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Introduction. Dynamics of spatial motion of elastic solids. A thesis that
elastic waves and vibrations in the solids suffer some qualitative and quanti-
tative changes, if they move in the space, is a background of the theory of
wave gyroscopes and its applications in technique. Generally, mathematical
consideration in this field is restricted to the case of steady or uniformly ac-
celerated rotation of the resonator about some fixed axis, and so, questions to
be replied to are what effect this rotation brings in concrete eigenfrequency
spectrum and how the picture of normal modes change. When these parame-
ters of wave micro-motion aré found for some operating regime it is sug-
gested the problem is solved well. But, sometimes it may appear that the axis
of rotation can also displace in the space with respect to initial unloaded state
of a gyroscope. In absence of kinematical connections this displacement results
in the precession of rotation axis, and if the resonator is clamped, some pen-
dulum-like vibrations of a whole system may appear. Both effects are essen-
tially the change of spatial macro-motion of a gyroscope due to wave micro-
motion of a resonator. Such deduction follows from general theory of spatial
motion of elastic solids [2]. Mathematical consideration of that theory is built
on the principle of decomposition of complicated spatial motion of elastic solid
in translational motion and relative motion (Galileo transform). Application of
this transform to relations of time-depended elastic deformation results in
mathematically closed boundary-valued problem, which realization requires
consequent solution of coupled vector equations. These are generalized Lamé
equation, which determine relative elastic displacements and Euler equation,
which determine instant rotation of a relative coordinate system. Such equa-
tions have the same sense as their prototypes in classic elastodynamics and
kinematics of rigid solids, but both are nonlinear due to the coupling of elastic
displacements and components of a vector of angular velocity.

Lamé equation. Consider general statement. Suppose that in a moment
t >0 unbalanced external loads with the resultant of volume forces P and
the resultant of surface forces F, are applied to elastic solid. They will set a
solid into complex spatial motion with the non-uniform, time-dependent bulk
deformation. From the viewpoint of classic elasticity a boundary-valued prob-
lem, if formulated in absolute coordinate system, becomes non-linear and very
complicated due to the large displacements of material points of a solid [3, 4].

The use of Galileo transform provides partial linearization of such prob-

lem. Let V; is a volume of elastic solid closed by the surface S;, both are in

© Ulitko Igor, 1999



188 Igor Ulitko

the initial unloaded state, and
let p,denotes its volume den-

sity. Choose the origin O; of
the absolute coordinate system
O,X,Y;Z, in the center of iner-

tia in the unloaded state, and
introduce the relative coordi-
nate system OXYZ, which
corresponds to spatial motion
of some absolutely rigid solid,
having the same volume and
density and subjected to the
action of the same loads P

and F, (See Figure). The radius-vector r of some point M in deformable state
can be represented in two ways

r=r,+u,; or r=U+r+u, (1)
what gives
u;, =U+r+u-r,. (2)

In these formulae r; and u; determine initial position and absolute dis-

placement of a point M in absolute coordinate system, r is the radius-vector
of that point in relative system, and u are the relative displacements, describ-

ing small deviation of M from its initial position M. Displacement of the mass
center U is determined from the equation
d*u
Vi— =R, R=}Fds+|||Pdv, (3)
Po Ve a Cg n _!;!j

where R is resultant of external volume and surface forces. To perform de-
composition of relations of elastic deformation with finite displacements [3, 4]
according to vector equalities (1)—(3), we take into account the following rela-
tions between the unit vectors of relative and absolute coordinate systems

i=1ijcosa, + jcosP, +k,cosy,,

j=1,cosa, + j,cosP, + k; cosy,,

k =i, cosag + j, cosPz + k; cosy,. (4)
Change of cosine functions of a,(t), B,(t), Y.(t) ... determines the in-

stant rotation of a relative coordinate system with the vector of angular
velocity Q=iQ_ +jQ, +kQ, . Then, generalized Lamé equation formulated in

the relative coordinates takes the form

Mgr&ddivu—rotrotu-l P——I-R =
1-2v G Vi
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=Bli+(@x0+Qx@x0+@xw+Qx@xw+2QxD) ], ©)

where v is Poisson ratio and G is shear modulus. The use of this equation is
to describe dynamic phenomena concerned with wave propagation in movable
solids. It can be extended to steady and unsteady vibrations of thin-walled
elements of wave gyroscopes.

Euler equations. At the first sight, Lamé equation (5) cannot be solved

for relative displacements u until components of angular velocity Q are found.
The most convenient method to establish an instant rotation of the relative
coordinate system about a mass center O consist of application of the theorem
of a change of angular momentum. So, taking into account (1) and assuming
that U is already found from (3) we can write

j {feo [(r u) x [—— 4 -——J]dv =M ,. (6)

where

M=<§[(r+u)xr‘n]ds+m[(r+u)xP]dv (7
S, 7

is a principal couple of external loads. After some transformations of (6) Euler
equations can be represented in coordinate form

d ;

[ QA-QF - QE]-Q,f+Q,e-d+QQ,(C-B)-QQFE+
+Q.Q,F-(Q) -Q)D=M,,

f;[nys -Q.D-Q.F|+Q,f-Qd-6+Q.Q,(A-C)+
+Q.0Q,D-Q.Q,F -(Q -QLE = M,,

d ;

E{[QZC -QE-QD]|-Q,e+Q,d-f+Q,Q,(B-A)+

+QQF-QQ,D-(Q2-Q)F = M,,

where
A = {[[pg [(y+u, P +@+w,)]|do, B®)=..., CO)=..., - (8)
Vo
are the principal moments of inertia about coordinate axes, and
D(t) = iju(y ruy)z+u)dv, E@)=.., Ft)=.., (9)
v

are the centrifugal moments of inertia. Quantities of the same dimension

d(t) = mpo (z+u)u, - (y+u,)i, |dv, et)=..., fit)=..., (10)

set into Euler equations due to elastic deformation of a solid. To the best of
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author’s knowledge they have no conventional definition in the literature.
Mathematical difficulties in the course of solution of classic Euler equations
are well known. Moreover, in our case we collide with a necessity to deter-

mine components of relative displacements u =iu, + ju, + ku, from the solu-

tion of Lamé equation (5). Therefore, both equations are coupled with quanti-
ties u and Q.

First integral of Euler equations. Steady or uniformly accelerated rota-
tion about fixed axis are two exceptions of such coupling. Usually, trivial solu-
tion of Euler equations are known beforehand and boundary-valued problems
are formulated a priori for Lamé equation. Numerous works on the theory of
wave gyroscopes (see for example [1]) are restricted essentially to this case. In
other words, mutual influence and interaction between vibrations of a resona-
tor (micro-motion) and rotational macro-motion of it are excluded in the
statement of a problem. In particular, questions: how can wave processes or
vibrations act towards a rotation of a solid and how significant this influence
can be, remains unsolved in the literature. Further we consider one example
of possible reply to these questions

Consider steady rotation of elastic solid about fixed axis. To realize such
situation we must suggest that the solid once have been loaded by the self-
balanced loads P and F,, in which case M =0. It clear up a way to simple

integration of (6) in time

L{_pﬁ[(r+u)x[%+%ndv=l(, (11)

where the kinetic momentum K is a constant vector. Simple transformations
of (11) yield the first integral of Euler equations

Q,A-QF-QE-d=K,,
Q,F+QB-QD-e=K,,
-Q,E-QD-QC-f=K,, (12)

from which we can deduce: (i) under the specified distribution of external
forces P and F,, which do not change the kinetic momentum K, and (ii) un-
der the specified values of relative elastic displacements, which arise in a solid
due to the action of these forces, components of the angular velocity are de-
termined from the first integral of Euler equations by simple algebraic opera-
tions.

Consider, for example, changes of angular velocity of a solid of revolution
arising due to such loading. Choose the axes of coordinate system in the
unloaded state in directions of principal axes of inertia and nominate OZ to be
the axis of rotation. In this case centrifugal moments of inertia equal to zero,
what simplifies a problem. The components of angular velocity in the state of

free rotation are Q, =0, Q, =0, Q, =Q,, Q; =const. The components of

displacements due to centrifugal force (static deformation) can be easily de-

fined as this force is known. Let Y’ ,u)’,u” are such displacements. Obvi-



STEADY ROTATION OF ELASTIC SOLIDS: ... 191

ously ol = ag” =

tions A =B" and it follows from (8)—(10) that K, =0, K, =0, and

% =0, as they are independent of time. Under such condi-

K, = C%Q,, where C”is the momentum of inertia about rotational axis. If we

apply instantaneously some forces F, this will give rise to disturbance of an-
gular velocity Q

Q=kQ+Q=ip+jGg+k(Q+7) (13)
and change relative elastic displacements, so that
Uy = UL + 8y, Uy =ud +4, U, =ud +4,. (14)

Now 1, =1i,, w, =1i,, 1, =i,. Substituting (15) in (9), and then in (12)
we can write

Blt) = }%Ef [[[pota s, + z8,)dv + Itﬁ [[foozit, - yii,)dv,
Vo Vo

q(t) = gz-(-g)— J'Hpo(z u, +yu,)dv+ ﬁ mpﬂ (xii, - zi,)dv,
Vo Vo

#(t) = —% [[fpo (@i, +ya,)dv + % mp{, (Y iy —ait,)dv, (15)
Vo Vo

These formulae describe approximate magnitudes of small disturbances
of angular velocity (13) and can be used in the design of solid-state sensors of
angular velocity of different types.
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Irop ¥Yairko

PIBHOMIPHMJI OBEPTOBUM PYX MPYIKHOIO TLIA: HEPIHIQIVI IHTEIPAJ
PIBHAHDb PYXY EMJIEPA TA 100 3ACTOCYBAHHA B TEOPII XBUJIBOBUX
r'POCKOIIIB

Jas eunadxy pienomipnozo 06epmoesozo pyxy odepiucano npocmi opmyau, 3a do-
NOMO2070 AKUT OYIHIOWOMb ML 6I0TUNCHHA KYMOE0T weudxocmi 06epmants NPy cHozo
meepdozo Mmina, AKI GUHUKAIOMb 3080AKU KOAUSAHHAM 60 NOWUPEHHIO NPYICHUT
xeunsv. Ba3oeoro modeanto Oast eueuenHHA UYb020 eeKmy CAYICUMD 3a2a4bHA MeEOoPif
NPOCNOPOEOZO PYTY NPYNCHUL MiA.
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