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Below 7 is some set of primes. Recall that a group G satisfies the m-minimal
condition or, briefly, the condition w-min if G has no infinite chains G, D G2 D
... G; O Gip1 D ... of subgroups such that for each i the difference G; \ Gi.
contains a r-element (S.N. Chernikov, 1958). Recall that a group G satisfies the weak
r-minimal (resp., the weak m-mazimal) condition or, briefly, the 7-min-co (resp., m-
max-00) condition if it has no infinite chains G; D G2 D ... D Gi D Gig1 D ...
(resp., G1 C G3 C ... C G;i C Giy1 C ...) of subgroups such that for each i the
index |G; : Giy1| (resp., |Gis1 @ Gil) is infinite and the difference G; \ Gi1 (resp.,
Gi+1 \ Gi) contains some m-element (N.S. Chernikov, see [1]).

The main results of the present paper are as follows.

Theorem 1 [1]. For a locally nilpotent group G the following assertions are equiv-
alent:

1. G satisfies the w-min condition.

2. G satisfies the m-min-oo condition.

3. The Sylow m-subgroup P of G ts Chernikov.

Theorem 2 [2]. Let G be a locally nilpotent group and P is the Sylow -subgroups
of G. The group G satisfies the m-max-co condition iff P is finite or G 1s a soluble
MinImaz group.

Theorem 3 [3]. Let a group G have an infinite normal m-subgroup and possess an
ascending series with locally nilpotent and locally finite factors. Then G satisfies the
r-max-0o condition iff itis almost soluble minimaz.

© Chernikov Mykola, Khmelnitskiy Mykola, 2003



42 MYKOLA CHERNIKOV, MYKOLA KHMELNITSKIY

Lemma 1. Let a group G satisfy the w-min-oc or the m-max-co condition. Then
in arbitrary direct decomposition of G the number of multipliers with nontrivial -
elements 1s finite.

Proof is analogous to the proof of Lemma from [4].

Proposition 1. Let a locally finite m-group G satisfy the m-min-co or the m-max-0o0
condition. Then G 1s Chernikov.

Proof. Let G # 1, A be a nontrivial abelian p-subgroup of G and B be the
subgroup of all its elements of the orders < p. By the First Prufer’s theorem A is
a direct product of subgroups of order p. Therefore Lemma 1 implies |B} < oo and
by Lemma 1.10 of [5], A is Chernikov. Further, any abelian subgroup K # 1 of G is
a direct product of its nonidentity Sylow p-subgroups. By Lemma 1 the number of
direct multipliers is finite. Consequently K is Chernikov. Then by results from [6, 7],
G is Chernikov.

Note that according to Lemma 1.2 of [8], an abelian group G satisfies the min-co
condition (i.e. the weak minimal condition for subgroups) or the max-co condition
(i.e. the weak maximal condition for subgroups) iff G is minimax (i.e. G has a
finite series such that each its factor satisfies the minimal or maximal condition for
subgroups).

Proposition 2. Let a group G satisfy the m-max-oo condition and has some
infinite normal locally finite m-subgroup H. Then G satisfies the max —oo condition
for abelian subgroups (or, equivalently, all abelian subgroups of G are minimaz).

Proof. In view of Proposition 1, H is Chernikov. Let K < H, |H : K| <
and K is a direct product of quasicyclic subgroups; K; is the subgroups of K which
consists of all its elements with orders € i, 1 € N. Then K > G, and |K;| < oo,
Kiz1 2 Ki> G and K = |J K;. Let some abelian subgroup A C G is not minimax.

iEN

Since ANK is Chernikov, itEis easy to see that there exists some nonminimax subgroup
L C A such that LN K = 1. By Lemma 1.2 of [8] there is some ascending chain
Li C Ly C ... C L, of subgroups of L such that each index |L;4; : L;| is infinite.
Then for the chain K;L; C KoLy C ... C KL, of subgroups in G every index
|Kiy1Liy1 @ KiL;| is infinite and, also, the set of all differences Kiy1Lit1 \ KiLi
possessing 7-elements is infinite. Thus G does not satisfy the m-max condition, a
contradiction.

Proposition 3. Let a group G with minimaz abelian subgroups has an ascending
series with locally nilpotent factors and locally finite factors. Then G is minimar and
almost soluble.

Proof. Let H be a subgroup of G generated by all its normal radical (in the
sense of B. I. Plotkin) subgroups. It is easy to see that H is radical. Obviously,
G/H has the same series as G has, and, also, the locally nilpotent radical of G/H is
identity. Let L/H be the locally finite radical of G/H, and A/H be arbitrary abelian
subgroup of G/H. Then A is radical. Therefore in view of Theorem 4.2 of [8], A is
minimax. Consequently, A/H is minimax too. Since A/H is periodic, it follows that
A/H is Chernikov. Then by results from [6,7) L/H is Chernikov. Let R < L/H,
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|[L/H : R| < oo and R 1s a direct product of quasicyclic subgroups or R = 1. Then
R is contained in the locally nilpotent radical of G/H. Consequently, R = 1 and
|L/H| < o0.

Thus, if G/L = 1, we have |G : H| < 0.

Let G/L # 1. According to Theorem 1.2 from [9, Chapter V, §5] the locally fi-
nite radical of arbitrary group X contains all ascendant locally finite subgroups of
X. Therefore G/L has no nonidentity ascendant locally finite subgroups. Then G/L
has some nontrivial ascendant locally nilpotent subgroup. Therefore by the same
theorem from [10] the locally nilpotent radical S/L of the group G/L is nontrivial.
Further, obviously, Cs;g{L/H) > G/H and Cs/g(L/H) is locally nilpotent. There-
fore Csyg(L/H) = 1. Since |L/H| < o it follows that |S/H : Cs/g(L/H)| < c0. So
|S/H| < o0o. Then S/H = L/H, a contradiction.

Thus G/L =1 and |G : H| < 0o. In view of Theorem 4.2 from (8], H is minimax
and soluble. Consequently, G is minimax and almost soluble. Proposition is proven.

Proof of Theorem 1. Obviously, the assertion 1 is as a consequence of the assertion
2. Suppose the assertion 2 holds and P # 1. Since group G is locally nilpotent, P is a
direct product of nontrivial Sylow p-subgroups by some primes p € . By Proposition
1 these Sylow p-subgroups are Chernikov, and by Lemma 1 their number is finite.
Consequently P is Chernikov. Let the assertion 3 hold. Then by Lemma 1 of [10] G
satisfies the m-min.

Proof of Theorem 2. Necessity. Let G satisfy the m-max-oo condition and P is
infinite. Then by Proposition 2 and Theorem 4.2 of [8], G is soluble minimax.

Sufficiency. Let G be soluble minimax. Then by Lemmas 1.1 and 1.2 from (8], G
satisfies the max-oo condition. Further, let |P| < co. Then the set of all m-elements
of G is finite and, obviously, G satisfies the 7-max-oc.

Proof of Theorem 3. Let G satisfy the m-max-co. Then by Propositions 2 and 3,
G is minimax and almost soluble.

Let G be minimax and almost soluble. Then by Lemmas 1.1, 1.2 of [8], G satisfies
the max-o0.
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