УДК 512.552.1

REDUCTION OF A PAIR OF MATRICES OVER AN ADEQUATE DUO-RING TO A SPECIFIC TRIANGULAR FORM BY IDENTICAL UNILATERAL TRANSFORMATIONS

Andriy GATALEVICH

Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

It is proved that a pair of matrices over an adequate duo-ring can be reduced to a specific triangular form by means of identical unilateral transformations.

Key words: adequate ring, duo-ring, elementary divisor ring.

Throughout this paper, all rings are associative adequate duo-rings with identity. A ring is said to be a *duo-ring* if every its left or right ideal is two-sided. A ring is a *Bezout ring* if every its finitely generated right and left ideal is principal.

Matrices A and B over ring R are equivalent $(A \sim B)$, if there exist invertible matrices P and Q over R such that A = PBQ.

An $m \times n$ matrix A admits diagonal reduction if A is equivalent to a diagonal matrix $[\epsilon_{ij}]$ (i.e. $\epsilon_{ij} = 0$ whenever $i \neq j$) with the property $R\epsilon_{i+1,i+1}R \subseteq R\epsilon_{i,i} \cap \epsilon_{i,i}R$ (in the case of a duo-ring we can write: $\epsilon_{i+1,i+1}R \subseteq \epsilon_{i,i}R$). If every matrix over R admits diagonal reduction, then R is an elementary divisor ring. The elements $\epsilon_{11}, \epsilon_{22}, \ldots, \epsilon_{rr}$ are called the invariant factors of the matrix A.

A ring R is called right adequate if R is a Bezout ring without zero divisors and for $a, b \in R$ with $a \neq 0$, there exist $r, s \in R$ such that a = rs, rR + bR = R, and $s'R + bR \neq R$ for any nonunit $s' : sR \subset s'R$.

Using left principal ideals by analogy we can define left adequate rings. In the class of duo-rings these notions are equivalent and we will use the term adequate ring.

Commutative adequate rings were considered in [1-3].

V.Petrychkovych investigated the reducibility of pairs of matrices by means of the generalized equivalent transformations to the diagonal form [4].

Let R be an adequate duo-ring.

Lemma 1. Let $a, b, c \in R$ and $a \neq 0, c \neq 0$. Then there exists an element $r \in R$ such that (a+rb)R+rcR=aR+bR+cR and if aR+bR+cR=R then rR+aR+bR+cR=R.

Proof. Let aR + bR + cR = R. Assume that (a+rb)R + rcR = hR, and $h \notin U(R)$. Then we obtain:

1) rc = rrs, rR + hR = h'R and $(a + rb)R \subseteq h'R$. It follows that $a \in h'R$ and $aR \subset h'R$. We obtain a contradiction with

[©] Gatalevich Andriy, 2003

$$R = rR + aR \subset h'R + aR \neq R.$$

2) If rR + hR = R, then

$$r^{2}R + hR = R, r^{2}u + hv = 1$$

$$r^{2}us + hvs = s, r^{2}su' + hsv' = s$$

$$u, v, u', v' \in R.$$

We have

$$sR \subset hR$$
 and $hR + aR = h'R$,

where $h' \notin U(R)$. Thus,

$$(a+rb)R \subset h'R, rbR \subset h'R, R = rR + aR = rR + h'R,$$

 $aR \subset h'R, bR \subset h'R, cR \subset h'R.$

This yields

$$R = aR + bR + cR \subset h'R,$$

and we have $h' \in U(R)$.

If aR + bR + cR = dR, $a = da_0$, $b = db_0$, $c = dc_0$ we provide the proof similarly for elements a_0, b_0, c_0 .

Lemma 2. Let A_i , i = 1, 2 be $2 \times k_i$ matrices over a ring R, and at least one of them is not a right zero divisor. Then there exist invertible matrices P and Q_i , i = 1, 2 over R such that

$$PA_iQ_i = \begin{pmatrix} \varepsilon_1^{(i)} & 0 & 0 & \dots & 0 \\ * & \varepsilon_2^{(i)} & 0 & \dots & 0 \end{pmatrix},$$

where $\epsilon_{j}^{(i)}$ are invariant factors of matrices A_{i} , i = 1, 2.

Proof. We may assume that A_2 is not a right zero divisor, so that $k_1 \ge 1, k_2 \ge 2$. Since R is an elementary divisor ring [5], there exist invertible matrices S, M_1, M_2 over R such that

$$SA_1M_1=\begin{pmatrix} \varepsilon_1^1&0&0&\dots&0\\0&\varepsilon_2^1&0&\dots&0 \end{pmatrix}, SA_2M_2=\begin{pmatrix} a&0&0&\dots&0\\b&c&0&\dots&0 \end{pmatrix},$$

 $\epsilon_2^1 R \subseteq \epsilon_1^1 R$ and $a \neq 0, c \neq 0$.

By Lemma 1 for elements $a, b, c \in R$ there exists an element $r \in R$ such that (a+rb)R+rcR=aR+bR+cR. Consider the matrix

$$T = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}.$$

It is easy to verify that matrices TSA_iM_i can be reduced to the form

$$\begin{pmatrix} \varepsilon_1^{(i)} & 0 & 0 & \dots & 0 \\ * & \varepsilon_2^{(i)} & 0 & \dots & 0 \end{pmatrix}.$$

using right-side multiplication by invertible matrices. The proof is complete.

Theorem 1. Let A_i , i = 1, 2 be $m \times k_i$ matrices over a ring R, and at least one of them is not a right zero divisor.

Then there exist invertible matrices P and Q_i , i = 1, 2 over R such that

$$\begin{pmatrix} \epsilon_1^{(i)} & 0 & \dots & 0 & \dots & 0 \\ & \epsilon_2^{(i)} & \dots & 0 & \dots & 0 \\ & * & \ddots & & & \\ & & & \epsilon_m^{(i)} & \dots & 0 \end{pmatrix}$$

where $\epsilon_i^{(i)}$ are invariant factors of the matrices A_i , i = 1, 2.

Proof. Assume that A_2 is not a right zero divisor. We shall prove the theorem by induction on number m of rows of the matrices. If m=2, the Theorem is true by Lemma 2. Suppose that the theorem is true for matrices with the number of rows m-1. Thus R is an adequate duo-ring and there exist invertible matrices $S, Q_i, i=1,2$, such that

$$SA_{1}Q_{1} = \begin{pmatrix} \epsilon_{1}^{(1)} & 0 & \dots & 0 & \dots & 0 \\ 0 & \epsilon_{2}^{(1)} & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \epsilon_{m}^{(1)} & \dots & 0 \end{pmatrix} = B_{1},$$

$$SA_{2}Q_{2} = \begin{pmatrix} a_{11} & 0 & \dots & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m} & \dots & 0 \end{pmatrix} = B_{2},$$

where $\epsilon_i^{(1)}$ are invariant factors of the matrix A_1 . Consider submatrices B_i , i = 1, 2, of the matrices B_i obtained by crossing off the last rows of the matrices B_i . For them by the induction hypothesis there exist invertible matrices M, N_i such that

where $\varphi_i^{(2)}$ are invariant factors of the matrix B_2' . Then

$$C_1 = \begin{pmatrix} & & & 0 \\ & M & & \vdots \\ 0 & & & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} B_1 \begin{pmatrix} & & & 0 \\ & N_1 & & \vdots \\ & & & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} \epsilon_{1}^{(1)} & 0 & \cdots & 0 & \cdots & 0 \\ & \epsilon_{2}^{(1)} & \cdots & 0 & \cdots & 0 \\ & * & \ddots & & & \\ 0 & \cdots & 0 & \epsilon_{m}^{(1)} & \cdots & 0 \end{pmatrix},$$

$$C_{2} = \begin{pmatrix} M & \vdots \\ M & \vdots \\ 0 & 0 \end{pmatrix} B_{2} \begin{pmatrix} & 0 \\ N_{2} & \vdots \\ & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} \varphi_{1}^{(2)} & 0 & \cdots & 0 & \cdots & 0 \\ * & \ddots & & & & \\ & \varphi_{m-1}^{(2)} & 0 & \cdots & 0 \\ a'_{m1} & \cdots & \cdots & a'_{mm} & \cdots & 0 \end{pmatrix}.$$

Let $\varphi_1^{(2)}R + a'_{m1}R + a'_{mm}R = R$. By Lemma 1, there exist $r \in R$ such that for the elements $\varphi_1^{(2)}, a'_{m1}, a'_{mm}$ we obtain

$$(\varphi_1^{(2)} + ra'_{m1})R + ra'_{mm}R = \varphi_1^{(2)}R + a'_{m1}R + a'_{mm}R,$$

$$rR + \varphi_1^{(2)}R + a'_{m1}R + a'_{mm}R = R.$$
(1)

Consider an $m \times m$ matrix of the form

$$T = \begin{pmatrix} 1 & 0 & \dots & r \\ 0 & 1 & \dots & 0 \\ & \cdot & \cdot & \dots & \cdot \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Multiply the matrices C_i , i = 1, 2, on the left by this invertible matrix T:

$$TC_{1} = \begin{pmatrix} \varepsilon_{1}^{(1)} & 0 & \dots & r\varepsilon_{m}^{(1)} & 0 & \dots & 0 \\ & & * & & & & & \\ TC_{2} = \begin{pmatrix} \varphi_{1}^{(2)} + ra'_{m1}, & ra'_{m2}, & \dots & ra'_{mm}, & 0 & \dots & 0 \\ & & * & & & & \\ \end{pmatrix}.$$

Using condition (1) we obtain that the greatest common right divisor of the elements of the first row of the matrix TC_2 is the greatest common right divisor of all elements of the matrix C. Since $\epsilon_m^{(m)}R \subset \epsilon_1^{(1)}R$, we have a similar situation for the elements of the first row of the matrix TC_1 . Thus by multiplication on the right by the matrices L_i , i = 1, 2 the matrices TC_i can be reduced to the form

$$TC_{i}L_{i} = \begin{pmatrix} \epsilon_{1}^{(i)} & 0 & \dots & 0 & \dots & 0 \\ & b_{22}^{(i)} & \dots & 0 & \dots & 0 \\ & & \ddots & & & & \\ & & & b_{mm}^{(i)} & \dots & 0 \end{pmatrix},$$

where $\epsilon_1^{(i)}$ is the first invariant factor of the matrix A_i .

Consider the submatrices of the matrices TC_iL_i obtained by crossing off the first rows and columns. They have the number of rows m-1, satisfy the condition of the theorem and for them by induction hypothesis the theorem is true.

If $\varphi_1^{(2)}R + a'_{m1}R + a'_{mm}R = dR$ we can represent the matrix $C_2 = DC'_2$, where $D = diag[d, d, \ldots, d]$ is a diagonal matrix and repeat the same arguments for the matrix C'_2 . The proof is complete.

Theorem 2. Let C = AB, where A, B are matrices over R which are not right and left zero divisors. Then the elementary divisors of the matrix C are divisible on coresponding elementary divisors of matrices A and B.

The same result was obtained for other classes of rings in [2], [3], [6].

- 1. Helmer O. The elementary divisor theorem for certain rings without chain conditions // Bull. Amer. Math. Soc. 1943. 49. P. 225-236.
- Kaplansky J. Elementary divisors and modules // Trans. Amer. Maht. Soc. 1949. – 66. – P. 464-491.
- 3. Zabavs'ky B. V., Kazimirs'ky P. S. Reduction of a pair of matrices over an adequate ring to a specific triangular form by means of idential unilateral transformations // Ukrain. Mat. Zh. 1984. 36. P. 256-258.
- 4. Petrychkovych V. Generalized equivalence of pairs of matrices // Linear and Multilinear Algebra. 2000. 48. P. 179-188.
- 5. Gatalevich A. I. On adequate and general adequate duo-rings and elementary divisor duo-rings // Matem. Studii. 1998. 49. P. 10-15.
- Newman M. On the Smith normal form // J. Res. Bur. Stand. Sect. 1971. -75. - P. 81-84.

ЗВЕДЕННЯ ПАРИ МАТРИЦЬ НАД АДЕКВАТНИМ ДУО-КІЛЬЦЕМ ДО СПЕЦІАЛЬНОГО ТРИКУТНОГО ВИГЛЯДУ ШЛЯХОМ ІДЕНТИЧНИХ ОДНОБІЧНИХ ПЕРЕТВОРЕНЬ

А. Гаталевич

Львівський національний університет імені Івана Франка, вул. Університетська, 1 79000 Львів, Україна

Доведено, що пара матриць над адекватним дуо-кільцем зводиться до спеціального трикутного вигляду шляхом ідентичних однобічних перетворень.

Ключові слова: адекватне кільце, дуо-кільце, кільце елементарних дільників.

Стаття надійшла до редколегіі 16.01.2002 Прийнята до друку 14.03.2003