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Some properties of homomorphic images of Brandt A-extensions of algebraic semi-
groups are established. It is proved that for every cardinal A > 2 any topological
Brandt M-extension of an absolutely H-closed topological inverse semigroup is absolute-
ly H-closed in the class of topological inverse semigroups.
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In this paper all spaces are Hausdorff.

A topological (inverse) semigroup is a topological space together with a continuous
multiplication (and an inversion, respectively).

We follow the terminology of [2, 3, 7].

If S is a semigroup, then by E(S) we denote the band (the subset of idempotents)
of S, and by S! we denote the semigroup S with the adjoined unit (see: [3]). By
w we denote the first infinite ordinal. Further, we identify all cardinals with their
corresponding initial ordinals. If Y is a subspace of a topological space X, and
A CY, then by cly (A) we denote the topological closure of Ain Y.

Let S be a semigroup and /) be a set of cardinality A > 2. On the set By(S) =
Iy x St x I, |J{0} we define the semigroup operation ” - * as follows:

(a,ab,é), ifﬁ =,
0, i3 #7,

and (o,a,8)-0=0-(a,a,8) =0:-0=0for @, 3,7,6 € I, a,b € S'. The semigroup
By(S) is called the Brandi-Howie semigroup of the weight A over S [8] or the Brandt
\-ezxtension of the semigroup S [9]. Obviously B)(S) is the Rees matrix semigroup
MP(SY; I, In, M), where M is the I x I -identity matrix. Further, if A C S* then
we shall denote Ayp = {(e,s,8) | s € A} for a,B € I,. If a semigroup S is trivial
(i.e. S contains only one element), then By(S) is the semigroup of I\ x I\ matriz
units [3] and we shall denote it by Bi.
Further, by S we denote some class of topological semigroups.

b, ) <y ) == {
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Definition 1 [9]. Let A be a cardinal > 2, and (S,7) € §. Let 75 be a topology on
B, (S) such that

a) (Ba(S),78) € S;

b) 7B|(a,51,a) = T for some a € ).
Then (Bx(S), ) is called a topological Brandt A-extension of (S,7) :n S. If S coin-
cides with the class of all topological semigroups, then (B (S), 78) is called a topo-
logical Brandt A-extension of (S, 7).

A semigroup S € S is called H-closed in S, if S is a closed subsemigroup of any
topological semigroup T' € § which contains S as a subsemigroup. If § coincides
with the class of all topological semigroups, then the semigroup S is called H-closed.
H-closed topological semigroups were introduced by J. W. Stepp in [12], and there
they were called marimal semigroups.

Definition 2 {10, 13]. A topological semigroup S € § is called absolutely H-closed
in the class S, if any continuous homomorphic image of S into T € S is H-closed in
S. If S coincides with the class of all topological semigroups, then the semigroup S
is called absolutely H -closed.

An algebraic semigroup S is called algebraically h-closed in S, if S with discrete
topology 0 is absolutely H-closed in S and (S,2) € 8. If S coincides with the class of
all topological semigroups, then the semigroup S is called algebraically h-closed.

Absolutely H-closed topological semigroups and algebraically h-closed semigroups
were introduced by J. W. Stepp in [13], and there they were called absolutely mazimal
and algebraic mazimal, respectively.

Obviously, any algebraically h-closed semigroup (in a class ) is absolutely H-
closed (in a class S), and every absolutely H-closed topological semigroup (in a class
S) is H-closed (in a class S). Further we shall show that the converse statements do
not hold.

Recall [1], a topological group G is called absolutely closed if G is a closed subgroup
of any topological group which contains G as a subgroup. In our terminology such
topological groups are called H-closed in the class of topological groups. In [11]
D. A. Raikov proved that a topological group G is absolutely closed if and only if it
is Raikov complete, i.e. G is complete with respect to the two-sided uniformity.

A topological group G is called h-complete if for every continuous homomorphism
h:G — H the subgroup f(G) of H is closed [5]. The h-completeness is preserved
under taking products and closed central subgroups [5].

For any A > 2 the semigroup of Iy x Iy matrix units is a Brandt A-extension of
the trivial semigroup. The semigroup of Iy x I matrix units is algebraically h-closed
in the class of topological inverse semigroups for each A > 2 [10]. In [9] it is proved
that for every A > 2 any topological Brandt A-extension of an H-closed topological
inverse semigroup is H-closed in the class of topological inverse semigroups. In this
paper we show that a similar statements hold for absolutely H-closed topological in-
verse semigroups and that any Brandt A-extension of an algebraically h-closed inverse
semigroup is algebraically h-closed in the class of topological inverse semigroups.

Proposition 3. Let h: By(S) = T be a homomorphism, such that h((a, z, 8)) = h(0)
for some z € S, a, B € Ir. Then h((7,y,68)) = h(0) for all y € S'zS*, 7,6 € I,.
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Proof. Assume that y € S'zS'. Then y = azb for some a,b € S*. Therefore
h((v,¥,9)) = h((y.a,a) - (a,z,B) - (B,b,6)) = h((y,a,)) - h((a, z, B)) - h((B,b,4)) =
h((‘}‘,a,d)) ’ h(O) h((ﬂ,b,é)) e h((':{,a,a) +0- (ﬁsb: 6)) = h(O)

A semigroup homomorphism h: S — T is called annihilating if there exists ¢ € T'
such that h(a) = c for alla € S.

Corollary 4. A homomorphism h: B\(S) — T is annihilating if and only 1if the
homomorphism h|g,: By = Ba(1) = T is annihilating.

Proposition 5. Let h: By(S) = T be a homomorphism and h((ay,a,p1)) =
h((az,b, B2)) for some a,b € S', ay,as,p1,B2 € Ix. If oy # az or By # B2 then
h((a1,a, 1)) = h(0). ;

Broot Assume that o 3 0z, Then
h{(a1,a, B1)) = h((a1,1,a1)(a1, @, 41)) = h({a1, 1, @1)) - h((a1,0,81)) =
h((a1,1,a1)) - h((@2,b, B2)) = h((e1, 1, a1) - (a2, b, B2)) = h(0).
The proof of the case 8, # B2 is similar.

Lemma 6. Let A > 2 and B,(S) be a topological A-extension of a topological semi-
group S. Let T be a topological semigroup and h: Bx(S) — T' be a continuous ho-
momorphism. Then the sets h(Asp) and h(Ays) are homeomorphic in T for all
a,B,v,8 €I, and AC S*.

Proof, If h is an annihilating homomorphism, then the statement of the lemma is
trivial.
In the other case we fix a,3,7,6 € Iy. Define the maps goZ'iﬁ:T ~ T and

@2:T — T by the formulae ¢)5(s) = h((7,1,@)) - s - h((8,1,4)) and e le) =
h({a,1,7))-s-h((8,1,8)), s € T. Obviously ap:f (tp:% (h ((a,x,ﬁ))]) =h{fo, @, 8),;
P (so?,f(h((%xsé)))) = h((y,z,4)), for all @,8,7,8 € Ir, z € S, and hence

@28 laus= (¥25)"! |a,s- Since the maps (pl% and r,o:f are continuous on T, then
22% Ih(Aas): h(Aap) = h(A4s) is a homeomorphism.

Proposition 7. Let A > 2 and B,(S) be a topological \-extension of a topological
semigroup S. Let T' be a topological semigroup and h: Bx(S) — T be a continuous
homomorphism, A C h(Bx(S)), and the set A intersects at least two subsets of the
type h(Sa). Then h(0) € A- A.

Proof. The case h(0) € A is trivial. Assume that h(0) ¢ A, AN A(Say0,) # @
and A N h(Sp,p,) # @ for some ay,az,B1,P2 € I, i.e. there exist z,y € St such
that h((a1,z,a2)) € A and h((B1,¥,82)) € A. If @1 # a3 or B1 # B2, then R(0) =
h((Oq, T, az)) : h((al, T, 0!2)) €A-Aor h(O) = h((ﬁl,y, ﬂg)) . h((ﬁl, y,ﬂg)) €A A If
o, = ay and By = B, then ay # Bi, and hence h(0) = h((ai, z, @2)) - ({51, ¥, Ba)) €
A A
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Lemma 8. Let A > 2, B)(S) and T be topological semigroups and h: Bx(S) = T be a
continuous homomorphism. Let h(Bx(S)) be a dense subsemigroup of T and h(Sap)
be a closed subset in T for some a, € In. Then a-a = h(0) for all a € T\h(B,(S)),
and h(0) is the zero of T.

Proof. Since h(Bx(S)) is a dense subsemigroup of T, then by Proposition 2 [9],
h(0) is the zero of T. . .

Assume that a-a = b # h(0) for some a € T\h(Bx(S)). Then for any open
neighbourhood U(b) # h(0) there exists an open neighbourhood V(a) # h(0) such
that V(a) - V(a) C U(b). By Lemma 6 the set h(Sy;s) is closed for each v, € I,.
Therefore the neighbourhood V(a) intersects infinitely many sets of the type h(Sap)
(o, B € I,,). Then by Proposition 7 we have h(0) € V(a)-V(e) C U(b), a contradiction
with the choice of U(b).

Proposition 9. Let A > 2, S and T be algebraic semigroups. Let h: By\(S) = T be
a homomorphism, A and B be disjunctive subsets of h(Bx(S)). If the sets A and B
intersect at least two subsets of the type h(Sap) (o, € In), then h(0) € A - B or
h(0) € B - A. )

Proof. The cases h(0) € A or h(0) € B are trivial. In the other case for
i = 1,2,3,4 we fix a;, 5 € I such that A(Vh(Sa,p,) # @, Ah(Sa,8.) # 2,
BN h(Sass,) # @ and B h(Sa,p,) # @- By Proposition 5 the sets h(Sa,,)\2(0)
and h(Sa,p,)\(0) are disjunctive in h{Bx(S)), hence ay # az or By # B2. Let &1, 2o,
23, z4 be elements of the semigroup S! such that h((a1,z1,81)), h((a2,22,02)) € A
and h((as, x3,83)), h((as, z4,84)) € B. If a1 # a3, then oy # P53 or as # 3, and

hence

h(0) = h((es, z3,83).- (a1, 21, 81)) = h((as, z3,B3)) - h((e1, 21, 51)) € B - A,
or

h(0) = h((as, z3, Bs) - (a2, 22, B2)) = h((a3, 23, B3)) - h{(2, 22, B2)) € B - A.
If B, # B, then By # ag or By # @3, and hence

h(0) = h((e1, 21, 1) - (@3, 23, 83)) = h((e1, 1, 1)) - h((as, 23, 55)) € A - B,

or

h(O] = h((ag, J:g,ﬁg] * (03,1;‘3,53)) = h([allxl,ﬁl)) . h((a3,$3,ﬁ3)) (S A B.

Theorem 10. Let A > 2, By(S) and T be topological inverse semigroups, h: Bx(S) —
T be a continuous homomorphism such that the set h(Sap) be a closed in T' for some
a,B8 € I,. Then h(Bx(S)) s a closed subsemigroup of T.

Proof. In the case 2 < A < w the statement of the lemma follows from Lemma 6.

Let A > w. We denote G = clp(h(Bx(S))). By Proposition I11.2 [6}, G is a
topological inverse semigroup. Let b € G\h(Bx(S)). Then by Lemma 8, b,b~! €
G\E(G). We remark that b-b6~! # h(0) and b~! - b # h(0). Suppose contrary:
b-b=1 = h(0) or b=! - b = h(0). Since h(0) is the zero of G, then b =b-b~1-b =
h(0) - b = h(0) or b= = b1 -b-b~! = h(0) - b= = h(0), a contradiction with
b € G\h(B\(S)). :
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Therefore there exist e, f € E(G) = E(h(Bx(S))) such that b-b"! =eand b=1-b =
f. At first we consider the case e # f. Let W(e) # h(0) and W(f) # h(0) be
disjunctive open neighbourhoods of e and f in T, respectively. Then there exist
disjunctive open neighbourhoods U(b) # h(0) and U(b~!) # h(0) in T such that
Ud)-U(b~) € W(e) and U(db~?) - U(b) C W(f). By Lemma 6 the set h(Sqp)
is closed in T for each a,8 € I, and hence the sets U(b) and U(b~?) intersect
infinitely many sets of the type h(Sys)\k(0) (7,6 € Ix). thus by Proposition 9 we get
h(0) € U(b) - U(b~*) C W(e) or h(0) € U(b~") - U(b) C W(f), a contradiction with
the choice of the neighbourhoods W (e) and W (f).

In the case e = f we similarly obtain a contradiction.

The obtained contradictions imply the statement of the theorem.

The proof of the following proposition is trivial.

Proposition 11. If S as absolutely H-closed topological semigroup (in the class of
topological semigroups §), then so is S* (if S* € S).

Propositions 6 and 11, and Theorem 10 imply

Theorem 12. For any cardinal X > 2, every topological Brandt A-extension B)(S)
of an absolutely H-closed topological inverse semigroup S in the class of topological
inverse semigroups, is absolutely H-closed in the class of topological inverse sema-
groups.

Corollary 13. For any cardinal X > 2, every topological Brandt A-eztension B (S)
of a compact topological inverse semigroup S in the class of topological inverse semi-
groups, is absolutely H-closed in the class of topological inverse semigroups.

Theorem 14. Let S be a topological inverse semigroup. Then the following condi-
tions are equivalent:

(i) S is an absolutely H-closed semigroup in the class of topological inverse semi-
groups;

(ii) there exists a cardinal A > 2 such that any topological Brandt A-extension Bx(S)
of the semigroup S is absolutely H-closed in the class of topological inverse
Semigroups;

(iii) for each cardinal X > 2 any topological Brandt A-extension By(S) of the sema-
group S is absolutely H-closed in the class of topological inverse semigroups.

Proof. The implication (iii)=>(ii) is trivial, and Theorem 12 implies the implications
(1)=>(i1) and (i)=>(iii).

We shall show that the implication (ii)=>(i) holds. Suppose contrary: there exists
non absolutely H-closed topological inverse semigroup S in the class of topological in-
verse semigroups, and for some cardinal Ag > 2 every topological Brandt Ao-extension
By, (S) is absolutely H-closed in the class of topological inverse semigroups. Then
there exist a topological inverse semigroup T" and a continuous homomorphism “into”
h:S — T such that h(S) is not closed subsemigroup of T'.

Let 75 and 7 be direct sum topologies on By, (S) and By, (T’), respectively (see: [8,
p. 129]). Then (B»,(S),7s) and (Bx,(T), 7r) are topological inverse semigroups, s
and T are homeomorphic to Sas and Tag, for all &, B € I (see: (8, p. 129]). We define
the map h: By, (S) = Bj,(T) as follows: h(O) = 0 and h((a 5,B8)) = (a, h(s), B) for
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alla,B€ I, s € Si. Obviously, the homomorphism h: (By, (S), Ts) = (B, (T), 7r)
is continuous and h(Bj,(S)) is not a closed subgroup of (By,(T), 7). Therefore,
there exists a topological Brandt Ag-extension B),(S),7s), which is not absolutely
H-closed in the class of topological inverse semigroups.

The obtained contradiction implies the statement of the theorem,

The following example shows that there exists an absolutely H-closed topological
Brandt A-extension Bj(S) in the class of topological inverse semigroups of a topo-
logical inverse semigroup S, such that S is not absolutely H-closed in the class of
topological inverse semigtoups.

Example 15. Obviously, S = (N, max) with the discrete topology is a topological
semigroup. We define a topology 7p on B3(S) as follows:

a) (a,z, ) is an isolated point in By(S) for all @,8=1,2, 2 € §;

b) the family B(0) = {{{0} U{(e,z,8) | @,8 = 1,2,z > k}} | k € N} is a base of

the topology 7p at the point 0 € By(S).

It is easy to see that (B2(S), 7B) is a compact topological inverse semigroup, and
hence it is absolutely H-closed. But S is not H-closed in the class of topological
inverse semigroups.

Theorem 12 implies

Theorem 16. For each cardinal A > 2, every topological Brandt A-extension B)(S)
of an algebraically h-closed inverse semigroup S in the class of topological inverse
semigroups, is algebraically h-closed in the class of topological inverse semigroups.

Theorem 14 implies

Theorem 17. For an inverse semigroup S the following conditions are equivalent:
(1) S is an algebraically h-closed semigroup in the class of topological inverse semi-
groups; _
(11) Bx(S) is algebraically h-closed in the class of topological inverse semigroups for
some cardinal A\ > 2;
(ii1) Byx(S) 1s algebraically h-closed in the class of topological inverse semigroups for
any cardinal A 2 2.

Since the band of a topological semigroup is a closed subset of it, then we have

Proposition 18. If L is a subsemigroup of the band of a topological semigroup S,
the so 1s cls(L).

The closure of an Abelian subsemigroup of a topological semigroup is an Abelian
semigroup (2, Vol. 1, pp. 9-10], then Proposition 18 implies

Corollary 19. The closure of a topological semilattice in a topological semigroup is
a semilattice.

Therefore we get

Proposition 20. A topological semilattice is H-closed if and only if it is H-closed
in the class of topological semalattices.

Since a homomorphic image of a semilattice is a semilattice, then Corollary 19
implies
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Proposition 21. A topological semilattice 1s absolutely H-closed if and only if it is
absolutely H-closed in the class of topological semilattices.

In [13] J. W. Stepp proved that a semilattice is algebraically h-closed if and only
if any chain of it is finite.

Since a maximal subgroup of a topological inverse semigroup is a closed subset,
then we have

Proposition 22. A topological group 1s [absolutely] H-closed in the class of topo-
logical inverse semigroups if and only if it is [absolutely] H-closed in the class of
topological groups.

Absolutely H-closed topological groups in the theory of topological group are called
h-complete [4]. Complete minimal topologically simple groups and locally compact
totally minimal groups are h-complete [4]. There exist' non-compact non-Abelian
h-complete topological groups, but an h-complete Abelian topological group is com-
pact [4, Example 3.8]. Every locally compact topological group is H-closed in the
class of topological groups. Therefore in the class of topological groups the notions
a compact group, an absolutely H-closed topological group, and an H-closed topo-
logical group, and hence in the class of topological inverse semigroups, are different.
We also remark that there exists absolutely H-closed non-compact Abelian Clifford
topological inverse semigroup, such as algebraically H-closed infinite semilattices [13].

The following example shows that there exists a Clifford topological inverse semi-
group S with a compact band and finite maximal subgroups, such that S is not
H-closed in the class of Clifford topological inverse semigroups.

Example 23. Let be J = {0} {J{3 | n € N} with the usual topology, and operation
“max”. Then (J,max) is a compact semilattice. Let G = {e,a} be the two-clements
group. Then S = 7 x G with the product topology is a Clifford compact topological
inverse semigroup. Obviously 7" == S\{(0,¢)} is a subsemigroup of S, and 7' is not
closed subset of S.
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