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1. Introduction. Main objects of this contribution are thin plates with a
periodic structure along one direction in planes parallel to the plate midplane
and with constant material and geometrical properties along the perpendicu-
lar direction (see Fig. 1). Plates of
this kind are composed of many
identical elements which are peri-
odically distributed along one di-
rection. Every element will be
treated as a thin plate.

The exact analysis of periodic
plates within solid mechanics is
too complicated to constitute the
basis for investigations of most : L,
engineering problems because ob- y X3
tained governing equations com- Fig. 1. An example of plate with one-directional
prise highly oscillating functional periodic structure.
coefficients. Thus, problems of
such plates are investigated in the framework of different approximated
methods. So called effective rigidities plate theories were presented e.g. in [3,
5, 8, 10] where periodic plates are described by governing equations of certain
homogeneous plates with constant homogenised rigidities and averaged mass
densities. An analysis of the periodic plate behaviour in the framework of as-
ymptotic homogenisation methods is rather complicated from the com-
putational point of view and hence it is restricted to the first approximation.
Using asymptotic procedures we obtain averaged models neglecting the effect
of the element length in the periodicity direction, called the length-scale effect.
These models were restricted to the static problems.

In order to investigate non-stationary problems certain models (e.g. based
on the concept of the continuum with the extra local degrees of freedom, [11])
were proposed. Short wave propagation problems were investigated in [1] and
some refined models describing long wave problems for the periodic bodies
were presented in [17]. These models take into account the length-scale effect
on dynamic response of a body and are physically reasonable and simple
enough to be applied in the analysis of engineering problems. The models of
this kind were applied to selected dynamic problems of periodic structures,
e.g. for the Hencky-Reissner periodic plates [2], for the Kirchhoff periodic
plates [6—7], for the periodic wavy-plates [14], for composite lattice-type
structures [4] and others [9, 12—13, 15—-16]. As results of such modelling we
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obtain governing equations with constant coefficients for averaged displace-
ments and also additional unknowns. These unknowns together with highly
oscillating periodic functions make it possible to take into account the length-
scale effect on the dynamic body behaviour. The aforementioned periodic
functions describe a form of oscillations inside periodicity elements and they
are called mesoshape functions. These functions should be obtained as solu-
tions to eigenvalue problems on the periodicity element.

The aim of this contribution is to show that for many cases of periodicity
element eigenfunctions being solutions to the aforementioned eigenvalue
problem can be assumed in an approximated form what is sufficient from the
computational point of view. For this purpose free vibrations of special kinds
of periodic plate bands will be analysed.

2. Preliminary concepts. In this paper thin linear-elastic plates with a pe-
riodic structure along one direction and constant properties along the perpen-
dicular direction in planes parallel to the plate midplane. An example of a
such plate is presented in Fig. 1. These plates will be called uniperiodic plates.
Introducing Ox;xox3 the orthogonal carthesian coordinate system in the phy-
sical space and setting x = (x, x3), 2 = x3, the region of a plate is denoted by Q
= {(x, 2): -h(x)/2 <z < h(z)/2, x € I1}, where II is the rectangular plate mid-
plane with length dimensions L;, Ly and h(x) is the plate thickness at the
point x € I1. We also define t as the time coordinate. Let [ stand for the period
of plate structure in the x;-axis direction. Hence (-1/2,1/2) is the interval in
the plate midplane along this direction. We assume that the plate has the
l-periodic heterogeneous structure and that [ is sufficiently small compared to
the minimum characteristic length dimension of the plate midplane, I« L=
=min(L;, Ls), and sufficiently large compared to the maximum plate thickness
h « 1. This parameter will be called the mesostructure length parameter. We
shall assume that h(- ) is the l-periodic function of x; and independent of x5
and all material and inertial properties of the plate are also I-periodic func-
tions of x;, independent of x5 and even functions of z.

Let us denote periodicity intervals I(x;) (I(xy) =1+ (-1/2,1/2), x, € Ay,
where Ag={x;: x; € [0, L], I(x;) [0, L;]}. For an arbitrary integrable function
f we define the averaging operator on I(x,;) given by

D@z =t | fz)dy, ;€ A, (21)

For a l-periodic function f in x; formula (2.1) leads to {(f)(x5).

Throughout the paper subscripts a, B, ... (3, 7, ...) run over 1, 2 (1, 2, 3)
and indices A, B, ... run over 1, ..., N. Summation convention holds for all afo-
rementioned indices. Let u;, ey, s;; stand for displacements, strains and stres-
ses, w(x;, Ty, t) be a plate deflection, and p*, p~ be loads in the z-axis direction
on the upper and lower boundaries of the plate, respectively, b be the con-
stant body force in the z-axis direction and p be the plate mass density. We
shall define cupys 1= Qqpys ~ Gap33 ye33(a3333) Y, Where aji are components of the
elastic modulae tensor and assume that z=const are material symmetry
planes, hence c3,g, = c333,= 0.
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3. Modelling procedure. In this section it will be presented the modelling
procedure which is similar to that shown in papers [7, 6]. This procedure will
be used to obtain governing equations for uniperiodic plates.

The starting point of considerations are the well known Kirchhoff plate
theory assumptions: the kinematic relations, the strain—displacement equations,
the stress-strain relations (under the plane stress assumption s33 =0), the vir-
tual work principle. From these relations we shall obtain the partial differen-
tial equation of the fourth order. However, for periodic plates this equation
involves highly oscillating periodic coefficients. In order to pass to the equa-
tions with constant or slowly varying coefficients but retaining the effect of
mesostructure length parameter I the additional kinematic assumptions have
to be introduced.

Introduce functions, which are Il-periodic in x; and independent of x;

/2 '
h/2

describing the following plate properties as a mean mass density per an unit
area, a rotational inertia and a bending stiffness, respectively.

The modelling procedure of the presented model is based on the follow-
ing kinematic assumption.

The . main assumption is that the averaged plate deflection W(x,t)=
= (W Nay) (pw) (x,t), x=(x,, x3) together with its all derivatives are slowly
varying functions in x;, ie, satisfy conditions of the form (fW)(x)= (f)(x) W(x)
for every integrable function f defined on II. In the sequel W will be referred
to as the plate macrodeflection. Moreover, it is assumed that the deflection
disturbances v = w — W caused by the periodic plate structure are highly oscil-
lating functions in x;, i. e, satisfy the following conditions: (i) in calculations of
averages their values can be neglected comparing to the values of their de-
rivatives, i e, ((0F))(x,t)=(v1F)(x,t) for every x € Il and for every slowly
varying function F defined on IT; (ii) for every x; € Ay there exist_a periodic
function v, being a restriction of disturbances v to the closure I(x;) of an
interval I(x;), such that v(I(:rI)_vx, (iii) v(x, t) € O(%), Vu(x, t) e O(1?),
12VVu(x, t) € 0(1%), x € T1, where [ is the ‘mesostructure length parameter, here
0(12) - 0 and [I"20(12)| > ¢ for some ¢ > 0 with [ - 0.

Now in modelling the proper class of disturbances is specified. Denote a
plate bending stiffness and a plate mass density per midplane unit area by
B(x1) and p(x;), x; € A, respectively, which are l-periodic functions in x; and
independent of x;. we shall formulate the eigenvalue problem for a function

g(y;) given by the equation

[B)d W) uly —ru)® d1n) =0, yy e Imy), z; € Ay, (3.1)
and by the periodic boundary conditions on the boundary of an interval I(x;)
together with the continuity conditions inside I(x;) and the condltlon (ug) = 0.
Hence, § is a sufficiently smooth solution to this problem. Let g%, A=1, 2,.
be a sequence of elgenfunctlons defined on I(x;) and related to the sequence
of eigenvalues @, Every g (yl) is the principal mode of free vibrations of
every plate segment in the periodicity interval I(x;). In the modelling proce-
dure we restrict this sequence to the N 2>1 first eigenfunctions which can be

/2
pi= pdz, 9= szzzp dz, dygs = zzcaﬂys dz,
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approximated by so called mesoshape functions g4, i e, gd(yl) ~ fj"‘(yl),
A=1,.,N, yiel(x;). It is assumed that the mesoshape functions g%,
A=1,.., N, constitute a sequence of sufficiently smooth functions which are
linear independent, l-periodic in x; and independent of x; such that
gi(yy) € 0(1%), IVgi(y,) € O(1?), 12VVgA(y,) € O(1%).

In the modelling we assume that the disturbances v can be approximated
by ‘D(yh Iy, t} - gA(yl)VA(xl, X9, t), Y1 € I(CL'IJ, I € Ag, X9 € [G, Lz], A= 1, s ,N,
where g4(y,) are the known mesoshape functions and VA(x;, x,, t) are extra
unknowns being slowly varying functions in x; and x9 which are called
macrointernal variables.

In most problems analysis will be restricted to the simplest case N=1 in
which we take into account only the lowest natural vibration mode related to
equation (3.1).

In the sequel it will be shown that for the interval with a non-compli-
cated structure we can assume the mesoshape function in an approximated
form of the solution to the eigenvalue problem.

4. Governing equations. After some manipulations from the Kirchhoff
plate theory relations and the additional kinematic assumption the governing
equations of the length-scale model will be derived:

e  Equations of motion

Mopop + (VW = (W, — (9B W2 = (p) + b(n), (4.1)
o  Constitutive equations
Mg = (dapys) Wys + (dugys 95) V2,

M4 = (duﬁ'ra gﬁb)an ¥ (daﬂrﬁ g5 gﬁa)vﬁ’ (4.2)
e  Evolution equations
M* +(ug? %) V8 + (892 ) W, + (94 95) V® = (pg*), - (4.3)

where mesoshape functions g4, 4A=1,...,N, are functions only in x;.

The above equations are the basis for investigations of overall behaviour
of uniperiodic plates. The underlined terms depend on the mesostructure
length parameter I Moreover, these equations involve averaged coefficients
(in brackets ()) which are constant, except terms {(p), (pg4) which can be
slowly varying functions in x; and xy Functions W(xy,xs,t), VA(x;, 29, t),
A=1,..,N, are the basic unknowns; which have to be slowly varying func-
tions both in x; and x5 The function W is called a macrodeflection and the
functions V4 are called macrointernal variables, because boundary conditions
for these functions should not be defined.

It is easy to see that to derive the governing equations (4.1)—(4.3) we have
previously to obtain the mesoshape functions g4, A=1,..., N, for every peri-
odic plate under consideration as approximated solutions to the eigenvalue
problem for equation of the form (3.1). In most cases we restrict considera-
tions to a small number N of mode shapes and in this contribution we assume
that N =1; hence, denote g = gl.



ON MESOSHAPE FUNCTIONS IN STRUCTURAL DYNAMICS... 75

5. Analysis: an example of a periodic plate band.

5.1. Free vibrations of a periodic plate band. In order to evaluate differ-
ences between applying of an exact g or approximated g form of mesoshape
functions free vibrations of a periodic plate band will be considered. For this
purpose equations (4.1)—(4.3) will be applied. It will be assumed that body
forces b and loads p are neglected. Let us consider a simply supported on the
opposite edges plate band. It is made of an isotropic periodically varying
piece-wise homogeneous material. The plate thickness h is a periodic function.
For assumed mesoshape function g it can be proved that (8g,;)=0. Denote
x=x, L=L, and V=V! as well as

Eh3
i 12(1-v%) ' D}I & (d‘un 9’,11), D" = (dnn(g,u)z),

m = (), m' =1t (ug?),  i=®), M =1%(8,)’),
where E is the plate Young modulus, v is the plate Poisson ratio, h is the pe-
riodic plate thickness. Substituting (4.2) to (4.1) and (4.3) we arrive at

(B) Wi + mw - J"ﬁ’tu < Dilvsll =0,
Dy, Wy, + D'V + 2 (®m" + /) V = 0. (5.1)

Introduce the wave number k= 2n/L. Solutions to equations (5.1) will be as-
sumed in the form satisfying boundary conditions for a simply supported
plate band:

W(x,t) = Ay sin(kx)cos(ot), V(x,t) = Ay sin(kx)cos(ot), (5.2)
where Ay, Ay are amplitudes. Substituting these solutions to (5.1) we obtain
the system of linear algebraic equations for amplitudes Ay, Ay

[(B) k* - 0¥(m + jk?) = ] {AW} (o

_Dil 12 D! _mzzzuzmn + ju) Ay ’

After some manipulations we arrive at formulae for resonance frequen-
cies @; and o9 called a macro-resonance and a meso-resonance frequency, re-
spectively:

(@1)° = 2[(m + KNP Em' + OB P EPm! + 1) + (m + jk*)DM ¥

B Em! + 1Y) - (m + jK)DVP + 4(m + jKH)EEm! + FYDLER?), (5.3)
which take into account the effect of N

the mesostructure length parameter L EPSE L
hT .

5.2. Analysis of the eigenvalue
problem for a plate band having a pe-
riodically varying piece-wise constant -
thickness R N g

Let us consider a plate band hav- Y2
ing a periodically varying piece-wise (1-p)t/2 yl (1-p)l/2
constant thickness h, simply supported . & A
on the opposite edges and made of an L
isotropic homogeneous material. The Fig. 2. The interval of the plate band

ho >

I~
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shown in Fig. 2. It can be treated as a plate band with the span l. The plate
thickness h is assumed as

h )_{h{, if xe(=ylY2,vY2), _
=y =nhy i xel-Y2, -yY2AUEY2, Y2, neo,l)

We introduce the wave number a and denote A=al. In order to obtain eigen-
functions for the interval I(x;) we have to solve the eigenvalue problem (3.1)

which takes the form [B(x) g'jr(:r)’1 1111 — p(x) kzﬁ(a:) =0, with conditions: g are I-

(5.4)

periodic functions, (ug) = 0. Using the Krylov = Prager functions
S(ax) = 3 [cosh(ax) + cos(ax)), U(ax) = 3[cosh(ax) - cos(ax)],
T(ax) = 3 [sinh(ax) + sin(ax)], Q(ox) = 3 [sinh(ax) — sin(ax)],
and denoting

T30 = TGN + 12 SE ) TE @ - A0 2]+ 12QG AU (L - Phn 2]+
M2UGYNQE - PAn 2+ S TEYNIST L - y)An #]- 1]}
5,0 = Q& YN+ n* UG YATE (L - YA 21+ nETG YU L - pAn 2]+
TSGR - Y02 + n";’Q(% YMISTE (L - yn"2]- 1)
Ty = SGYMRL (L - VAN 1+ QU YAISE (L - AN 2] +
PTG YT (L - yAN 2]+ 0 T yAUTL A - y)An 2],
2,00 = UG ORI (L - Y 2]+ n T yASTE @ - phn 2] +

" -3 3
2 SGYMTE A - A 21+ 1 2QGYMU (L - vAn 2],
the solution to eigenvalue problem is looked for in the form

g(x) = PAQ) S lxl/l) + U IlfY),  if Il < 1y,

§(@) = A {SEYA) Sl - Ly 2] + n?Q yA) TIMacl/1 - Syn 2] +
UG YA UMY - 2y 3]+ 0 2 TGy QUAdalt - Ly 2] +
AUGYA) SIM)L - Sy 2]+ n2TG ) T/t - Ly 2] + (5.5)

2 SG YA UM~ $ 1 2]+ 0 2QG W) QUM — Sy 21, if Il € 3, 31
where A(A)=-CE;(MI'1(A)}, C is a constant. Restricting our considerations to
symmetric vibrations the equation for the eigenvalue A takes the form

I'1(A) Ba() - Ta(d) Ey(2) = 0.

From the above equation we can derive eigenvalues A4, A=1, 2, .... Our analy-
sis is restricted to A = 1. Hence, we obtain the smallest eigenvalue A dependent
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on the parameter n and the exact form of the mesoshape functions g related
to this eigenvalue is defined by (5.6).

6. Numerical results. In this section it will be shown that the mesoshape

function g for the interval in Fig. 2 related to the eigenvalue A (for A=1) can
be assumed in the approximated form

g(x) = I [cos(2nx/1) + c], x e [-1/2,1/2), (6.1)
where the constant c¢ derived from the condition (ug)=0 is c=(u)!x
x { cos (27 /1)).

In order to evaluate differences between results obtained by using exact
(5.56) and approximated form (6.1) of mesoshape function resonance frequen-
cies of the plate band with periodic thickness h given by (5.4) will be ana-
lysed. Taking into account (5.3) we denote resonance frequencies obtained by
using the mesoshape function in the approximated form (6.1) by ® and those
obtained by using the mesoshape function in the exact form (5.5) by ®. Intro-
duce dimensionless coefficients:

ng=hy/l, q=l/L, Q =&/o,, Q,=q,/0,,

where ng describes the plate thickness, g is called the dimensionless
mesostructure parameter and ,, €, are the ratios of macro- and meso-
resonance frequency, respectively. Diagram of €, Q, versus the parameter
n €[0.7, 1.0] is presented in Fig. 3. These diagrams are made for ny=0.1,
q=0.01.

106 1 I T I T 1.10

104 [~

1.00

I _ I 085 L I i 1 | y
L) ors 0.0 085 080 08 [n) 10 o7 ors 080 085 080 088 [n] 100

Fig. 3. Diagrams of ratios 2, and Q, for a plate band with periodic thickness h.

Analysing obtained results the following conclusions can be formulated:

e Differences between macro-resonance frequencies obtained by using the
exact (5.5) or the approximated (6.1) form of mesoshape function are
small and they are smaller than 5% for plates in which differences of
thickness inside the periodicity interval are smaller than 30% (i e.
hg—hy < 0.3hy).

e For the above plates differences between meso-resonance frequencies
obtained by using the exact or the approximated form of mesoshape
function are smaller than 10%. -
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7. Conclusions. The length-scale model for plates with periodic structure
along one direction and constant properties along the perpendicular direction
have been presented in the contribution. These refined models, formulated in
the framework of the averaged length-scale theory of periodic bodies [17],
were applied to many dynamic problems of periodic structures in series of
papers (2, 4, 6—7, 9, 12—16] aforementioned in Sec. 1. These models are physi-
cally reasonable and simple enough to be applied in the analysis of engineer-
ing problems.

The presented modelling procedure for periodic plates leads to a system
of differential equations with constant coefficients for the macrodeflection W
and the macrointernal variables VA The governing equations ((4.1)=(4.3)) de-
scribe the length-scale effect on the plate behaviour by some coefficients (un-
derlined in these equations) dependent on the mesostructure length parame-
ter I. The length-scale effect on the dynamic body behaviour is described by
the extra unknowns VA, A=1, ..., N, called macrointernal variables and addi-
tional mode-shape functions g4, which are called mesoshape functions. The
macrointernal variables V4 are governed by ordinary differential equations
involving time derivatives. Moreover, mesoshape functions g4 describe oscilla-
tions of displacements inside periodicity intervals. These functions should be
obtained as properly chosen approximations of solutions to eigenvalue prob-
lems for natural vibrations of separated periodicity intervals what was shown
in Sec. 3.

Mesoshape functions obtained in Sec. 5 for the special case of plate band
were used to analyse free vibrations for such plate. Presented there results
make it possible to evaluate differences between resonance frequencies ob-
tained by using the approximated and the exact form of mesoshape function.
Analysing these results we can formulate the following general conclusions:
1°  For many special problems the mesoshape functions g4, A= L oy Y, 0EEER

be assumed as approximated solutions to the eigenvalue problem for pe-

riodicity interval, what is sufficient from the computational point of view.
2° Plates with a periodic structure caused only by periodically varying
thickness can be investigated by wusing the approximated form of
mesoshape function if differences between values of the thickness inside
the periodicity interval are relatively small, i. e,, for the parameter n>0.7;

for n < 0.7 it should be used the exact form of mesoshape function.

Summarising, the analytical exact solutions §A to the eigenvalue prob-
lems (3.1) can be obtained only for plates with intervals whose structure is
rather not too complicated. In most cases instead of the exact solutions to ei-

genvalue problems we have to look for an approximate form of mesoshape
functions.
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Apocnar Exgpucak

PO ®YHEIII ME30O®OPMU B CTPYKTYPHIN JUHAMIIII
TOHEKMX HNEPIOAMYHNX IIJIACTHUH

Poszasnymo npobaemy eubopy mezofopmuoi pynkyii e cmpyxmyphit Ounamiyi
MOHKUX MAACTMUH 3 MePIOJUNHOI0 CMPYKMYPOW Y MAOUUHAX NapasesvHux 0o cepe-
dunnoi nogeprHi. 3anpononosana modeav 3 eghexmom macwmaby dae 3mozy eparyeamu
BNAUB BEAUNUHU KOMIPKU mepioduunocmi Ha nosedinky naacmunu. ¥ npoyect modearo-
BaHHA BUKOPUCTMAHO nowamms yHKryiu mesogopmu. Li dynrysi onucyomsv ocyuasn-
Y10 ecepeduni Komipru nepioduunocmi i € poss’asxamu 3adayi NPo 8AACHI KOAUBAHHA Y
sunadxy NPupPoOHUT KOAUBAHD OKPEMO 83SMOT KOMIPKU NePioduLHOCTE 3 YPATYBAHHAM
nepioduunux xpatosux ymos. Ha npuwradi noxasano, wo 30e6i1buUL020 MONHA BUKOPU-
cmosysamu Habaudcenull saacHull po3e'a3ox ax GYHKYII0 me3oHopmu.
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