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We prove that a finite dimensional algebra A is a weakly symmetric if and only if
when every algebra C which is Morita equivalent to a Frobenius algebra A is Frobenius.
We give a description of serial rings the square of Jacobson radical of which is zero.
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1. Let A be a two-sided artinian ring and R be its Jacobson radical. For a (right)
A-module M we denote by M™ the direct sum of n copies of M and we set M° = 0.
Then A can be represented as a direct sum of right ideals: A = P{'@...@ P, where
Py, ..., P, are pairwise non-isomorphic indecomposable right A-modules, which are
called the principal right A-modules. Set U; = Pi/PiR,;i = 1,...,s. It is well-
known that Pj,..., P, represent up to isomorphism all indecomposable projective
A-modules, while U,,... U, form a representative set of isomorphism classes of all
simple right A-modules. Let M be aright A-moduleand N be a left A-module. We set
top M = M/MR and top N = N/RN. We denote by soc M (respectively soc N) the
Jargest semisimple right (respectively left) submodule of M (respectively N). Since A
is artinian, soc exists for all A-modules. Let 1 = fi +...+ f, be a decomposition of the

identity element of A into a sum of idempotents such that fiA =P (i=1,...,s).
Then Af; = QF*, where Q,,...,Q, are the pairwise non-isomorphic indecomposable
projective left A-modules (the principal left A-modules). Set A;; = fiAf; (1,) =
1,...,s). Then A has the following canonical Peirce decomposition
s
A Y A (1)
i,j=1

Denote by R; the radical of Ay, (i = 1,...,s5). Obviously, A;; is artinian. Since
Hom(P;'", P) 2 A;j, then A;; C Rif i # j. The radical R of A has the following
Peirce decomposition:
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1,7=1
where f;Rf; = R; and fiRf; = Aij i #i(i=1,...,8).
Observe that two principal A-modules P and P’ are isomorphic if and only if
top P =~ top P'.

We recall now the classical definition of Frobenius and quasi-Frobenius rings as
given by Tadasi Nakayama (see [13, p.8], [9, Section 13.4)).

Definition 1.1. A two sided artinian ring A is called quasi-Frobenius, if there exists
a permutation v of {1,2,...,s} such that for each k =1,...,s we have

(qf1) soc Py = top Py(k},

(qf2) soc Q, k) = top Q.

A quasi-Frobenius ring A is called Frobenius, if n,;) = n; foralli =1,...,s. This
permutation v is called the Nakayama permutation of A. Clearly, v is determined up
to conjugation in the symmetric group on s letters, and conjugations correspond to
renumberings of the principal modules Py, ..., P;.

We construct now some examples of quasi-Frobenius rings. Recall that a local ring
O with non-zero unique maximal right ideal M is called a discrete valuation ring, if
it has no zero divisors, the right ideals of O form the unique chain:

OIMOIM2D...0M"D

and, moreover, this chain is also the unique chain of left ideals of A. Then, obviously,
@ is noetherian, but not artinian, all powers of M are distinct and ey M = 0
Moreover, M is principal as a nght (left) ideal.

Example. Denote by H,(O) the ring of all s x s matrices of the following form:

O O .. 0

M O ... 0

H=H,0)=] . b m

M M « O

It is easily seen that the radical R of H,(O) is

M O .- O M M s O
M M .. O M M - O
R=1 . i : and R’ = : E g, :
MM - M M2 M - M

The principal right modules of H are the “row-ideals” of H and the submodules of
each of them form a chain. In particular, the submodules of the “first-row-ideal” form
the following chain:
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0 o oy /M O .. 0 MM -0
0 0 0 0 0 -+ 0 0 0 - 0
j : ; - ‘ : 3 : > : . % . D
0 0 -+ 0 0 0 - 0 0 0 - 0

It is easy to see that each other row-ideal of H is isomorphic to a submodule of
the above module. In a similar fashion, the principal left H-modules are the column-
ideals, whose submodules form corresponding chains. Thtis, H is a serial ring in the
sense of (5, p. 224]. Let Py,... P, be the principal right modules of the quotient
ring A = H,(O)/R? and Q,,...,Q; be the principal left A-modules numbered such
that P; = e;;A,Q; = Aey, (i = 1,...,s), where e;; denote the s x s matrix whose
(i,7)’s entry is 1 and all other entries are zero. Then the submodules of every P; and
Q; form finite chains, and a direct verification show that

soc Py = top Py, soc Py = top Ps, ... ,soc Py = top P,

and
top Q1 = soc Qa,top Q2 = soc Q3, ... ,top Qs = soc Q.

Moreover, each of these modules is a one-dimensional vector space over O/ M. Hence,
A is a quasi-Frobenius ring whose Nakayama permutation is (1,2, ..., s).

More in general, the quotient ring A = H,(Q)/R™ (m > 2) is a quasi-Frobenius
ring whose Nakayama permutation is (1,2, ...,s)m“. It follows, in particular, that
the Nakayama permutation of A is identical if and only if m = 1(mod s).

We shall use the next two results.

Lemma 1.1. [4, Lemma 6.3.12)). Let 1 = ey + ...+ em = h1 + ...+ ha be two
decompositions of 1 € A into a sum of pairwise orthogonal primitive idempotents.
Then m = n and there exists an invertible element a € A and a permutation i — o(i)
such that e; = ah,(;ya™" foreachi=1,...,n.

Lemma 1.2. For every-simple right A-module U; and for each f; we have U;f; =
8i;Us, (i,§ = 1,...,s). Similarly, for every simple left A-module V; and for each f;,
Vi =6V, (hi=1,...,8).

Proof. Go modulo R and apply the Wedderburn-Artin Theorem.

This lemma will be a useful tool in our further considerations and we shall refer
to it as to Lemma on annihilation of simple modules. An idempotent f € A, which
is central modulo R, shall be called minimal modulo R if f can not be decomposed
into a sum of two orthogonal idempotents, which are central modulo R. For two
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idempotents ¢ and g of A we shall write e € g, if g = e + ¢/, where ee’ = ¢’e = 0.
Clearly, €’ is also an 1dempotent in A.

Theorem 1.3. Let 1 = fi +...+ fs = g1 + ...+ g: be two decompositions of 1 € A
into a sum of pairwise orthogonal idempotents, which are minimal central modulo R.
Then s =t and there exist an invertible element a € A and a permutation i — 7(i)
of {1,...,s} such that f; = ag,iya~' foreachi=1,...,s. '

Proof. Applying the Wedderburn-Artin Theorem to A = A/R, we get immedi-
ately that s = t. Let f; = eg'} + ...+ e,(:,} be a decomposition of f; into a sum of
pairwise orthogonal local idempotents. Then, obviously, U,-ef) #£0for k=), .. 0
It follows from the Lemma on annihilation of simple modules that U;g,;y = U; for
some g, ;) and, moreover, U;g; = 01if j # o (7). Renumber the idempotents g1,...9;s
such that U;g; = U; (i = 1,...,s). Take a decomposition g; = h(;) + ...+ h.f,') into
a sum of pairwise orthogonal local idempotents. Then we obtain two decomposi-
tions of 1 € A, which satisfy the assumptions of Lemma 1.1. Hence, there exits
a conjugating element @ € A which transforms one decomposition into the oth-
er, up to a permutation. It follows from our numeration of idempotents g3,...gs
that a{hgi),... ,h,(-:')}l’l_l = {e(li),... ,eg,)} for each i = 1,...,s and, consequently,
agq-a‘l = B =l R

Set A;; = f,;Afj. Then

3 8
A= (P 4 R=CD Ry,

i,7=1 i,i=1
where Ri; = fiRf; = Aij for i # j and Ry; is the Jacobson radical of A;; (¢, =
-

Such two-sided Peirce decompositions of A and R shall be called canonical. It

follows from Theorem 1.3. that every other canonical Peirce decomposition of A can
be obtained from

Ay Ay - Agg
| An Az -+ Az
Ag As2 e Ass

by a simultaneous permutation of lines and columns and the substitution of all Peirce
components A;; by aA;;a™".

2. MONOMIAL IDEALS. Let 1 = e; + ...+ e, be a decomposition of 1 € A
into a sum of pairwise orthogonal idempotents. By an ideal we mean a two-sided
ideal. For an ideal I of A the abelian group e;le; (i,j = 1,...,n) obviously lies in
I, and I = @®%;- 1L is a decomposition of I into a direct sum of abelian subgroups.
Such decomposition is called the two-sided Peirce decomposition of I corresponding
tol=é; +...+ e,. It has a natural matrix form:
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I hLa --- I
.- f?l 132 I?n
Inl Inz s Inn
If J = @ ;-,Ji; is also an ideal, then

Li+Ju hae+di2 -+ Iint Jin

Iwv+Jann Ipa+Jee - Ipp+ Jon
I+ J= = ; ; ®

Inl"‘-]nl In2+Jn2 Inn'i'Jnn

and each Peirce component (/J);; of the product IJ is given by

(D= s Bediy 053 = Lisony 1)y
so that addition and multiplication of elements from I and J can be done by the
addition and multiplication of corresponding matrices.

Let A be a two-sided artinian ring and 1 = fy+...+ f, be a canonical decomposition
of 1 € A into a sum of pairwise orthogonal idempotents. Then I = &; ;- /;; with I;; =
filf; (i,j = 1,...,s) is called the canonical Peirce decomposition of I. As above,
it is easily seen that one canonical Peirce decomposition of I can be obtained from
another one by a simultaneous permutation of lines and columns and the substitution
of each Peirce component I;; by al;ja=?.

Definition 2.1. An ideal I of a artinian ring A shall be called monomazal if each
line and each column of a canonical Peirce decomposition of I contains exactly one
non-zero Peirce component.

If I is a monomial ideal, then there exists a permutation v — v(i) of {1,...,s}
such that Jj,(;) # 0. Clearly, v is determined up to conjugation in the symmetric
group on s letters. We denote this permutation by v(I).

Lemma 2.1. Let A be a artinian ring. If I is a monomial ideal of A then each
canonical Peirce component of I is an ideal in A.

Proof. Let 1 = f; + ...+ f, be a canonical decomposition of 1 € A into a sum of
pairwise orthogonal idempotents. Write v = v([), then I = &; ;_, fif.(i). Obviously
fil fuiyfxAfi = 0 if k # v(i). Moreover, filfuyfuyAfi € fil i which is non-zero
if and only if ! = v(i), as I is monomial. Similarly, fx Afifil fyi) # 0 if and only if
k=1 =1i. It follows that f;If,(;) is an ideal in A foreach i =1,...,n.

Lemma 2.2. Let A be a artinian ring. Then soc Aa coincides with the left annihilator
I(R) of R = R(A), whereas soc oA coincides with the right annihilator r(R). In
particular, soca A and soc As are two-sided ideals.

Proof. If U is a simple right A-module, then, obviously, UR = 0 and, consequently,
soc A4 C I(R). On the other hand, the equality I[(R)R = 0 implies that I(R) is a
semisimple right A-module, so it has to be contained in the right socle of A, hence,
I{R) = soc Aas. Similarly, r(R) = soc 4 A.
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The first statement of the next theorem is well known (see [1]), however, we include
a proof in order to show that the whole result is a consequence of the Lemma on
annihilation of simple modules.

Theorem 2.3. Let A be a quasi-Frobenius ring. Then soc 4A = soc As. Moreover,

Z = soc 4 A is a monomial ideal and v(2) coincides with the Nakayama permutation
v(A) of A.

Proof. Denote by Z; (respectively Z,) the left (respectively right) socle of A. It fol-
lows from the definition of quasi-Frobenius rings and from the Lemma on annihilation
of simple modules that f;Z; # 0 foreach i = 1,...,s. Then for every local idempotent
e € f; the set ef; Z; = eZ; is different from 0. Therefore, the right ideal eZ; is a non-
zero submodule of the principal module P; and, consequently, eZ; contains soc F;,
which implies that Z; D Z,. Since the Nakayama'’s definition of quasi-Frobenius rings
is left-right symmetric, it follows that 2, 2 2, and thus, 2, = 2, = Z.

It remains to show that Z is monomial and v(Z) = v(A). Write v = v(A) and
consider the canonical Peirce decomposition of Z: Z = @] ;_,fiZf;. Since Ay =
®i_,fiA = ®_, P, we have that Z = @®}_,soc fiA and f;Z = soc fiA = soc P
It follows from Definition 1.1. that soc P** = U:{“.), so fiZ = U;“i), and the Lemma
on annihilation of simple modules implies that f;Zf; = 0 if and only if j # v(3).
Hence, Z is monomial and v(Z) coincides with v(A).

3. FROBENIUS RINGS. In [9] a ring A was called Frobenius if it is quasi-
Frobenius and soc Ag = top Aa, soc 4A = top sA. We want to point out that one of
these isomorphisms can be ommited, namely:

Proposition 3.1. A quasi-Frobenius ring A is Frobenius if and only if

soc Ay = top Ay.

Proof. Suppose that soc Ax = top Aa. Since top Ag = EB;ﬂU:(';(;’ and soc Ay =
®i=1UJ k), it follows from the Jordan-Holder Theorem that ni = n, (k) for all k.

We have that top As = §}_,lop P;(‘;“)"’ = @ile:(‘:;) = soc As. Then top 4 A =

@izltopQuﬁ;’ = @;zlvu(:(}*) = soc 4 A.

Proposition 3.2. A reduced QF -ring is Frobenius.

Proof. Immediately follows from Definition 1.1.

Lemma 3.3. If A is a Frobenius ring and v(A) is a cycle then A = M, (B), where

B is a reduced Frobenius ring with cyclic Nakayama permutation.

Proof. Let A = P'* @ ...® P} be a decomposition of a Frobenius ring A into a
direct sum of principal A-modules. We can suppose that ¥(A) = (1...s). Then by
Definition 1.1. ny = ny = ... =n,and A = (P, ® P, ® ... ® P,)" which yields
A= M,(B) where B=E(P,®...®P,) and v(B) = (1...s).
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Recall that a ring A is indecomposable if A cannot be decomposed into a direct
product of two rings.

Proposition 3.4. If A is a QF-ring and v(A) is a cycle, then A is indecomposable.

Proof. We can obviously suppose that v(4) = (12...s). Then Z = soc A is
a monomial ideal and v{A) = v(Z). Therefore the canonical Peirce components
Asipa(i=1,...,s—1) and A, are different from zero, by implies that A is indecom-
posable. ‘

Definition 3.1. [2] A ring A is called weakly prime if the'product of any two ideals
that are not in the Jacobson radical R of A is non-zero.

Obviously, any prime ring is weakly prime.

Proposition 3.5. (2] Let 1 = e; + ...+ en be a decomposition of the identity of
semi-perfect ring A into a sum of mutually orthogonal local idempotents and A;; =
eiAej(i,j=1,...,n). Then A is weakly prime if and only if Aij # 0 for all ¢, 7.

In [14] QF-rings A are considered which satisfy the following conditions:
a) A is reduced;
b) v(A) is a cycle;

¢) for any non-trivial idempotent ¢ € A eAe is a QF-ring and v(eAe) 1s a cycle.

Proposition 3.6. If a Frobenius ring A satisfies conditions (a), (b), (c) then A is
weakly prime and every local ring e; Ae; is Frobenius.

Proof. Since A is reduced, the local idempotents coincide with the canonical idem-
potents. Let A;; = fiAf; fori = 1,2...s. If Ai; = 0 then eAele = fi + fj) is a
Q F-ring. Obviously, eAe = (ﬁ" AO. ) and v(eAe) is a cycle.
3 _ 41jj
By Proposition 3.4., eAe is an indecomposable ring. Let Z = soceAe. The local
ring e; Ae; are Frobenius by condition (c).

Let 4 = P@ ... 8 P bea decomposition of an artinian ring A into a direct
sum of principal right A-modules and let 1 = f1 4+ ...+ f; be the corresponding de-
composition of identity of the ring A into a sum of pairwaise orthogonal idempotents,
le., f,‘A = P‘-n'.

Definition 3.2. An idempotent ¢ € A will be called standard if g = fi, + ... + fi,,
where n;, = ... = n;,, in particular, if f € {fi,...,fs} and fA = P"1 then
f E {.f‘ll S lffk}' I

Definition 3.3. Let 1 = g; + ...+ gm be a decomposition of 1 € A into a sum of
pairwise orthogonal standard idempotents. Put A;; = giAg; (1,7 = 1,... ,m). The
decomposition A = @, 4ij will be called the standard Peirce decomposition of
artinian ring A.
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m
Theorem 3.7. Let A = € Ai; be a standard Peirce decomposition of a Frobenius
=1

ring A, then A;; = My, (B;) where all rings B; are reduced Frobenius rings.
Proof. By Lemma on annihilation of simple modules the socle of arbitrary principal
A-module P = eA with e € g; is annihilated by every standard idempotent g; # gi

Hence, g;Zg; is the socle of M, (B;) and for each local idempotent ¢ € g; the
Aii-module eZg; is simple as a simple left A;;-module and it is also simple as a right
Aji-module. Therefore A;; 1s quasi-Frobenius.

The multiplicities of all principal A;;-modules are k; and consequently A;; is Frobe-
niusforalli=1...,s.

Theorem 3.8. Let A be a QF-ring and the Nakayama permutation v(A) of A 1is
identical. Then A is Frobenius and every ring C which is Morita equivalent to A is
also Frobenius. Conversely, if every ring C which is Morita equivalent tc a Frobenius
ring A is Frobenius, then v(A) s identity.

Proof. By Definition 1.1. every QF-ring with identical Nakayama permutation is
automatically Frobenius. Clearly, every ring which is Morita equivalent to a Frobenius
ring with identical Nakayama permutation is Frobenius.

Let A is a Frobenius ring and v(A) is not identity. Then we can assume that
soc P, =top Py. Let A = P @ P}*& ...@® P} be a canonical decomposition of A
into a direct sum of principal A-modules. It follows from the Definition 1.1., ny = n;.
Set P= P2@® P, ®...© P,. Then C = EndaP is a QF-ring, and v(A) = v(C),
and multiplicity of the first principal C-module is 2 and does not coincide with the
multiplicity of the second principal C-module. Therefore, C' is not Frobenius.

Finite-dimensional Frobenius algebras with identical Nakayama permutation were
called by [11, p. 444] weakly symmetric algebras. So from Theorem 3.8. we have such
theorem.

Theorem 3.9. Let A be a weakly symmetric algebra. Then A is Frobenius and every
algebra C which is Morita equivalent to A 1s also Frobenius. Conversely, if every
finite dimensional algebra C which is Morita equivalent to a Frobenius algebra A is
Frobenius, then A is a weakly symmetric algebra.

4. SERIAL QUASI-FROBENIUS RINGS. Definition 4.1. A module is
called uniserial if the lattice of its submodules is a chain, i.e. the set if all its sub-
modules is linearly ordered by inclusion. A module is said to be serial of it is a finite
direct sum of uniserial submodules.

Definition 4.2. A ring A is called right (resp. left) uniserial if Ay (resp. 4A) is an
uniserial A-module. A ring which is right and left uniserial is called uniserial. A ring
A is right (resp. left) serial if Ay (resp. 4A ) is a serial A-module. A right serial and
left serial ring shall be called serial.

Theorem 4.1. [10, Theorem 2.1} The quiver Q(A) of a serial two-sided Noetherian
ring A is a disconnected union of cycles and chaines (i.e. of quivers corresponding to
finite lineary ordered sets).
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Proposition 4.2. Let Q(A) be a quiver of a quasi-Frobenius ring A. If there 1s a
vertez 1 € Q(A) which s either a sink (i 1s not the tail of any arrow) or a source (i is
not the head of any arrow) then A ~ A, x Ay, where Ay ~ M, (D) with a division
algebra D.

Proof. Let ¢ is a sink. Then indecomposable projective A-module P; is simple.
Therefore v(i) = i, where v = v(A) is Nakayama permutation of a ring A, and
Ag£0fri=1L. ... 0= Li+ L. .0

Now we shall show that Ay, = O0for k=1,...,¢—1,i4+1,...,s. Let Ax; # 0.
Then, because Ax; ~ Hom (P, P*) we obtain by the Lemma of Shur that the
simple module U; appears in a direct decomposition of soc Px. So v(k) = v(i) = i
and Ax; = 0. Analogously, if i is source, then the left indecomposable projective
A-module Q; is simple and Ax; =0, A;j =0forjk=1,.. " ;i—1,i4+1,...,s.

As a corollary of this result and Theorem 4.1 we obtain the description of the
quivers of serial Q) F-rings.

Theorem 4.3. The quiver Q(A) of a serial QF-ring A is a disconnected union of
cycles and one-point quivers without arrows.

Definition 4.3. A local serial (=uniserial) ring is called a Kothe ring.

Proposition 4.5. A Kothe ring 1s Frobenius.
Proof. Immediatly follows from Definition 1.1.

Let A be a Kothe ring. Then the length I(A4) of the right regular A-module
coincides with the length {(4 A) of the left regular A-module. Thenl =1(A) = (4 4)
shall be called the length of a Kothe ring A and denoted by I(A).

A Kothe ring of length 1 is a division ring.

A Kéthe ring of length m has a unique chain of ideals (right, left, two-sided):

AR 3...3 B 34,

Lemma 4.6. A local Frobenius ring A with R?> = 0 is either a division ring or a
Kothe ring of length 2. In the second case Q(A) is a loop.

The proof follows from Definition 1.1.

We give the description of serial reduced rings, the square of Jacobson radical of
which is zero. Such rings are two-sided artinian, since the length of every right and
every left principal module is less or equal than 2.

Lemma 4.7. If A is an artinian indecomposable reduced serial non-local ring with
R? = 0 then there is a subring Ap in A such that A = Ao @ R (direct sum of abelian

groups).

Proof. Obviously, Q(A4) has more than one vertex. We have two cases:
a) QA) = {152 ... = s—1— s} is a chain,
b)Q(A) ={1—=2—...5s—1—s—1}isacycle.
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Suppose (a). By [6, p.287] A ~ T,(D)/I, where I is two-sided ideal of the ring
Ts(D) of all upper-triangular s x s-matrices over D.

Clearly, we can take Ay be equal to the subring of all diagonal s x s-matrices over
D.

In case (b) suppose first that s = 2. Then 1 = e; + e2. Put A; = e; Ae;, R; is the
Jacobson radical of A;(i = 1,2), X = e;Ae; and Y = ez Ae;.

By formula 2 (see §1) we have R = o :
: Y R

Clearly,

R? = R%+XY RiX +XRy
“\YRi+RyY RI+YX

Since Q(A) is two-pointed cycle by the Lemma on annihilation of simple modules
we have that XY = R, and YX = R,, which implies that XY X = XR; = R, X
and YXY = YR; = R,Y. Since R? = 0 it follows that R; = 0 and Ry = 0. Hence,

A, = D; and A; = D, are division rings and Ag = (D1 0 )‘R - (0 X),

0 D, Y 0
te. A = Ap® R. )

Let Q(A) = {122 — ... +s—1—= s — 1} be a cycle which contains at least
three vertices. Let 1 = e; + ...+ ¢, be a decomposition of 1 € A in a sum of mutually
orthogonal idempotents.

Set A; = e;Ae; where R; is the Jacobson radical of A;(z = 1,...,s). Let A;; =
eiAej(i # j;i,j = 1,...,s). By the definition of Q(A) we have that A;iy; # 0 for
i=1,...,s—1and A;; #0.

We show that R; = 0 for all i. Then by formula 2 of §1 we obtain that A = A¢@ R

where -
Ay 0
AG ) ( -. ‘ ) |
0 As

In fact, let Rx # 0 for some 1 < k < s. applying a cyclic renumbering of principal
modules we may assume that R; # 0.

Consider the ring B = (e; + ez)A(er + €2). By [3] B is a serial ring. Clearly,
B is reduced and (R(B))? = 0 where R(B) is radical of B. Since A;z # 0, then if
Ay # 0 we obtain that Q(B) is a two-pointed cycle. But then it follows from the
above arguments that R, = 0.

If Ay; = 0 then Q(B) = {1 — 2} and B ~ T5(D). Again R; = 0. Lemma is
proved.

Let @ = D[z, ¢]) be an augmented Ore domain (see [18], Chapter VII, §14). The
m .
ring D[z, o]] is the set of formal power series }_ a;z*, a; € D; o is an automorphism of

0

the division ring D. Addition and equality is defined in the usual way. Multiplication
is defined by the formula az = za? and its consequences. Then O is a discrete
valuation ring with unique maximal ideal M = z0O = Oz. Denoted by H{™(0) the
quotient ring H,(Q)/R™, where R is Jacobson radical of H,(O) (see Example from
§1).
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It follows from Lemma 4.7. and [10, §4] that every serial non-local reduced ring
whose quiver is a cycle, the square of whose Jacobson radical is zero, is isomorphic to

20). |

Set T2°/(D) = T,(D)/R? where R is radical of T} (D). It follows from Lemma 4.7.
and [6] that every serial reduced non-local ring A with R(A)? = 0 whose quiver is a
chain is isomorphic to T )(’D)

Since every serial A with one-point quiver and R(A)? = 0 is either a division ring
or a Kothe ring of length 2, we obtain the following theorem.

Theorem 4.8. Every indecomposable serial reduced ring A with R(A)? = 0 1s 1s0-
morphic to one of the following:

a) a division ring,

b) a Kéthe ring of length 2;
c) H:"(0);

d) TE ).

In the cases (c) and (d) we have s > 2. Conversely, all these rings are indecom-
posable serial reduced rings, the square of the Jacobson radical of which is zero.

Remark. The rings of types (a), (b), (c) are Frobenius. In cases (a) and (b) the
Nakayama permutation is identity and in case (c) it is a cycle (1,2,...,s).

Remark. If the quiver Q(A) of serial ring A is a chain then, there is a subring Ao,
such that A = Ap @ R (a direct sum of abelian groups). If Q(A) is a cycle with s
vertices and R® = o then there is a subring Ag in A such that A = Ao @ R (a direct
sum of abelian groups). In the last case if A is reduced then A is isomorphic to a
quotient ring of the QF -ring J76%2 (0), and the Nakayama permutation v(H( )( 0)) is
equal to (1,s,s—-1,...,2).

Proposition 4.9. Let A be a serial ring, Py,...,Ps all pairwise non-isomorphic
principal A-modules. If I(P;) = I; then soc P; = Uy, where k =i +1; —1(mods).

Proof. The proof immediately follows from the definition of Q(A).
This implies the following well-known fact (see {12] and also [8]).

Corollary 4.10. A serial artinian indecomposable ring A is a QF -ring zf and only
of the lengthes of all principal A-modules are equal.

Proof. If the lengthes of all principal A-modules are equal to 1 . Then since A is
indecomposable, by the Wedderburn-Artin Theorem A is isomorphic to M,,(D) where
D is a division ring, consequently, A is a @ F-ring.
If the length of all principal A-modules are equal to ! > 2 then Q(A) is a cycle.
The map
v:i—v(i)=1+i—1(mods)

is a permutation {1,...,s}.
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By Definition 1.1. A is a QF-ring and there exists a principal A-module P which
is simple. By Theorem 4.3. and Proposition 4.2. we obtain that Q(A) is a one-point
quiver without arrows. Therefore, A = P™ and by Schur’s Lemma A ~ M, (E(P)),
where E(P) is a division ring.

Thus, we can assume that if [(P;) > 2 for all .. By Theorem 4.3. and Proposition
4.2. Q(A) is a cycle.

Let ¢ : P — P;R be an epimorphism of the principal A-module P on P;R. If
is an isomorphism then soc P =~ soc P; which contradicts the Definition 1.1. Hence,
kero £0and l = I(P) 2 l; = |(F;). Let

QA) = {122>...s-1=s5—1}.

Then P= Py for1<i<s—1land P=P fori=s Thusli <l <...<L <l
as required.

Proposition 4.11. Let A be an indecomposable serial artinian ring and Q(A) s a
cycle, J is a two-sided ideal with J C R%. The quotient ring A/J is a QF-ring if and
only if J = R' for some l.

Proof. If J = R’ then, obviously, the lengthes of all principal A/J-modules are equal
and A/J is quasi-Frobenius.

Let A/J be a QF-ring. Then the lengthes of all principal modules are equal to
I > 2. Thus, [R(A4/J)}' = 0 which implies that J = R'.
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[lloBeeno, 10 CKIHYeHHOBUMIpHa aarebpa A € c1abo cUMeTPUYHOIO TOAL | TIABKH
TO 1, KOJu KoxHa anrebpa C |, ska e MopiTa ekBiBajJeHTHOI ¢ppobeHiycosli aarebpi A
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