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A DISCRETE MODEL FOR WAVE PROPAGATION PROBLEMS IN
PERIODIC COMPOSITE MEDIA

In most cases the exact analysis of problems on wave propagation in
material continua with periodic structure is not possible even using computer
methods. That is why different approximate mathematical models for wave
propagation in heterogeneous periodic media have been proposed, cf. [1-5]. In
this contribution we are to show that above problems can be modelled by
certain discrete plane periodic mass-point systems with a complex structure
and ternary interactions. For the sake of simplicity considerations will be
restricted to the linear-elastic material structures and plane problems for an
unbounded medium. At the end of the lecture we are to show an example of
applications of the general theory.

Notations. The superscripts a, b, ¢ run over 1,...,n and the superscript k
takes the wvalues 1,..,m. Indices A, B, C run over 0,1,..,N except in

denotations A,, EA where A=1,..., N unless otherwise stated. Summation

convention holds for all twice-repeated indices. Points on E? are denoted by p,

x and points belonging to a subset A of E? by z. Symbol t stands for a time
coordinate.
In order to describe a periodic structure it is convenient to introduce the

Bravais lattice A={ze E*:2 =V d + Vo dz, v, =0,t1,%2 ...,a=12}, where
d' and d2 are basis vectors on E2. For an arbitrary subset = of E? and for
any pe E? define E(z)=z+E and p(z)=p+zz€A. Let A be a regular
region on E% such that E* =UE(z), ze A and A(z,)NA(zy) =9 for every
Z,,Z, € A and z; #Z,. We shall also assume that there exist a simplicial
subdivision of A into m simplexes Tk, k =1,...,m, which implies the simplicial
subdivision of E? into simplexes T*(z), z € A. Hence UT'_" =A, and
T={T"z):ze A k=1,...,m) (1)

constitutes a set of all simplexes for the subdivision of E2 It can be seen that
for the aforementioned simplicial subdivision of A there exist a set of vertices

p® €A,a=1,..,n, such that

S={p*):ze A, a=1.,n} (2)
is a set of all vertices for the related subdivision of E2 In the sequel we shall
assume that n is the smallest number of vertices p® € A for which S is a set
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of all vertices. Under this requirement the decomposition of p®(z) in the form
p’(z)=p°+2z ze A, a=1,...,n is unique. In the subsequent considerations
both simplicial subdivision of A and a set of n vertices p°, a=1,..., n, are
assumed to be known. Let d® e A, A=0,1, .., N, be a system of vectors
where d° =0 and p®, a=1,..,n a set of vertices such that all simplex
vertices belonging to A can be uniquely represented in the form
p% =p® +d*. Hence every T* can be represented as T* = pi py pe. For an

arbitrary function f(-) defined on S with values in a certain linear space we
shall introduce the finite differences

Auf@) = fa+d*) - f@),  Auf(@) = f@)- fz-d%),
which for A =0 reduce to identities. Hence in the sequel all finite difference
operators A,, A a4 Wwill be defined only for A=1, ..., N. Following the notation
introduced above we also denote T*(z)=T* +z and pa(z) = p% +z for every

ze A. The aforementioned concepts and definitions will be used in the
subsequent considerations in order to describe wave propagation problems in
periodic composite media.

Let E® represents a two dimensional linear-elastic continuum with a

periodic piecewise homogeneous material structure and A c E? stands for the
representative element of this structure. Let the aforementioned simplicial
subdivision of A be treated as a decomposition of A into m finite triangle

elements T*. It has to be assumed that every element T* with a sufficient
accuracy will be treated as homogeneous. Bearing in mind that g™ P4 Pa PE

and denoting by A*,a =123, the barycentric coordinates of an arbitrary
point xeT¥ we have A*>0, M +AM+A%=1 and A" =a®-x+b" where
a® e E°® are the known vectors and b® are the known scalars, [7]
Consequently, the displacement u(x,f) of an arbitrary point xeT k at a time
instant t will be taken in the form wu(x,t) = A u%(t) + A up(t) + A* ug(t) where
u%(t), up(t), ui(t) are displacements of vertices p%, p%, P&, respectively,
and A" =a%-x+b*, a=123, are the shape functioﬁs. Hence the

displacement gradient Vu in every T* = p p p& is equal to

Vu(x,t)=a' ®ul(t)+a? ®ul(t)+a’ @ul(t), xeTF, (3)
and constant for every time t. Substituting into (3) decompositions of the form
ujt)=u@t)+A u’(t), A=0,1,.., N (4)

where u’(t) is a displacement of mass point p® e T¥, and introducing the
linearized strain tensor
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g = %(Vu +Vu’) ®)
we obtain the strain energy function assigned to T* defined by
qu:%F"e:Ck:e (6)

where F¥ is the area of T* and Cj is the elastic modulae tensor related to the
material of finite element T Combining (3)—(6) it can be seen that formula
(6) makes it possible to derive function

o = O*(A ,u?, u® - u°), (M

depending on differences A u® and u®-u°. Hence strain energy function ®
assigned to the representative element A has the form

® =) oA u’, u’ -u). (8)

At the same time a constant mass distribution in every Tk(z), ze A, will
be replaced by three concentrated masses at vertices p%(z), p%(z] , pel(z),

where T* = p% p% p&. Hence the kinetic energy function K assigned to the

representative element A of the periodic structure is given by
i

K=3M%u -0, (9)

where M® =§%m° (no summation over b) and m~ is a total concentrated
mass assigned to the vertex p® Formulae (8), (9) hold for an arbitrary element

b

A(z)=A+z, ze€ A provided that arguments u® are replaced by u“(z,t).

The aforementioned simplicial subdivision and concentration of masses m*
at points p® makes it possible to apply the discrete plane periodic mass-point
system with a complex structure and ternary interactions as a model for the
analysis of wave propagation in composite materials under consideration. The
above approach requires the use of a certain parametrization of applied mass-
point system. We shall assume that the position of mass point system in its
reference equilibrium state coincides with a set S defined by (2). Hence every

mass-point will be identified with its reference position p*(z), ze A, a=1,...,n
and it will be assumed that to every point p®(z)e S there is assigned mass

m?® which due to the periodicity of system is independent of ze A. The
system of ternary interactions will be parametrized by a set T of all simplexes

assuming that points x,,X,,X; €.S can interact if and only if x; = p%(2),
X, = p3(z), X3 =pS(z) for some ze A, where p%(z)p3(2) pf:(z)=Tk(z) for
some kef{l,...,m}. Hence every simplex Tk(z), zeA, k=1,...,m, will be

identified with a certain ternary interaction. To every interaction T¥(z)e T
there is assigned a strain energy function ®* which by means of the

periodicity of system is independent of z € A. Bearing in mind that u}(z,t) is
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a displacement vector of point p%(z) at time t we obtain that arguments of
®* are ‘uﬁ(z,t)—u[}g(z,t)i'. Because of u%(z,t)=A, u’(zt)+u"(z,t) we obtain

ol =(Dk(A 4 u%(z,1), ub(z,t)—u”'(z,t)) bearing in mind that ®*() are
hemitropic functions of arguments which are specified by simplex
T* = pj P5 PE-

It is evident that to every z e A there is assigned a certain repetitive
element of the periodic mass-point system comprising n mass points p“(z),

a=1,..,n, and m ternary interactions Tk(z), k=1, ..., m The strain and kinetic
energy functions assigned to an arbitrary repetitive element are respectively
given by '

D= Z<I>k(AAu“(z,t), u’(z,t) - uc(z,t)), (10)
K-—--;—M“b u’(z,t)-0°(z,t). (11)

Using the approach detailed in [6] it can be shown that the above
formulae lead to the following equations of motion

AaS%(z,t) + h%(z,t) - M® @ (z,t) + (2, ) = 0 (12)

where f%(z,t) is an external force acting at p®(z) at time t and S%, h® are
generalized internal forces defined by the constitutive equations
oD o
alzt)=

— h%*(z,t) = ~——.
oA 4u’(z,t)’ @1) ou’(z,t) (13)
Equations (12), (13) have to hold for an arbitrary time instant ¢ and every
z € A. Taking into account the aforementioned considerations we jump to the
conclusion that equations (12), (13) are the governing equations of linear-
elastic composite materials in the finite element approximation. Hence, we
have obtained a discrete model for the wave propagation problems in periodic
composite media.
General considerations will be illustrated by the example of dispersion
analysis for the unbounded, linear-elastic, isotropic, homogeneous medium
with periodically distributed two kinds of rigid inclusions having mass

densites p;, p;, as shown in figure.
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In the analysis we shall restrict ourselves to displacements parallel to
vector d! and to the plane wave propagation in direction shown in figure.
Dynamics of this structure will be modelled by the Bravais lattice with
ternary interactions and basis vectors d!, d2. A representative element of this
structure is bounded by the bold line in figure.

Let a simplicial subdivision of this element will be given by its
decomposition into m equi-angular triangle elements. In the subsequent

considerations m =1, ..,, 10, because two inclusions in the repeated element are
rigid. The strain energy function assigned to T™ is @™ = F™ oo 853 Where

F™ is the area of T™ and og, €3 are stress and strain tensors,

respectively. Relationship between stress tensor and strain tensor in an elastic
isotropic medium in the small strain range can be written as

of triangle elements T™, and define d=2h, x,; = %—’L(l +54), K, = 2{3(2‘+ 2u),

+2u gy, where A and n are Lame constants. Let h be the height

m, = %Ehz(5p +py), where p and p,, a=1,2, are mass densities related to

the deformable and rigid simplexes, respectively. Then using formulae (10)—
(13) we obtain the following equations of motion:

my ill(.r,t) =Ky (uz(x —-d,t)+ 2‘!&2(1', t)+ u? (x+d,t)~ 4u1(:z:,t)) 3

+ 1, (ul(x - d,t) ~ 2u' (x, t) + u'(x + d, 1)),

my @3(z,1) = K, (u' (x - d, 1) + 2u' (z,8) + u' @ + d,1) - 4u’(x, 1)) +

+ Ky (ui(x - d,t) - 2ul(a, t) + u(x + d, 1)). (14)
Let us look for the wave solution to these equations in the form
W =4 ™Y, aiii=A (15)

The substitution of equations (15) into (14) yields the system of two
equations for A; and A4,

A, 2k, (cos dk - 1) - 4k, +m, ©%) + A, 2k, (cosdk +1) = 0,

A, 2k, (cos dk +1) + A, (2k, (cos dk — 1) — 4k, + m, %) = 0.
Nontrivial solutions A;, A, exist if

f2x2 (cos dk - 1) - 4k, + m, 0° 2k, (cosdk +1)

‘ 2x, (cosdk + 1) 2k, (cos dk — 1) - 4k, + m, 0*

This condition yields a relation between ® and k in the form of two
dispersion branches

=0.

1
ol = ;fﬂn—z[(m‘ +my)(2K; —Ky(cosdk—1)) £

++ [2x, — ky(cos dk — D (m; — my)? + 4k? m, my(cos dk + 1) ]] ; (16)
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Now, we shall discuss the dispersion given by two branches of the o vs. k
curve with the particular attention to the cases k=0 and k= +n/d. For the

large wavelengths Jidk <1 and cosdk~1- —;—_dz k*. Hence

Jex, + Lx, d? k%) (my - m,)? + 4kim m,(2 - 1d%K?)* =~

1 2
" 2(m1 -m,)" K, — 2k, my My a2

o 2
~ 2K, (m, + my) < v ke
and formula (16) reduces to
2 __ 2 2,2 °
9 1 1 1 1 2 27,2
= 4| —— 4+ — — - ;
o ("’"-1 - mz)Kl +[Kz(m1 - mz) e (xy +|c2)]d k (17

For the wavelengths of an order of 2d we assume dk=n-g with
£ — 0*. Then cosdk ~ —1+¢2/2, the radical in (16) becomes

2
Ve, + @36, [my —my)? 4 12 my m et ~ 2Ky +Ky) (my —my) =Ky (my —1my)€”

and

s 4 1 1 3
o’ =~1}-L—1-(1':1 +Ky)+ -z—xz(———)ez,

m2 my
£ _ % et 8 1 iy
Wy = (x, +x5) 2K2(m2 ml)s ; (18)

It has to be emphasized that formulae (17) are physically reliable while
(18) have only a formal meaning. This statement is due to the fact that the
uniform strains in finite elements (simplexes) shown in figure take place only
for the large wavelengths. However, both formulae (17) and (18) as well as
the dispersion branches given by (16) describe a certain mass point system
with a periodic structure and ternary interactions and serve as an illustration
of general equations (12), (13).

Summarizing the results of this contribution we shall formulate the
following conclusions:

1. The periodic mass-point systems with ternary interactions can be applied
as a discrete model for the wave propagation problems in periodic
composites.

2. The governing equations (12), (13) have simple finite-difference form
which is identical for every z e A.

3. Equations (12), (13) can describe wave propagation problems in periodic
composite media with a desired degree of accuracy, because they hold for
an arbitrary decomposition of the representative composite element into
finite elements provided that it implies the periodic simplicial subdivision

of E%.
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More detailed discussion of the proposed approach and its applications to

the formulation of continuum and asymptotic models for the long wave
deformations will be studied in the forthcoming papers.
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Iorira Puxnesceka, Ionanra lllnmank, Yecnas Bozaak

AUCKPETHA MOJIEJIb INIOIIUPEHHA XBUJIb ¥ NEPIOIMYHNX
KOMINO3UIIIMHUX MATEPIAJIAX

3anpononosano OJuckpemny modeav 3a0a% OUHAMIKU NTHIUHO-NPYICHUL KOMMO-

sumnux mamepiaais. [loxasano, wo Yy mModeav € KAACOM CUCTEM MAMEPIAALPHUT MOUOK
crnadnoi ecmpyxmypu. OMmpumani pesysbmamu CMAHOBAATD HOBUL MAMEMATMULHUL
anapam 0aa axaAidy 3aday NOWUPeHHS Teéuabv Y HeoOnopionux mepioduunux cepedo-
suw,ax.
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