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HYPERSPACE FUNCTOR IN THE COARSE CATEGORY

Victoria FRIDER, Mykhailo ZARICHNYI
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

We consider the hyperspace monad in the category of topological coarse spaces and
equivalence classes of coarse maps. It is proved that the G-symmetric power functor
acting on the category of topological spaces can be naturally defined also for the category
of topological coarse spaces and, on this category, it can be extended to the Kleisli
category of the hyperspace monad. ¢
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1. The coarse category was first introduced by Higson, Pedersen, and Roe [1].
Methods of coarse topology (geometry) found numerous applications in different areas
of topology and analysis (see, e. g. [1-5]). The present paper is devoted to the
hyperspace functor and hyperspace monad in the coarse category.

The paper is organized as follows. Section 2 contains necessary definitions. In
Section 3 the hyperspace functor acting in the coarse category is defined and we
prove in Section 4 that the hyperspace functor determines a monad in the coarse
category. In Section 5 we consider the problem of extension of functors onto the
Kleisli category of the hyperspace monad.

2.1. PRELIMINARIES. Coarse structures. Let X beaset and M, M C X x
X. The composition of M and N is the set MN = {(z,y) € X x X | there exists z €
X such that (z,2) € M, -(z,y) € N}, the inverse of M is the set M~! = {(z,y) €
XxX|(yz)e M}.

A coarse structure on a set X is a family £ of subsets, which are called the en-
tourages, in the product X x X that satisfies the following properties:

1) any finite union of entourages is contained in an entourage;

2) for every entourage M, its inverse M —1 is contained in an entourage;

3) for every entourages M, N, their composition M N is contained in an entourage;
G uE=XxX.

A coarse structure on X is called unital if the diagonal Ax is contained in an
entourage. A coarse structure on X is called anti-discrete if X x X is an entourage.

If £, &> are coarse structures on X, then & < &; means that for every M € &
there is N € &5 such that M C N.

Two coarse structures, £ and &5, are said to be equivalent if £, < & and &, < &,.
We usually identify coarse spaces with equivalent coarse structures.

If £ is a coarse structure on a set X, then, obviously, the coarse structure & =
{MUM~='| M € £} is equivalent to £ and is symmetric in the sense that N™' € £
for every N € &;.
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Given M € £ and A C X, we define the M-neighborhood M(A) of A as follows:
M(A) = {z € X | (a,z) € M for some a € A}. We use the notation M (a) instead of
M({a}). A set A C X is bounded if there exists ¢ € X such that A C M(z).

Let (X;,&;), 1 = 1,2, be coarse spaces. A map f: X; — X is called coarse if the
following two conditions hold:

1) for every M € £, there exists N € & such that (f x f)(M) C N;
2) for any bounded subset A of X the set f~'(A) is bounded.

It is easy to see that the coarse spaces and coarse maps form a category. We denote
it by CS.

Definition 2.1. A subset A of X is called coarsely dense in X if there exists M € £
such that M(4) = X.

Lemma 2.2. A subset A in X is coarsely dense in X iff the class [i] of the inclusion
map i: A = X is an isomorphism in £.

Proof. Suppose that A is coarsely dense in X, then there is M € £ such that
X = M(A).

Define a map g: X = A as follows: for any z € X, g(z) is an arbitrary point af A
with z € M(g(z)). Obviously, g is coarse.

Then,

(gi(z), z) = (9(z),z) € M,
(ig(x),z) = (9(x),z) € M,

ie. gi ~14,ig ~ lx, which means that [g][i] = [14],[i}{g] = [1x]). O

If [d] is an isomorphism, then there exists a coarse map g: X — A such that [i][g] =
lig] = [g] = [1x]). That means that g ~ 1x, i.e. there is M € £ such that (g(z),z) €
M, forevery z € X.

Proposition 2.3. Let f,g:(X,€) = (X', E’) be a coarse maps. If fla ~ gla on some
coarsely dense subset A of X, then f ~ g.

Proof. Let i:A — X denote the inclusion map. Then fi ~ gi and therefore
(f]li] = [fi] = [93] = [g]ls]. Since [i] is an isomorphism (by previous lemma), we
obtain that [f]=[g). O

2.2. PRELIMINARIES. Topological coarse structures. Now suppose that
X is a Hausdorff topological space. A coarse structure £ on X is called topological if
the following conditions are satisfied:

1) every entourage is open in X x X

2) every bounded set 1s precompact.

Note that if a space X can be endowed with coarse structure, then X is necessarily
locally compact.

Proposition 2.4. In a coarse topological space, every dense subset is coarsely dense.

2.3. PRELIMINARIES. Coarse categories. We denote it by CT'S (respec-
tively CTS) the category of coarse topological spaces and coarse maps (respectively,
of coarse topological spaces and proper continuous maps).
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We will need one more category related to the coarse structures. In order to define
it, we introduce the following notion.

Let f,g: (X, &) = (X', &) be coarse maps. We say that f and g are equivalent (and
write f ~ g) if there exists M € &’ such that (f(z),g(z)) € M for every z € X. It is
easy to verify that ~ is an equivalence relation and we denote by [f] the equivalence
class of f.

Lemma 2.5. Let fi, fo: (X, &) = (X', &), g1,92: (X", &) = (X", E") be coarse
maps. If fi ~ f2 and g1 ~ g2, then g1 fi ~ g2 fa.

Proof. Since fy ~ fa, there is M’ € &' such that (fi(z), f2(z)) € M’ for every
r € X. Since g; is coarse, there is M" € £” such that (g1 x ¢1)(M’') C M". We
see that (g1 f1(z),91f2(z)) € M”, for every z € X, i. e. g1f1 ~ g1f2. Obviously,
g1f2 ~ g2f and the result follows from the transitivity of ~. O

Lemma 2.5 allows us tc define & composition of the equivalence classes as [gf] =
[9][f]. We define the category CTS/ ~ as the category whose objects are as in CT'S
and the morphisms are the equivalence classes of the morphisms in C'T'S with respect
to the equivalence relation ~.

3. Hyperspaces of coarse spaces. Given a Hausdorff topological space endowed
with a topological coarse structure £, denote by exp X the set of all nonempty compact
subsets in X. A base for the Vietoris topology on exp X is formed by the sets

k
(Ur,....U)={A€expX |AC| Ui, ANUs #0foralli=1,...,k},
i=1
where Uy, ..., U run over the topology of X. For every M € £ let My = {(A, B) €
exp X xexp X | for every a € A there exists b € B with (a,b) € M and for every b €
B there exists a € A with (a,b) € M}.

Proposition 3.1. The family Eg = {Mpu | M € £} 15 a topological coarse structure
on exp X. &y is unital if so is £.

Proof. QObviously, if M C N, then Mg C Np. Show that for every M, N € £ we
have

| MygNyg = (MN)g. (3.1)

Indeed, suppose that (A, B) € MyNg. Then there exists C € exp X such that
(A,C) € My, (C,B) € Ny.

Given a € A, there is ¢ € C with (a,c¢) € M and there is b € B with (c,b) € N.
Therefore, (a,b) € MN.

Similarly, we show that for every b € B there is a € A with (a,b) € MN. This
shows that (A, B) € (MN)y.

Using (3.1) we conclude that the product of entourages in £y is contained in an
entourage. Besides, if M, N € &, then My C (M UN)y, Nu C (MU N)g, ie.
My U Ng C (M U N)y, which implies that the union of two entourages is contained
in an entourage.

Finally, show that Uy = exp X x exp X. Given (A, B) € exp X x exp X, find,
for each a € A, b € B, an entourage My, € € such that (a,b) € Mg,. The cover
{Ma | @ € A, b € B} contains a finite subcover {Ma5, | i = 1,...,k} of A x B.
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There exists M € & such that U5, M,,,, C M. Then A x B C M and, obviously,
(A,B) € My.

Now suppose that £ is a unital coarse structure on X. There exists M € £ with
Ax C M. Then, obviously, Aexp x C My

Show that £y is a topological coarse structure on exp X.

First, show that every set My is open in exp X x exp X, for every M € £,. Indeed,
suppose the opposite and let (A, B) € Mg be a non-interior point of Mgy. Then
there is a net (A, By)yer converging to (A, B) such that (A, B,) ¢ My for every
~+ € I'. Without loss of generality, we may assume that, for every v € ', there exists
by € By \ M(A,).

There exists a subnet (b, ) of (by) converging to b € B (see the definition of the limit
in the Vietoris topology [6]). Show that b ¢ M(A). Indeed, otherwise we would have
a net (a-,) converging to a € A such that a,; € A,,. Since the net (a,,, b,) converges
to (a,b) € M, there exists i(0) such that (ay,,,,by,o)) € M, i. €. by, € M(Ay ),
a contradiction. 4

Now show that every subset of the form My (A) is relatively compact. Note that

the set M(A) is bounded and, therefore, M(A) is compact. Obviously, My(A) C
exp(M(A)), and therefore the closure of My (A) is compact. 0O

The coarse structure £ is called the Vietoris coarse structure on exp X. In the
sequel, we always endow the hyperspace of a coarse topological space with the Vietoris
coarse structure.

Let f:(X,€) = (X', £’) be a coarse map between coarse topological spaces. Define
the map exp f:exp X — exp X' by the formula exp f(A) = f(A). Note that exp f is
well-defined as the set f(A) 1s obviously bounded for every compact subset A C X

and therefore the set f(A) is compact.
Proposition 3.2. The map exp f: (exp X,Ex) — (exp X', Ey) is coarse.

Proof. Indeed, suppose that M € £. Then there is M’ € £ such that (f x f)(M) C
M'. Then it is easy to see that (exp f x exp f)(My) C M}, this shows that exp f is
coarsely uniform.

Show that exp f is coarsely proper. It suffices to show that the preimage under the
map exp f of every set of the form My ({z'}) is bounded. Since f is coarsely proper,
there exist M € £ and z'€ X such that f~1(M’'(z')) C M(z). It is easy to see that
then (exp )~} (M4 ({z'}) € Ma({z}). O

It is not difficult to construct two coarse maps f, g such that exp(gf) # expgexp f.
Indeed, consider the real line R with the bounded coarse structure, i. e. the coarse
structure

E={{(z,y) ERxR||z -y < C}|C >0}

Define f, g: R — R as follows: f(z) = = whenever z < 0 and f(z) = z+1 otherwise,
g(z) = = whenever z < 1 and g(z) = z + 1 otherwise. Let A = {0}U{1l/n | n € N},
then exp f(A) = {0} U{1}U{1+1/n|n € N} and

expgexp f(A) = {0}u{1}u{2}U{2+1/n|n e N},
while
exp(9f)(A) = {0}u{2}u{2+1/n|n € N}.
This example can be regarded as a motivation of introducing the category CT'S/ ~.
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Lemma 3.3. If A is a subset of a coarse topological space (X,£), then for every
M € &£ we have A C M (A).

Proof. Suppose = € A, then there is a € AN M~ (z). This means that z € M(A).
a

Proposition 3.4. Let fi, fo: (X,€) = (X',&') be coarse maps. If fi ~ fa, then
exp fi ~exp fa.

Proof. There exists M’ € &' such that (fi(z), fo(x)) € M’ for every r € X.
Without loss of generality, we may assume that M’ = (M’)~!. If A € exp X, then
f1(A) C M'(f2(A)) and f2(A) C M'(f1(A)). By Lemma 3:3,

H(4) € M'(f1(4)), f2(4) C M'(f2(4))
and we obtain ‘

Fi(A) € M'M'(f2(4)), f2(A) C M'M'(f1(A)).

The latter means that (exp fi(A),exp f2(4)) € Mg. 0O

Proposition 3.4 allows us to define the hyperspace functor exp in the category
CTS/ ~ as follows. Given a morphism f: X — Y in CT'S, we define exp[f]: X = Y
in CTS/ ~ as exp[f] = [exp f].

4. Hyperspace monad in the coarse category. Recall that a monad on a
category C is a triple T = (7,7, #) consisting of an endofunctor 7:C — C and natural
transformations 7: 1¢ — 7' (unit), p: 72 — T (multiplication) making the diagrams

T _r}lg.. rf\? TS LT,.. T?
e W
Tn [ Tu In
¥
?12 _E._._a’-... S T2 _i_} J"

commutative (see [7] for details).
Theorem 4.1. The triple H = (exp, s, u) is a monad on the category CTS/ ~.

Proof. First show that the map u,: (exp? X,Enn) — (ezpX,Ex) is coarse. Let
(A,B) € Myn, for some M € £. Show that (UA,UB) € Myg. Indeed, if a € UA,
then there is A € A with @ € A. By the definition of Mgy, there is B € B with
(A, B) € Mg . Then there is b € UB with (a,b) € M.

We can similarly prove that for every b € UB there is a € UA with (a,b) € M.
Together this means that (UA,UB) € My.

To this end, we have to show that uZ'(Mp(A)) is bounded for every A € exp X
and every M € £. If B € uJ'(Mu(A)), then (UA,UB) € My.

There exists an entourage N € £ such that M(A) C N(z), for some z € X.

Suppose that B € u;}(My(A)) and B € B. Then B C M(A).

Given b € B we see that b € N(z), whence £ € N~1(b) and A C NN~(b) C
NN-1(B). Let L € £ an entourage containing M U (NN~'). Then for any B €
uz(Mp (A)) and any B € B we have B C M(A) C L(A)and A C NN~!(B) C L(B).
This means that B € Ly (A).

Now we are going to show that ([ux]) is a natural transformation of exp? into exp.
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Given a coarse map f: X — Y we have to show that the diagram

2
exp? X =l exp?Y

fuxl | [t

expX —— expY
exp(/]

1s commutative.
We first start with finite sets.
Let A € exp® X, then

exp’[f](A) = {exp[f](4)|A € A} = {f(4)|A € A},
[uy)(exp®[f](A)) = U{F(A)]A € A}.

On the other hand,

exp[f]([ux](4)) = f(UA).
Let A= {A,...,An}. Then

[uy)(exp?[f}(A) = UFANli = 1,...,n} =
= W{T@)li=1,...,n} = UF (A = 1,...,n} = F(UA).

The set {A € exp? X||A| < oo} is dense in exp? X and therefore this set is coarsely
dense in exp? X. According to the Proposition 2.3 we conclude that the diagram is
commutative for each A € exp® X.

Show that the diagram

exp® X M exp? X

[texp x]i J_[ux]

exp? X —— expX
[ux]
is commutative.
Similarly as above, we' consider the set

F={%cexp® X | |ux(texpx())| < o0}.

It is well-known that F is dense in exp® X and the restriction of the above diagram
on F is commutative. The result follows from Proposition 2.3. O

5. Coarse structures on symmetric powers. Let T be a monad on a category
C. The Kleisli category of the monad T is the category Cr defined as follows: |Cx] =
IC], Cr(X,Y) = C(X,TY), and the composition g * f of morphisms f € Cr(X,Y),
g€ Cr(Y,Z) isgiven by g x f = pZ o Tgo f (see[7]).

Note that the category Cy can be embedded into CT as a full subcategory by means
of the functor ®

®X = (TX,uX), ®f =puYoTf, f€Ca(X,Y).
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A functor F:Ct — Cr called an extension of the functor F:C — C on the Kleisli
category Cy if IF = F1I. '

The following theorem 1s a criterion of extension of functors onto the Kleisli cate-
gory; see [8-12] for the proof.

Theorem 5.1. There erists a bijective correspondence between extensions of func-
tor F onto the Kleisli category Cy of monad T and natural transformations §: FT —
TF satisfying

1)§o Fn=nF;

2) uF oTEoET =€ o Fp.

For any X, as usual, X" denotes its nth cartesian power. Given a coarse structure
£ on X, define the coarse structure £" on X™ as £" = {M"® | M € £}.

Let G be a subgroup of the symmetric group S, (the group of bijections of the set
{1,...,n}. Recall that the G-symmetric power functor is defined as follows. Define
an equivalence relation ~g on X™ by the condition: {(zi1,...,2s) ~c (¥1,.. -, S ) of
and only if there exists o € G such that z; = y,(;) for alli = 1,...,n. We denote by
[z1,...,2a]c the equivalence class that contains (z1,.. ., z,). By the definition, the
G-symmetric power of X is SPEX = X"/ ~g.

Given a map f: X — Y, we define a map SPZf: SPGX — SPZY by the formula

SPGf([a1,. .., znc) = [f(21), ..., f(2a)]a-
Now suppose that (X, €) is a coarse space. For any M € £ let
M ={([z1,...,ea)c, W1, -, Unlc) € SPEX x SPEX
| there is o € G such that (zi,yo(;)) € M forevery 1 =1, .. s A Y

If X is a topological space, then SP™"X is endowed with the quotient topology of
X™. A base of this topology is formed by the sets of the form

[U;,.‘.‘Un](;: {{m;,,..,rnlg|x,- El 1= 1,.‘.,?1}.

Proposition 5.2. The family £ = {M | M € £} is a coarse structure on SPEX. If
£ 1is topological (unital), then so 1s €.

Proof. The fact that £ is a coarse structure easily follows from the equalities
(MNY=MN and (M~1y= (M)

Suppose now that £ is topological and ([ay, ..., an]G,[b1,- .., bn]c) € M for some
M € €. Then there exists 0 € G such that (a;,b,;)) € M, for alli = 1,...,n.
There exist open sets U; and Vo (;) in X such that (a;, bs(i)) € Ui x Vo(i) C M. Then

obviously

-~

([(I]_, .. '1an]G: [bls Jr ':bﬂ]G) & ([UI: . '!Uﬂ]G: [V].:' . 'sanG) & M.
O
Proposition 5.3. SP2 s an endofunctor in the category C'S (respectively CT'S).

Proof. We only consider the case of the category CT'S. It is sufficient to verify that
the map SPA f is coarse, for every coarse map f:(X,&) — (X', €"). Given M € £ we
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can find M’ € £ such that (f x f)(M) C M’. Then it can be immediately verified
that (SPAf x SPAf) (M) C M'.

Besides, we have to prove that for every [ay,...,an]c € SPEX’ and every M’ € &’
the set K = (SP2f)~'(M'([a1,...,an)c)) is relatively compact. It is easy to see
that K is contained in the closure of the set UL, f~!(M’(a;)); the latter is relatively
compact, because f is coarse. O

Theorem 5.4. There erists an extension of the functor SPZ onto the Kleisli category
(CTS/ ~)n-

Proof. We exploit an idea from [13]. For every coarse topological space X define a
map dx: SPZexp X — exp SPG by the formula

dX([Al,---‘An]G)z {[al,...,a"]g|a;€Ai, 7z 1,..,,1’1}.

It is easy to verify and we leave it to the reader that dx is a coarse map for every X.
That d = (dx) is a natural transformation of the functor SPg exp into the functor
exp SPZ follows from the facts that

dy SP™ exp f([A1,. .., An)c) = exp SP™ fdx ([As, .., Anla)

for every finite Aq,..., A, (see [13]), that the set {[A),...,An)g | Ai is finite, i =
1,...,n} is dense in SPZexp X, and Proposition 2.3.

Similarly, one can prove the equalities dx o SP&sx = sspzx and uspax ©exp dx o
dexpx = dx o SPZux which are known to be true for finite X (see [13]). Again,
by Proposition 2.3, this shows that the conditions of Theorem 5.1. hold. Applying
Theorem 5.1 we complete the proof. 0O

6. Remarks. The importance of the hyperspace monad in the category of com-
pact Hausdorfl spaces is closely related to the fact that the category of algebras for
this monad (see [7] for the definition) can be described as the category of compact
continuous semilattices [14]. A natural question arises whether a counterpart of this
result exists in the coarse category.

Besides, in [13] the symmetric power functors are characterized as the normal
functors of finite degree that have extensions to the Kleisli category of the hyperspace
monad. In the forthcoming publication we are going to extend this result (at least
partially) to the coarse category.
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