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It is shown that each k-triangular invertible map (choosing in advance) for k =
1, 2,3 with linear maps generate the group of tame polynomial automorphisms in three
variables.
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Invertible polynomial maps of an affine space A" over a field K form a group GA,
(see [1],[2]), which sometimes is called the affine Cremona group. Elements of GA,
can be written down as tuples of polynomials '

(fi(z1,- . 2n), folz1, - Zn)s oo fu(Z0s - 20)), (1)

fi € Klz)], with composition of tuples as group operation and X = (z1,...,Zn)
as the unit of GA,. It is useful to introduce vectors of the standard basis € =
(0,...,0,1,0,...,0),i = 1,2,...,n and represent the elements (1) in the form

9= filar,...,zn)é (2)
i=1

For such a polynomial map g € GA, let deg g = max; deg f; . It is evident that maps
with degg < 1 form an isomorphic copy of the affine group in GA,. In particular,
the elements ¢; = X + &; form a basis of A} as a vector space over K . Everywhere
below we will identify AGL, with the image of this standard enclosure. In this sense
we shall also understand ‘the matrix and permutational notations. For instance, the
cycle (1,2, 3) in the dimension 3 means the transformation (23, z3, z1) in the form (1)
and A;j = X + z;€ € GLy, in the form (2). It is easy to check that tuples (1) of the
kind

(14 hi,z2+ ha(z1),. .., zi + hi(21, ..., Tiz1), .- Zn +ha(Z1,- .. 20-1))  (3)
or .
X+ Zhi(l‘h oy Ti-1)€,
i=1
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in the form (2), are invertible polynomial maps for arbitrary polynomials k; and
make up the subgroup U, of the unitriangular transformations. U, can be considered
as iterated algebraic wreath product of K*. There is a semidirect decomposition
Un = Un-1F,, where U,y (F,) consist of the elements of form (3) with h, =
0 (hs=0,i=1,...,n—1). For n = 3 we have Uz = U F;. There is a partial order <
on U,, which is the extension of the inverse lexicographical order of monomials. We
will say that an element u; has height less than us, for u;,u; € Uy, if u; < us.

The normalizer B, = Nga,(Un) = Tn - Uy, is a subgroup of triangular automor-
phisms whose elements have the form

(ayzy+hy, agzatha(zy), ..., cizithi(z1,.. ., Tic1),...CnZat+hn(z1, ... Tn-1)), (4)

where T), is an algebraic torus, a; € K"

The subgroup GA? is a stabilizer of zero (f;(0) = 0) and contains a descended chain
of the normal subgroups GAY', m = {], 1,2,3,..., whose elements have the form (z; +
PP . ea¥ P 40 o0 + H™ 4 ), where H7*t! are homogeneous
forrns of degree m+1 and the dots mean items of higher degrees Here is a simplest
example of the element from GA™ : o™ = (z;,z3,...,2n + z7't!). There is a
series of natural epimorphisms ¢x : GA? — GAY/GAE, moreover the corresponding
quotient-group is a finite-dimensional algebraic groups. In particular, we have the
semidirect decomposition , GA? = GL, - GAL. Let us recall next definitions from [3]

Definition 1. An elementary polynomial map is defined as a transformation of
kind

By, Bay ey ity 8] P O(B1y vo vy Bioidiy By s B dy s ves B

Definition 2. A polynomial map, which is a finite composition of elementary or
linear maps is called a tame map.

Tame automorphisms form group which can be defined as TGA, = (AGLy, By).
Indeed, each elementary polynomial map is conjugate by a transposition (i,n)
with an unitriangular one. On the other hand, triangular elements of kind
(z1,22,...,Ti-1,Ti+a(Ty,...,&i-1),Tit1,- .., Tn) are elementary maps and generate
the group Un.

One of the most difficult questions about affine Cremona groups is (see {2]): i
TGA, a proper subgroup of GA,, (the answer is negative for n = 2)7

Theorem 1. ( [4] ). GA; = By * AGL3, where * stands for the amalgamated product
with the intersection By N AG Ly, consisting of linear triangular maps (4).

Corollary 1. TGA; = GAz.

Corollary 2. Let o™ = (z1,z,+ 27t € GA(zm) NU,. Then the groups Qum =
< AGLy, (™) > form an ascending chain AGLy = Qo < Q1 < ...Qm < @m41,- ..

Proof. 1t follows from a uniqueness of element’s decomposition in amalgamated
products. Hence, the element o*) k > m can not belong to Q,,. On the other hand,
given element o(¥)| one can calculate commutators with translations from A} and
gets all elements (™) m < k. Thus Qm < Qk.

In particular, this means that in the dimension 2 the affine group is not maximal.
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In the dimension more then 2 we have a more complicated situation. The question
about the coincidence TG A,, with GA,, is open even in the dimension 3.
Conjecture (Nagata {2]) The automorphism

(21 — 2z3(23 4 z321) — z3(z3 + 2321)%, 2 + z3(23 + z321), Z3)
1s wild.

On the other hand, as follows from [5], the affine group is a maximal closed algebraic
subgroup of GA, as an co-dimensional group, correspondent definition was introduced
in [1]. Comparing results with Nagata’s conjecture, it is natural to pose a question:
is does AGL;, a maximal subgroup of TGA,? ‘

As was proved in [6], one can replace the whole subgroup Bz in the equality
TGAsz = (AG L3, B3) by any its nonlinear element. More precise,

Theorem 2. ([6]) Lei t € B3 be an arbitrary nonlinear triangular map. Then
TGA3 = (t, AGL3).

The aim of this paper is to show that bitriangular and three-triangular elements
g € TG A3 have similar property TGA3z =< AGL3,9 > .

Definition 3. A map g € GA,, is called k-triangular if it can be presented in the
form

g= Ay t1-Ag-ta, - Ak - tr - Akga, (5)

where A; € AGL,,t; E B,,. The smallest number k satisfying (5) is called the
triangular-compositional length of q.

The term bitriangular map means that triangular-compositional length of the map
equals 2.

Theorem 3. Let g be an arbitrary bitriangular transformation. Then
TGA:; == (q, AGL;;).

Let G = (g, AGL3). Without lost of generality, we may assume that ¢ = t* .
. t,t' € UsNGAY, A € GL3. Let A = B;WB; be a Brua decomposition, where
B,,B; € GL3N Uz and W is a permutational matrix. Then we have the bitriangular
clement ¢B7' =tV -t; € G, where t; =81, = (t)B3". Let us preserve the notation
q for this new element of G

§= t:&' 19, (6)

and represent the triangular elements 1, in the the form
ty = X +a;(21)€ + az(z1,22)€3, t2 = X +bi(z1)é2 + ba(zy, 22)é3 € GALNU,.

Without lost of generality, one can suppose that i;,f; € GAY and polynomials
a1, az, by, by have no linear parts. The idea of the proof is simple - to find an affine
map a which permutable with ¢ (or t}¥), calculate a commutator [a,¢~!] ( or [a,q])
and get a triangular element from G. In particular, one can use the element a = c3
from the center of Us to get an 1-triangular element t7"est¥ and apply Theorem 2.

Unfortunately, for some kind of triangular elements ¢,,1; the correspondent com-
mutators will be linear triangular elements and direct application of Theorem 2 is
impossible. The situations, when it can be happened, is described in the next propo-
sition.
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Proposition 1. If L = {l(z,,z3) = az; + Bzs + v} is a set of linear polynomials,
then ,

19 Ah = h(z1,z2 +a(z1) + 1) = h(z1, 22 + a(z1)) € L for some polynomial a(z),
dega > 1 iff polynomial ki has the form h = hgaz3 —2hgza(z1)z2+h11z12247(21) +1,
where l € L.

- 29 Ah = h(z1 4+ 1,22 — az?) — h(z1,22 — az?) € L iff h = r(z3) + huizi22 +
%hnﬂ:x? - hzot% + 1.

3°%. Ah= h($1+1,32—ﬂ(221 +1))—h(:€1,£2) €Liffh= f(:tg—ﬁ:t%)ﬂ'huzl(:cg—

Bz?) — Lhiyaz? + hooz? + 1, where f = f(x2) is an arbitrary polynomial.

Proof. 1°. For h = Y.t ri(z1)z}, we have Ah = mr(z1)(23 ") + ..., where
dots mean items of lower degree than z5. From this, it follows, that if Ah € L then
degr; + m — 1 < 1. Thus, we have the form of h = r23 + ri(21)z2 + ro(21), where
ry € K,degr; < 1. For such a form of h we have Ah = 2ry(z2 + a(z1)) + ri(z1) + 2.
Since dega > 1, this polynomial can be linear when 2r;a(z,) + r1(z,) € L. Hence we
get the form of h, pointed in 1°.

In the case 2° select a highest monomial (in the sense < ) containing z; : h =
flza)+a5zP +... (k> 0). Then weget Ah =2y 'zb+- - €L 9 k+1<2.1fm=0
then h = f(z2) + g(z1), degg < 2. If f #0, then h = hy 2122 + g1(21) + f(22) and
Ah = hy1z5 — az? + g1 (21 +t) — g1(z1). This polynomial can be linear if deg g; = 3
and its highest item have the form %hua:r:?. In that way this case is exhausted. The
case 3% can be proved by analogy.

Now we are ready to prove Theorem 3.

Proof. Let us analyze five cases corresponding to the forms of permutation matrix
W in the formula (6).

Case 1. W = (1,2) is a transposition. In this case we get
tV = X + a1(z1)€1 + az(z1,22)€3 and

g= X +ay(zz +bi(z1))€; + bi(z1)é2 + (b2(z1, 22) + az(z2 + b(z1),z1)E3.  (7)

Consider the linear transformation Ags = X + 2263 € GL,, and obtain a map ¢#3? -
g~! = X — b1(z; — a1(x3))és. This element can be linear only if b;(z1) = 0. If this
happens then (6) implies that the element ¢ is not bitriangular.

Case 2. W = (2,3).

Remark. A polynomial a; (b2) can not be independent of z3, because, in this
case t¥ (t¥) and then ¢" is triangular.

Let us calculate the commutator with the translation ¢z, which is a triangular map

g71¢% = X + (ba(z1, x2 + 1) — ba(21, 22))é5.
It will be linear iff b = b[jgx% + b(z1). In this situation let us consider the element
¢° ¢ = X + (az(z1, 23 — ay(z1 + 1)) — aa(zy, 23 — ay(21)))és.

Accordance to Proposition 1 it will be linear iff az = aga23+2a02a11(z1)z2+an1 2122+
a(z,). Let us use A3y = X + z,€3 € U3 N GL3 and calculate the double commutator
r = [g,c3),r1 = [As1,77']. Next element will be obtained

r1 = X + 2ag22,8 — 2(2bo2a0221 22 + (bo2aoz — b11)aoaz3)Es.



30 YURIY BODNARCHUK

This element can be linear in the cases
[ 2.1] boz = b11 = 0;
[ 22] gz = U,

In both cases the element r will be triangular, with z3 + (bj1a11 + bo2a?,)z? —
2bgaa112122 as a third coordinate and a linear second coordinate. In the case 2.1
the polynomial b = by(z;) does not depend on the variable z;. As was pointed in
the remark at the beginning of this case, it contradicts to the assumption that ¢ is
bitriangular element. In the case 2.2, if 2.1 is not hold, then the element r is linear
when a;; = 0. The equalities ag; = a;; = 0 imply that as does not depend on z3,
which (by the remark) leads to a contradiction also. '

Case 3. W = (1, 3). This is the hardest case in which we have

q = X+as(z1+ba(zy, 22), 22+ba(z1)) €1 +(b1(z1 )+ a1 (z3+b2(21, 22))) €2+ b2 (21, z2)€3.

Let us calculate the commutator

q“-‘q'l =X+ [aj (1?1 + ]) - al(xl))é'g -+ ({12(231 +1,20— (1(171)) - 02(:5] , L9 — a(rl)))Eg
Clearly that this triangular element can be linear only if a)(z1) = az} and ( by
Proposition 1) ag(z1, z2) = a(z2) + a112122 + a11023 + azezi.
One the other hand, we have

q"clq_'l — X—i—(b; (.rl)—b,1 (3,‘1+1))é.2+(bg(3:1, 332)-—52 (231-{—1, £2+b($])—b(:€1 +1)])€3,

which implies b; = Bz2 and (by p. 3° of Proposition 1) by(z1,z2) = b(z2 + Bz}) +
biizy(zs + Bz}) — §b11Bad + baozi

Let us consider the

Case 3.1 when a = 8 = 0. In this situation we can use the linear element A3; =
X + z,€3 again and get the element

r=q" . g7 = X +[(a11 + az0)z3 + 2a20z2x3)é).

Clearly, that #{1®) is a triangular element and it will be linear if a;; = a3 = 0 only. If
we replace the element ¢ with ¢~" then the similar procedure leads to the conclusion
byy = byg = 0. So, the situation when t; = X+a(z)é3,t2 = X+b(z1)é3, dega,degb >
1 and ¢ = X +a(z,)€] +b(z2)é3 should be considered. In this way we get the nonlinear
triangular element ¢(*?) = X + a(z,)€3 + b(z1)és.

Case 3.2, in which a # 0,3 = 0. Let us put @; = X —b,,z,€3 € GL3 and calculate
the element r = ¢°2- Q, - ¢~ ! € G. The element A;3 = X + z3¢é) belongs to the center
of Us¥ N GA$ and so, one can get the element

r=r4 .7 = X 4 (b(zg — azd) — b(z2 + 1 — azd))é).

Thus we can get the tria.ﬁgular element r}¥ moreover, since a # 0, and dega # 1 it
can be linear only if b = 0, i.e. r; = X. In this situation the element r has form

r=tV 4TW = X 4 (a(z2 + 1 — azl) — a(z2 — azd) + a1172)é).

Similarly we can get a = 0. Let us use the element Q; = X — 2byozi1€3 € AGL3
permutable with ¢;,¢, and get the element

r3=¢"Q2q9"" €G.
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The calculation of the commutator with a linear element A,3, which was used above
leads to t.he equality rq4 = 'rg‘”r = X + (bnyaz3 — by;z2 — bag)€i. The triangular
element r4 can be linear if ;3 = 0. If this holds, then the element of torus r =
(z1,sz2, z3) is permutable with t; for any s € K*. Therefore one can get the triangular
element (¢"¢~ )W =#]t7}, 2. Since o # 0
this element is nonlinear for s # 1. This completes the analysis of case 3.2 .

Case 3.3. a = 0,8 # 0. Replacing ¢ with ¢~% it can be reduced to the previous
case.

Case 3.4. a, 3 # 0. This item is central in the case 3. Put

Gs=X ~ sbao + ago

z9€1 € GL3

where s is a parameter. It is convenient to introduce the element ¢; = Qat}¥¢5. The
reason will be explained bellow. It is easy to see that monomial structures of the
elements t;' and ¢, are similar. Taking this in account, we could choose an element
of the torus T = (Az;, pzo, vz3) in such a manner that the element r5 = 5 (Qat} )7
has the form

X + f(z2)é1. (8)

If we succeed in this then, without special difficulties we could derive a triangular
nonlinear element from G. For first coordinates of the elements (Qst}' )7 and tz'w
let us equate coefficients: of their monomials z3, 23, z223. In this way we get three
equations with unknown A, p, v

ayqpv ajiav? v2sh
1;# 11/\ . ,\20 - (9)

It is evident that the solution A, u, v € K* exists if either both ay, byy equal to zero
or both not. Now let us remark that the element @5 was introduced to avoid the
same problem with the coefficients ags, boa.

In the Case 3.4.1 a1y, b;1 # 0 we have the solution (9)

= —511;

2 @2
% b2,8%s° #___bflﬁs?_ e b118s
aflaz . a?la ' ano

After the substitution of these values in t} (Q3t}" )7 we get an element of the necessary
form (8), where

2 2 2
flz2) =577 (M) ‘ (—b_u@) +b(z2) + (bao + azos™) 22
1

Smce A31 is permutable with the unitriangular elements t;,15, for the element 9=
q1 (91) = t;rtT we get a triangular element g4%1g~1 = tyri* -1, where 1; =

(A31)"t; € Us. Direct calculations lead to the following formula
gt~ = X+

- (a110)2 : (__ b?,Bs*(z2 — m:'f’)) &
buﬁ a’flcx




32 YURIY BODNARCHUK

z3 — az?

B

Let us analyze conditions under which it will be linear. If a, by are coefficients at k-
degrees of polynomials a, b then the coefficient of a monomial 2§, k > 2 is a polynomial

from s . .
ano b%ﬂe 2k-3
by
'(buﬁ) (‘3‘%1“r R Ml

It can be equal to zero if ax = bx = 0. Hence, the element gAg~1 is linear iff a =
b=0,a3 = byo =0, i.e. t¥(Q3t})T = X. In this situation we can put s = 1 in the
polynomial f» and suppose that v is a parameter. Then we have a triangular element
t =1, t¥ t¥TtT = 1t whose second coordinate is equal to

2
z, — (V* (GA) - 1)azi.
b1t

Since a,a;; # 0, one can choose a value of v in such a manner that ¢ is a nonlinear
element.

Ca.se 3.4.2. ay; = O,bll # 0.

Let us put ¢ = ¢~°2¢ and use As; again. Since Az; is permutable with ¢, it 1s easy
to calculate

b(zs — az?) + (bao + azes™!) )és (10)

Aj
gog =t (V)T Tt th = X 4 (ale2 + B2]) - alez + B2 +1))s.

Since 3 # 0, it follows that this triangular element can be linear only if a = 0. In this
situation the element t¥ = (z; + axoz3, 22 + @z, z3) is permutable with c3, hence,

q_czq i t;cztg : X + (5(32 + ﬁ.rf) - 5(2‘2 + ﬁzf + 1) - 61131)63.

This element can be linear if b = 0.

In this case it is easy to verify that the linear transformation
Qa = (z1,(1 — 22)zy + cz;,z3) is permutable with tW for each value ¢ # e
hence, one can get the element q~1¢9+. It turned out, that its second coordinate
Ts + ag;‘ijg:—cxf is a nonlinear polynomial if agq # 0. In the opposite case ay = 0 is
the third coordinate of this element z3 + b;z2c is a nonlinear polynomial.
Case 3.4.3. ay; # 0,b;; = 0 can be reduced to the previous one replacing ¢ by

"

Case 3.4.4. ay; = by; = 0. In this case we use A = v%s, u = av?/8 and parameter
v as a solution of equations (9) and get the element

a( au’(r;—az’ ) b
B Sbag + azo &
e +b(zy — azd) + ————1z, | €

rs =t (Qatl )T = X + e % |8y

One can repeat the argument done after the formula (10) and conclude that r5 can
be linear only if @ = b = 0 and az = bo = 0. But under these conditions the element
q is triangular and we get a contradiction.

Case 4. W = (1,2, 3). Our standard procedure leads to equalities :

('r}‘“t;'_l)w2 = X + (az(z1,z2 + a1(z1) + 1) — az(z1, 22 + a1(z1), )) €3,
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q""q_l = X+(bi(x141)=by ('—'-‘1))52'?'(52(31+1;172)“b2(1'1= z2+b1(z14+1)+b1(21)))és

and the next conditions on the polynomials a1, as, b;, b, under which the obtained
triangular elements are linear. by(z;) = Bz2, and (by Proposition 1)

as = O‘,Qgr% + 2ag2a; (1:1)3:2 +an1z120 + T(xl)

1
by = f(za + B22) + biizi (22 + B22) + 561153? + booz?,

where r(z1), f(z1) are polynomials.
At the same time, together with the element g = t}'t, the group G contains the
- 2
element q; = ¢~% b= -t;w t7!, for which one can to calculate the commutator

g2 = ¢7'qf* and check that it is not triangular. But the element

Aay

g3 = ¢5%¢; " = X — b1 216 — b11(2a02z122 + (a11 — ag2)zi)és € G

is triangular. Thus we have the alternative cases 4.1 and 4.2
Case 4.1. by; # 0, a02 = a;; = 0, where we have

- - 2 -
g = X +r(zo+Pz2)e, + Bzlés + [f(za + Bzi) + buziza + gbuﬁib‘?-i'ﬂl(m'z + Bz?))és.

One can get a triangular element g~ ¢4 = X — r(z2 + Bz%)€s, which can be linear
under condition r = 0. This yields a contradiction that ¢ is triangular.

Case 4.2. by, = 0 Direct calculation of a commutator leads to the triangular
element

ql-lqi’ =X - 262(}(231 + 1)5’2 - (4{102529312:2 + ...)€s,

which could be linear if agzbso = 0. Here dots mean items of the lower height.

Case 4.2.1. byg = 0. The element g~ g4 = X + f(2z123+ z3) is 1-triangular and
can be linear only if § = 0.

Case 4.2.2. ago = 0. In this case one can use Ay; = X + z1€3 and calculate the
double commutator g = qf"qi‘l, g1 = gA421¢~1, which conjugate by the transposition
(2,3) with a triangular element of the form X — (8%z3t 4 ...)&. Just as in the the
previous case the case 3 = 0 should be treated. But in both cases the equality =0
gives contradiction: g isn’t bitriangular.

Case 5. W = (1,3,2). The group G contains the element g together with g1 =
W =% 471 Since W' = (1,2,3) this case is reduced to the previous one
and this completes the proof of the theorem.

The previous proof was based on calculations with commutators [q,¢],c € AT,
which have the compositional-triangular length less then the element g¢. For 3-
triangular maps, as a rule, we will get 3-triangular elements also. But the height
of the intermediate triangular element of the new elements will decrease. The proof
of the next theorem is based on this simple remark.

Theorem 4. Let g be a 3-triangular element of GAz. Then
TGAa = (AGL3, q}.
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=

Proof. If G = (AGLa,q), then without loss of generality one can suppose that g
has a form g = t{'¢,15*. The Brua decomposition leads to the equality

q:—.B{l-flwl-Bl-tg-Bgl-igws-Bs

and we get an element

le

Bl'q-Bng.’ $ W

1y -ty €G,
where t} = By -t - By} ty = By - t3- By 'ty = By - t2- By *. Bellow we will preserve
notations and suppose that the group G contains a map of the form

g=H" < ds™8, (11)

Case 1. Wy = Ws = (1,2).
Put Ass = X + 2283. Since it is permutable with ;%) i = 1,2, we get a triangular
element

qAaz ) q"l =X - 61(31 —Qa (1?2))63;

which could be linear only if b; = 0. But in this situation g is a bitriangular element,

because the element ;
(1,2
t1(1’2} 2 tg o= (tl # fgl’z))

is 1-triangular. This contradiction completes analysis of this case.
Case 2. W), = W3 = (2,3).
Since ¢p = X + €5 i1s permutable with t;"' i=1,2 we get the element

Al e Ul T el T

If a5 is independent of 9, then #;"1 is triangular and ¢ isn’t 3-triangular, hence, a;
depends on z3.

Therefore one can proceed to calculate commutators ¢;41 = gi2q~! = ;4 r; .
;™1 till i; will be of the form

Case2.1. =X+ aa:"féb, k>0;

Case22. 1, =X+ (ﬁ:ﬂg + ‘){)é'a.

W

In the case 2.1 we get a 1-triangular element ¢; = (tlnwltfl) , where T,-W‘
X +2%¢&, is a triangular element and hence the element ¢; is a nonlinear 1— triangular
element.

In the case 2.2, 7; is a linear element and hence the element g; is bitriangular.

Case 3. W = (1, 3). Consider the case when t; doesn’t depend on z,, i.e. t; =
X + bo(z2)é3. Then the commutator g4 .q7t = X —ba(z2 — ai(z3))€é) is a nonlinear
1-triangular element. In a similar way let us consider the case when ¢; doesn’t depend
on ry, i.e. tg = X + as(z2)€3. Remark that in this case by # 0. Indeed, if b, = 0,
then ¢!*¢; is 1-triangular and g is not 3-triangular. Therefore the element el
X + (as(z2 — by (21 — az(z2))) — az2(z2))€3 is a nonlinear triangular one.

Let us consider the general case and calculate the commutator

a=¢" ¢ =" 0 7 6" €6,
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where
15 -tg*l = X—-I-(b; (3:1 +1)—bl($1)]€2+(52($1+1, :!:2—51(21))—-bz(x;,mz-—bl(xﬂ))g&

Let us put gip1 = ¢;* -qi ' =1, .7y (tl'wl) € G. One can proceed the process
till the deg,, 7 = 1 (the case when deg, t = 0, was considered above). Thus we
will stop a process when the element 7; = X + (az, + 8)&2 + (z17(z2) + ro(22))€3 will
be obtained. If degr < 0, then one can pick out the linear part

=L -1/ = (X + (azy + B)é2 + (121 + B1)€3) - (X + ro(z2)é3)

and to join it to t;"¥*. It could be done by replacing ¢;4+; with L™! - gi41 € G. In this
way we get the element ;4; = t;" Lr/t;~W. It is easy to check that the map

—c -1 _ 3 W.L ,—-W
Giy1%i41 = U “H

is a nonlinear bitriangular one. If degr > 0 then the element
7 = X + (azy + B)€2 + (2171 + 10)€3

is linear and g;4, is a bitriangular or 1-triangular. It is easy to check that the last
case can be realized only if az = az(z1),r1 = 0. Then it can be linear if a; = 0, but
it yields the contradiction that ¢ is 1-triangular map.

In the case when degr > 0 one can proceed the process of the calculations 7; until
an element of the kind 7; = X + (a4 3)€3 appears. Similarly to the case of degr < 1
one can get a nonlinear bitriangular element.

The case when Wi = W, = (1,2,3) can be investigated by the previous procedure
of an iterated commutators with ¢;.

In the case W, = Wy = (1,3,2) we can calculate commutators q; = ¢ il —
4 .y [tl_wl) ¢ G, where 7, has the form X + r(z),z2)€3. If degr > 1, then
one can consider the element 951’2) = t§1,3)ﬁt1—(1.3) € G and reduce this case to the
previous one. Let us investigate the situations, when degm < 1. lf degm =1, then
we have the map ¢; which is bitriangular unless the case when a,, az doesn’t depend
on z;. But the last case is impossible because it contradicts to the suggestion that g is
3-triangular. We can obtain the element ¢; with degy = 0, when b, doesn’t depend
on zo. In this case the element ¢(23) = t{12,1.247 (1) ¢ G have the form of the
case 1. .

If ¢ has the form (11), where Wy # W; one can choose the linear element A;;,
permutable with ¢, or £,"¥2 but not permutable with ¢;. Then the map gl - g1
or g~1 - ¢ will be 3-triangular and has the form (11) with Wy = W.
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