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The aim of this paper is to show that the basic properties of the Brauer group of
a global field hold as well for the Brauer group of an algebraic function field with
pseudofinite [1] constant field. We call such a field pseudoglobal field. We prove also
that any central simple algebra of finite degree over a pseudoglobal field K is cyclic
and its index and exponent coincide. Besides, we discuss the Hasse principle in finite
extensions of a pseudoglobal field.

The basic properties of the Brauer group of a pseudoglobal field will follow as the
simple corollaries from the fundamental sequence

0— BrK —— @, v, Brk, —— Q/Z— 0, (1)

which is exact both for global and pseudoglobal fields {1,2]. Here Vi denotes the set
of all the valuations of pseudoglobal field K (which are trivial on the constant field),
BrK is the Brauer group of K, and BrK, is the Brauer group of the corresponding
completion of field K at the valuation v € Vk.

The elements of BrK are the equivalence classes of central simple K-algebras A
of finite dimension with respect to the following equivalence relation: two algebras
A and B are equivalent if there exist two natural numbers m,n > 1 such that the -
algebras A®x M, (K) and B®k My (K) are isomorphic. All matrix algebras over K
are equivalent and form the zero element of Brauer group. The class of the opposite
algebra A° (that is A° is the additive group A equipped with the new multiplication
« such that a * b = ba) is the inverse for the class of A. We shall denote the class of
A in the Brauer group by [A]. :

The field extension L of K is said to be a splitting field of algebra A, if the algebras
A®xk L and Mp (L) are isomorphic. Two equivalent algebras have the same splitting
fields. The subset Br(L/K) of BrK, consisting of all the elements of Br(X) which
split in L, is a subgroup of BrK.
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In the exact sequence (1) the map i sends [A] € BrK to (...,[AQk K,), ...) € ®BrK,
(notice that there are only finitely many of valuations v of K such that [A ®x K,]
1s a nontrivial element of BrK, (see e.g. [3], p. 441, or [4])). Any local algebra

A, = A® K, is a simple central algebra over a general loca.l field K, so it determines
an element of the Brauer group Br K,. It is known [5] that for a general local field
K, there exists an isomorphism inv, : BrK, — Q/Z.

The image of the element [A,] under this isomorphism is said to be the invariant
of Ay (or the local invariant of the algebra A at the valuation v). It is denoted by
invy(A). The homomorphism j maps an element of the group ®yev, BrK, into sum
of all corresponding local invariants. ’

The following proposition is an analogue for pseudoglobal fields of the classical
Albert-Brauer-Hasse-Noether theorem on central simple algebras over global fields.

Proposition 1. A central simple K -algebra A splits over pseudoglobal field K if and
only if it splits locally everywhere, that s all its local invariants vanish.

Proof. If the algebra A splits locally everywhere, then all its local invariants vanish.
The injectivity of the homomorphism ¢ in the exact sequence (1) show that the only
trivial element of the group BrK ( that is the matrix algebras over K') may have all
trivial local invariants.

Proposition 2. Suppose that a central simple K-algebra A over a pseudoglobal field
K splits locally at all the valuations of K exzcept possibly the valuation vy. Then it
splits over K. ;

Proof. The exact sequence (1) yields that the sum of all local invariants of A is
zero, so the local invariant of A,, must be zero as well. Thus the algebra A splits
locally everywhere, and by Proposition 1 it splits over K.

The following proposition is an analogue for pseudoglobal fields of the Hasse norm
theorem for cyclic extensions of global fields.

Proposition 3. Let L/K be a cyclic extension of a pseudoglobal field K. An element
a € K is a norm from L if and only if a is a norm locally everywhere, that is
a € Npvk, LY for all v € Vi, where LY denotes the completion of L at an extension
of valuation v € Vg to L.

Proof. Consider the exact sequence 0 = L* — J;, = Cp — 0, where J and C}, are
the idele group and the idéle class groups of the field L respectively. It was proved in
[2] that H!(Gal(L/K),CL) = 0, thus we have the short exact cohomological sequence

0 — H?(G,L*) = Oyevy H*(Gy, L**), (2)

where LY is the completion of L at some extension of the valuation v, and G, is the
decomposition group of the valuation v.
Since the extension L/K is cyclic, we have

H*G,L*) ~ K* /Ny ;xL*, H¥Gy,L"*) ~ K} [Ny vk, L"*,
so the exact sequence (2) may be written as follows

0 — K.XNL{KL* — HUEVKK;/NL“,'K”LU'-
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This exact sequence yields the desired statement.

Remark. Using the arguments given in the hints to the exercise 4 in [4, pp. 465-
469], one can prove that Proposition 3 implies the Minkowski-Hasse theorem on qua-
dratic forms: a nonsingular quadratic form over a pseudoglobal field K is isotropic if
and only if it is isotropic over all the completions K, of K.

To formulate the next Proposition, let us denote by ix the composition of ho-
momorphism i from sequence (1) and the isomorphism BrK, ~ Q/Z. Then iK
maps the class of algebra A over K into the collection of its local invariants,
ik (A) = (..., ik, [A Ok Ky, ...).

Proposition 4. Let K be a pseudoglobal field.

a) ix defines an injective homomorphism BrK — @vevi Q/Z.

b) Two K-algebras A and B are equivalent if and only if ik (A) = ig(B).

¢) Two K-algebras A and B are isomorphic if and only if ix(A) = ix(B) and
deg A = deg B.

Proof. a) ix (A) depends only on the class [4] of A. The injectivity of ix : Br(K) —
Q/Z follows from the injectivity of the homomorphism i in the exact sequence (1}

b) This follows immediately from a).

c) If the algebras A and B are isomorphic, it is obvious that ik (A) = ig(B) and
deg A = deg B.

Conversely, if ix (A) = ix(B), then the algebras A and B are equivalent, so there
exists a skew field D of finite dimension over K such that A = M,(D), B = Mn(D)
for some natural numbers m, n > 1. Since deg A = deg B, we have m = n and A >~ B.

Proposition 5. a) Let L/K be a finite Galois extension of a pseudoglobal field K,
A be a central simple algebra of finite dimension over K, v € Vk, w € Vi, w is an
extension of the valuation v to the field L, K, and Ly, be the corresponding completions
of the fields K and L. The algebra A splits over L if and only if [Lw; Ky]-inv,(A4) = 0.

b) The field L is isomorphic to a strongly mazimal subfield of the algebra A if and
only if deg A = [L : K], and [Ly : K] - invy(A) = 0 for all valuations v of K and
their extensions w to L.

Proof. a) By Proposition 1 the field L splits A if and only if invy (A ®k Lu) =0
for all valuations w of L. It is easy to check that the following diagram
BrK, —— Q/Z

inv,

lres ln
BrL, — Q/Z
Mvy
commutes, and we have invy, (A ®x L) = [Ly : Ky]invy (A).
b) Let L be a maximal subfield of A, then it is known (see e.g. (6] or {3]) that A
splits over L, and deg A = [L : K]. _ :
Thus, by the above arguments [L, : K,]inv, A = 0. Conversely, if for a subfield
L of A the condinions deg A = [L : K] and [Ly : Ky]inv, A = 0 hold, then the first
of them implies that L is the maximal subfield of A, and the second one implies that
the algebra A splits over K by statement a).
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Proposition 6. Let ai,...,as be a finite set of elements of the group Q/Z. Then
there 1s a simple central algebra A over a pseudoglobal field K with the invariants
@1,...,0 if and only if 3 i, @i = 0. :

Proof. This is an i‘nimediat_e corollary from the exactness of sequence (1) in the
middle term @,ev, BrK,.

Proposition 7. Let L/f{ be a finite abelian extension of a pseudoglobal field K. If
an element a € K is a local norm at all the completions K,,, where v € Vi \ {vo},
then a is a local norm in the field K,,. i

Proof. Consider the local and the global norm residue s;rmbols 8, i Ok determined
in 2] . They are related by the equality 6 = I,ev,B,. Using the product formula
for pseudoglobal field, we get Ok (a) = 1 = Il evi 0y (a) = 0y,(a). The last equality
and Proposition 7 follow from the fact that 6,(a) = 1, for @ € K, if and only if
ae NLW’KU e

The following Proposition 8 is a counterpart for pseudoglobal fields of Theorem 10
from (7, Chapter 6].

Proposition 8. Let L/K be a finite abelian extension of a pseudoglobal field K, and
let o, € G, be the set of elements of the decomposition groups G, such that almost
all of them are trivial. Suppose that ,ev, 0oy = 1. Then there is an element a € K
such that 0,(a) = 0., /k,(a) = 0y.

Proof. Let 81,/k, : Kv/NLy = Gal(Ly/K,) be the local norm residue symbol
[2]. By the local class field theory generalized to general local fields (see [5]), one
can find an idéle (ay) € Jk such that 0y, ,k, (ay) = oy. Since Iyev oy = 1, we
have Myevy0y(ay) = 6x((ay)) = 1. Then (ay) € K*Ny/xJr,(ay) = a(by), where
(by) € Np/xJr- Thus fx ((by)) = 1, and we have 8, (a) = 0.

The following Proposition asserts that the conditions for a valuation v of K to be
unramified or to split completely in a given Galois extension L/K can be formulated

in terms of subgroups of idele class group of the field K exactly in the same manner
as for the global fields (see {7, Chapter 8, Theorem 3]).

Proposition 9. Let L/K be a finite abelian extension of a pseudoglobal field K. The
valuation v of the field K is unramified in the field L if and only if U, C NpjxCL. The
valuation v of the field K splits completely in the field L if and only if Ky, C Np/kCL.

Proof. In Proposition 9 it is assumed that the completion K, is embedded into the
group Cx by using the composition K, < Jg¢ — Ck. To prove Proposition 9 we
follow the arguments which were used in the case of global field (see [7, Ch.8]). First,
we show that Ny xCL( Ky = Np,/k,Lw, where w is an extension of the valuation
v to L. It is enough to prove the inclusion KN /g JL (\KKy C KNL /K, Lw. Let
a € K,a, € K,, and aay, = Ny /k((aw)), where (ay) € Jr. Thus a is a local norm at
all the valuation, except possibly at v, but then it follows from Proposition 7 that a
is a local norm everywhere, so a, is a local norm in K, and the desired inclusion is
proved.

Let U, be the unit group of K,. If the valuation v is unramified, then all el-
ements of U, are norms by [5], thus U, C Ny xCr. f Uy, C Np/kCrL, we have
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Uy C (NykCLNKy) = Npy/x,Lw. Using the local class field theory for general
local fields [5], we get that the valuation v is unramified in L.

To finish the proof of Proposition 9, it is enough to consider in the above argument
the group K, instead of U, and the property “to split completely” instead of “to be
unramified”. _

Let X be an algebraic curve defined over the field k. The Brauer group Br(X) of
the curve X is the kernel of the homomorphism BrK — @,ecvy BrK,, where K is
the function field on X.

Proposition 10. For a pseudoglobal field K with constant field k the following equiv-
alent properties hold:

a) the reciprocity law holds for K /k;

b) for any finite cyclic extension L/K the sequence

BNL/K) — € Br(Lw/Ky,) = [L: K|7'Z/Z—0
veEVE
us eract,
c) for any finite cyclic extension L/ K,

HY(Gal(L/K),Br(Y)) =0,

where Br(Y) is the Brauer group of the nonsingular projective algebraic curve Y with
function field L;
d) for any finite cyclic eztension L/K the map

K'*/NL;KL* —id @ K:/NL..,{K.,L:U
vEVg
5 injective;
e) HY(G(k), Jacx(ks)) = 0, where G(k) is the absolute Galois group of k and
Jacx (k,) is the jacobian of the curve X regarded over a separable closure ks of the
field k;

f) Br{X) =0.

Proof. For a pseudoglobal field K/k assertion a) was proved in [2]. Assertion d)
follows from Proposition 3. Conversely, as was proved in [2] d) implies a). The equiv-
alence of a), b) and c) follows from Proposition A.12 [8, p. 167], and the equivalence
of d),e),f) follows from Proposition A.13 [8, p. 168].

Now we shall show that the existence of class formation for pseudoglobal field K
yields the same corollaries about the 3-dimensional Galois cohomology groups of the
field K (respectively of idéle group and idéle class group of K) as in the case of a
global field. Besides, it turns out that for abelian extensions of a pseudoglobal field
one can get the Tate criterion for the Hasse principle.

Let L/K be a finite Galois extension of a pseudoglobal field K and let G =
Gal(L/K) be its Galois. Let H be a subgroup of G. Since the idele classes of K
form the class formation, it follows from Tate’s theorem [4, p. 181] that the multipli-
cation by the fundamental class vy x € H (G, CL) defines the isomorphisms

H"(H,Z) = H***(H,Cy) (3)
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for all n € Z.

Let K’ be the subfield of L corresponding to the subgroup H by Galois theory,
H = Gal(L/K").
Proposition 11. The diagrams

H™(G,Z) - H"t%G,Cy)
J res | res (4)
H™(H,Z) - H™"t3(H,CL)

and
H"(G,Z) — H" (G, C) *
1 cor 1 cor (5)
H™(H,Z) - H“+2(H,CL)
commute.

Proof. The commutativity of (4) follows from the equalities
res(aUup k) = (resa) Uuy g = resaUresup/k,
and diagram (5) commutes according to
(cora)Uup g = cor(aUup k) = cor(aUresur k).

By using isomorhisms (3) one can prove, exactly in the same manner as in the
case of global fields [4, c. 301}, the Tate criterion for the Hasse principle for Galois
extensions of pseudoglobal fields.

The kernel of the homomorphism

foryx : HYG,L*) — H°(G,J1)

is called the obsruction for the Hasse principle for the Galois extension L/K with
Galois group G. One says that the Hasse principle holds for L/K if Ker fo L/x = 0.

Proposition 12. Let L/K be a finite Galois extension of a pseudoglobal field K,
G = Gal(L/K). Then

Ker fO.L,fK ™~ KET(HS(G,Z) - HuEVKHS(Gv,Z)),
where G is a decomposition group Gy, of an extension to L of the valuation v of K.

Proof. For the sake of completeness, we present the proof, despite it essentially
coincides with that for the global field (see [4, p. 301]). Consider the exact sequence
of G-modules

0= L"—=J,—>CL—0, (6)

and the corresponding sequence of Tate’s Galois cohomology
.. — H"Y(G,Jp) 2= A"-Y(G,CL) ——
— 3 H"(G,I%) —I* H™(G,J1) — ...
From the exactness of this last sequence we get

Ker f, ~ Coker gn-1.
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Now, by the local class field theory for general local fields [5],
H*YG,J) ~ Myev  H* Y (G?, LY) =~ Hyev H* 3G, Z),

and by (3), ) )
H""YG,CL) =~ H*3(G, Z).

Using the fact that the groups H*(G,Z) and H~"(G, Z) are dual, one can write
Ker fn ~ Coker(Ilyev, H"~3(GY, Z) —==%3 H"-3(G,Z))

~ Ker(H3"(G,Z) —25 [yev, H*"(G", 2)),
where g, (3", 2v) = 3, cor 2y, h3—n(2) = [], v, resz. Setting n = 0, we get
Ker fo ~ Ker(H3(G, Z) = I, ev, H3(GY, Z)),
as was to be proved. '

Proposition 13. Let L/K be a finite Galois extension of a pseudoglobal field K,
n = [L: K], g. be the number of all distinct valuations w of L which are the ex-
tensions of a valuation v of K, d be the greatest common divisor of all g,. Then, by
identifiyng the group H*(G,L*) with a subgroup of H*(G,JL), the quotient group
H?*(G,JL)/H*(G,L*) 1s a cyclic group of order 5, and the image of the group
H?(G,CL) in H3(G,L*) 1s a cyclic group of order d.

Proof. We have H*(G, JL) ~ @, ¢v, (7-Z/Z), where n, = [L" : K,]. On the other

hand, H!(G,CL) = 0, and H*(G,CL) ~ :Z/Z, thus the exact Galois cohomology
sequence corresponding to (6) can be written as follows

0 — H2(G, L") - g (%zm) - %zuz - H3(G,L"). (7)

Consequently, the quotient group H?(G,J.)/H?*(G,L") is isomorphic to a sub-
group of 1Z/Z, so it is cyclic. Let us find in this quotient group an element of
maximal order.

Let {i,}yevx be the set of integers such that almost all of them are zero, and
Y., ivgy = d. Since n = nyg,, we have ), ﬁ': = £. Hence, it follows that the element

of the quotient group H?(G,Jp)/H?(G, L*) with representative ((}:I".,‘) (modl)) has

the order 5.

Futher, if ((f‘f) (modi)) is the representative of another element @ of this quo-

tient group, then one can find an integer m, such that 3. juny = md. Consequently,
5, & = m<, thus the order of & divides 5. Hence the order of considered quotient
grou;; is 5.

Now, the exact sequence (7) shows that the image of H*(G,CL) in the group
H3(G, L*) is a cyclic subgroup of order d generated by the image of fundamental
class up/kx € H?(G,CL).. '

Finally, we consider the central simple algebras of finite dimension over a pseu-
doglobal field. We shall show that any such algebra A is cyclic, its index and exponent
coincide, and the reduced Whitehad group SK1(A) is trivial.
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We shall use one result of Saltman [9] on existence of abelian extensions of valued
fields, namely, a part of Theorem 5.10 from [9].

Theorem (Saltman [9]). Let G be an abelian group, K be a field with real valued
valuations vy, ..., vm. Let r be the highest power of 2 dividing the exponent G. Let K;
be the completions of K with respect to v;,1 < 1 < m. Denote by p(r) the primitive
2" -th root of 1.

a) Suppose that K has nonzero characteristic or Ki(p(r))/ K; is cyclic for all i.
Then if L;/K; are G Galois extensions, there is a G Galois extension L/K such that
L@ K; = L.

This result will play the same role in the proof of the theorem below that the
Grunwald-Wang theorem [7, Chap.10] plays in the proof of classical result which
asserts that any finite-dimensional central simple algebra over a global field is cyclic.

Theorem 1. Any central simple algebra A of finite dimension over a pseudoglobal
field K 1s cyclic and ind A = exp A.

Proof. The proof we give is a slight modification of the proof for the classical
case of algebras over global fields [3, p. 441-443]. Let vy, ..., v, be all the valuations
of the pseudoglobal field K at which the algebra A has nontrivial local invariants.
Set n; = ind A,,, where A,, = A ®x K,,. Let m be the smallest common multip¥
of ny,...,n,. By [3, Proposition 13.4] n;|n, where n = deg A = [A : K]% for all
i,1 € i < r. Thus m|n. Now we use the Saltman theorem instead of the Grunwald-
Wang theorem. By Saltman’s theorem there are the cyclic extensions L and M
of field K, of degrees m and n respectively, such that L/K and L;/K,, are cyclic
extensions of degree m, and M/K, M;/K,, are cyclic extensions of degree n. Notice
that one can take L; and M; to be the unramified extensions of K, of degrees m
and n respectively. All the number n; divide m and n. It is easy to show that for
the algebras A,, over general local fields K,,, we have, just as in the case of algebras
over local fields, that n; are the orders of local invariants of algebras A,,. Therefore
it follows from Proposition 5 a) that A splits over the fields L and M. Then it follows
from Proposition 5 b) that the field M is isomorphic to a strongly maximal subfield
of A, thus the algebra A is cyclic.

It remains to prove that ind A = exp A. Since exp A|ind A for an algebra over
any field (3], it is enough to prove that ind A < exp A. Since the field L splits A,
by [ 3, Proposition 13, p. 301] ind A < m. But for the exponent e of A we have
e - ifA] = i([A]°) = 0, where i is the homomorphism from the exact sequence (1). It
follows that e -ig, = 0, where a;( is the local invariant of A for v € V. Therefore
nile,1 € i < r, hence mle. Finally, ind A < m < e = exp 4, and this completes the
proof.

Let A be a central simple algebra of finite dimension over a field K. Let L be a
maximal subfield of D. 1t is known [6] that there is an isomorphism ¢ : A @k L =~
M, (L), where n = [L : K]. The composition map Nreq : A & K

@1 — ¢(z®1) — det(4(z ® 1)).

is called the reduced norm. It turns out that the reduced norm does not depend
cither on a choice of maximal subfield L, or on a choice of a homomorphism ¢, and
its image is contained in K.
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We shall prove that the reduced norm homomorphism is surjective for the algebras
over pseudoglobal fields. For this purpose we will need the following simple lemma.

Lemma 1. Any pseudoglobal field is a Cy-field.

Proof. Recall that a field K is called Cj-field, if any homogeneous polynomial of
degree d on n > d' variables has a nontrivial zero in K". Every condition C;, in
particular Cy, can be formulated as a sentence of the first order logic. Therefore, as
the pseudofinite fields are elementarily equivalent to ultraproducts of finite fields, the
pseudofinite constant field of K is a C-field.

S. Lang [10] and M. Nagata [11] proved that the property of a field to be a C;
- field is preserved under algebraic extensions. Besides, if k is a Cj-field, and K
is an extension of k of transcendence degree n, then K is a Cjy, - field. Hence, a
pseudoglobal field is a Ca-field.

Corollary. Any quadratic form on 2 5 variables defined over a pseudoglobal field K,
has a nontrivial zero over K.

Proposition 14. Let A be a central simple algebra of finite dimension over a pseu-
doglobal field K. Then

1) The reduced norm homomorphism Nieg : A — K 1s surjective.

2) The reduced Whitehad group SK1A = SL(A)/[A*, A*] of A is trivial. Here
SL1(A) = {a € A|Needa(a) = 1}, [A™, A”] 1s the commutant of multiplicative group A*
of algebra A.

Proof. 1) The algebra A is a matrix algebra over a skew field D. Clearly, it suffices
to prove that Nyeq : D — K is surjective. Let [D : K] = n?. The map Nreq is given
by a homogeneous polynomial v(z) of degree n on n? variables, and besides v(z) = 0
if and only if # = 0. We need to prove that the equation v(Z) = a has a nontrivial
solution over K for any a € K*. But, using that K is a C; - field by Lemma 1,
this follows from the fact that the form v(Z) = azl, ., is of degree n and has n® + 1
variables.

2) The above arguments show that a pseudoglobal field is a Cj - field (a field K is
called C} - field if for any algebraic extension K'/K, and for any finite dimensional
skew field D with center K’, the reduced norm homomorphism Nyeg : D — K’ is
surjective). V. I. Yanchevskii [12] proved that, if K is a C; - field, then SK,(4) =0
for any finite dimensional central simple K-algebra A. This completes the proof of
Proposition 14.
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