint in every repeated element (in this case n=1) then Q% R} drop out
from all equations and we pass to the Cosserat model of lattice-type plate
which coincides with that discussed in [2].

Example. The governing equations of internal variable model will be now
applied to the analysis of free vibrations of the lattice-type plate strip simply

supported on the opposite edges x; = +0.5L; the lay-out of this latticed plate
is shown in Fig. 3. We shall consider the simplest continuum model of this
structure; that is why the cell A will be assumed in the form given in Fig. 3.
This cell has two rigid joints; in this case n=2 and v=n-1=1, ie, the oscilla-
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sz tion-shape matrices reduce
; B B{ to vectors with components
i Ll A 0 B | g2 h'L, R and g%, ¢g*'. More-
h P o over, let the axes of all
ale et oo d Ly B beams be parallel to the per-
tinent coordinate axes xj, xs.
L e 1=1, 1, 2
iq 7] “ Let us consider the case in
I'=12, =14, which the material of every
¥ ¥ ¢ beam is characterized by the

7 7 7 B=RB=1 y
b h 07T Young modulus E and the
Fig. 3. Scheme of the lattice-type plate and Kirchhoff modulus G; the

its representative element A. inertia moments I4,J4,4=1,

..., 4 are interrelated as shown in Fig. 3. In this special case masses assigned to
all nodal joints are equal and the rotational inertia moments assigned to all

joints satisfy conditions Ji, =J3, =0, a=1, 2. Assuming that all unknown

functions depend only on x; and time t, bearing in mind definitions (9), (11)
and neglecting external loadings, from (14), (15) we obtain three independent

systems of equations. The first of them is related to unknowns W, ®, and @':

A, (W, +®,), + D} QL -pW =0,

Coyar Pyyy — 4y (W,l ¥ (112)_ D} Q' - h? x5, = 0,

2 pl Q' + A1Q! + D} (W, + @,)=0, (19)
the second one is related to unknowns @,, Rf 7

Cipyy @y + 1 By le,l - Ay @, - h* 3, B, =0,

BRIy Ry + PAL R} + I By, @, =0, | (20)
and we also obtain an independent equation for R.‘la:

R 1%y By + 12 A3 Ry =0, (21)

where l=1; is the microstructure length parameter shown in Fig. 3. In the
above systems of equations we also deal with another length parameter h,

where h <« . That is why we shall look for the free vibration frequencies of
the plate neglecting terms involving h2 Under this assumption, setting

W =ay expi(ot -kx)), @, =a,expi(ot-kx), Q! = agexpi(ot —kx,), for
the free vibration frequency o we obtain the dispersion relation
p? (Au 1%+ Cypyy 82)"3‘i -pla,; 4" - (Dll)z * (An‘*:2 + A“)Czulkz] o? +
+[a,4" - O} 1Cpy Kt =0, (22)
where €=kl = 2nl/L, L being the wavelength, is a nondimensional parameter.

Because W, ®,, @ have to be regular slowly varying functions hence
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1/L < 1 and parameter ¢ is sufficiently small compared to 1. From (22) we ob-
tain the asymptotic formulae for free vibration frequencies which can be ex-
pressed in the following form

_Cooy e 6 _ AnAn_(Df)z ole2
(@) = . +06%),  (o,) lzp(A“+C2121k2)+ (£2), (23)

where coefficients C,,,,, 4,,, A% D}, p calculated from formulae (11) are equal
to

Cyypy = E (1 + 12Y0 L), A, = 12E (/1 + B2)u L),
AY = 4881 [/ + /@), D} =24E[2/@*y -1/a* ]/,
p = 2M/(,L,). (24)

It can be seen that the dispersion effect as well as higher vibration fre-
quency ®,; described by the above formulae are caused by the presence in

equations (14), (15) terms involving the microstructure parameter I It has to
be emphasized that using the known homogenized continuum model of lat-

ticed plates we can obtain only lower vibration frequency o = p™! Co1ay k.

More detailed approach to the problems investigated in this contribution
will be given in a forthcoming paper.
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KOHTHMHYAJIBHE MOJEJIOBAHHA JTUHAMIYHUX 3AJJIAY
AJId CITKOBUX NJIACTHUH
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