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ON ASSOCIATED GROUPS OF RINGS
SATISFYING FINITENESS CONDITIONS
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We consider the construction of associated group of a ring‘with identity element.
The characterization of rings with periodic, FC-group, nilpotent associated group are
given. It is shown that some finiteness conditions or commutativity of a ring R follow
from the finiteness conditions of the associated group G(R).
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1. Let R be an associative ring with an identity element. The set of all elements of R
forms a semigroup with the identity element 0 € R under the operation aob = a+b+ab
for all @ and b of R. The group of all invertible elements of this semigroup is called
the adjoint group of R and is denoted by R°. Clearly, if R has the identity 1, then
1 + R° coincides with the group of units U(R) of the ring R and the mapa —1+a
with a € R is an isomorphism from R° onto U(R).

Many authors have studied the rings with prescribed adjoint groups (or equiva-
lently, groups of units) (see, for example, [1-16]).

This paper is concerned with the question of how properties of associated group
influence some characteristic of rings structure. The idea of associated group was
introduced in [1] for radical ring. We extend this construction to arbitary associative
rings with identity element.

In Sections 3,4,5 we obtain some results on rings determined by their associated
groups which are periodic, FC-groups, nilpotent groups. It is proved that finiteness
conditions of the associated group G(R) imply some finiteness conditions or commu-
tativity of a ring R.

2. Preliminaries. Let R be an associative ring (not necessarily with identity
element) and R° its adjoint group. In the same way as in [1] we consider the set of
pair G(R) = {(z,y) | = € R,y € R°} and define an operation by the rule

(,9)(uw,v) = (y-u+u+z,y00). (2.1)

Definition 2.1. Let R be an associative ring. Then G(R) = A x B 1is a group with
the neutral element (0,0) with respect to the operation (2.1), where A= {(z,0) |z €
R}=R*, B={(0,y) |y R°} = R°.

Following [1], the group G(R) will be called the associated group of the ring R.
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Lemma 2.2. Let R be an associative ring with associated group G(R). If S is a
subring of R with associated group G(S) = X xY then following statements are true:

() G(S) < G(R), X< A, Y < B

(i) if S is a left ideal of the ring R, then X 4 G(R);

(111) if X aG(R), then rS < S for all r € R;

(iv) if S is a right ideal of the ring R, then G(S)4 A Y,

(v) if G(S)«AxY, then SSR<L S;

(vi) if S a two-side ideal of the ring R, then G(S) <«G(R), X «G(R);

(vii) Ca(B) = {(a,0) | a € Ann,(R°)}, Cp(A) = {(0,b) | b € R° and b €
Ann;(R)}; wn particular, if R is a ring with identity, then Cp(A) = ((0,0)) and if R
is a domain, then Cp(A) = C4(B) = ((0,0)).

Proof. (i) is immediate from Definition 2.1.
(i) Let S be a left ideal of ring R and rs € S for all elements r € R and for all

elements s € S. Then for an arbitrary element (a,b) € G(R) and arbitrary element
(z,0) € X we have

(a,b)"}(z,0)(a.b) = "Vz +2,0) € X, (2.2)

hence X is a normal subgroup in G(R).
(iii) If X < G(R), then (2.2) implies that b~z € S for allb € R® and all z € S.
(iv) Let S be a right ideal of the ring R and sr € S for all s € S, r € R. Then for
all elements (z,y) € X %Y and all (a,c) € A x Y we have

(a,¢)" Yz, y)(a,c) = (—c~Va - a,cN)(z,y)(a,c) =
(ya+cDya+ Vet 2, g+ Hy+ye+cVye) € X 1Y,
because ¢,y € S. Therefore G(R) <A x Y.
(v) If ¢ = 0, then (2.3) yields SR < S.

(vi) Since S is a two-side ideal of the ring R, for arbitrary elements (z,y) € X x Y
and (u,v) € G(R) we have

(2.3)

(u,v) "z, Y)(u,v) =

(2.4)
(yu+ v Nyu+ vz 42, y+ v Vy + yo + v Vyv) € G(S).

In particular, if y = 0 then (u,v)~(z,0)(u,v) = (v{~Yz+z,0) € X, hence X aG(R).
(vii) Let (a,0) € C4(B). Then for arbitrary elements (0,b) € B we have
(0,) = (a,0)~*(0, b)(a,0) = (ba,b) (2.5)

and consequently ba = 0 for all b € R°. Therefore a € Ann,(R°®). The converse
statement is also true.
Let (0,b) € Cp(A). Then for all elements (a,0) € A we have

(a,0) = (0,6)"(a,0)(0,b) = (5{~Na + q,0) (2.6)
and hence b(~Da = 0 for all a € R. It follows that
0=0-a=(b+bY +bb(~V)a = ba, (2.7)

hence b € Ann;(R).
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Lemma 2.3. Let R be a ring and I be an ideal of R such that I < J(R). Then
G(R/I) = G(R)/G(I). . (2.8)

Proof. Let G(R) = A x B (respectively G(I) = X xY, G(R/I) = C x D) be an
associated group of the ring R (respectively of the ideal I, of the quotient-ring R/I).

Then
G(R)/G(I) = AB/G(I) = AG(I)/G(I) - BG(I)/G(I) =
(AXY /XY)x (BXY /XY)= (AY/XY) x (XB/XY). (25
Moreover,
oo D = (R/I)® = R°/I° = B]Y = XB/XY,
(2.10)

C=(R/NtT=RY/IT = A/X = AY/XY.

(2.8) is immediate from the above equations. '
The next corollary follows from Lemma 4.2 [3].

Corollary 2.4. Let S be unital subring of ring R such that |R* : ST| < co. Then
IG(R) : G(S)| < 0.

3. Rings with Periodic Associated Group. By analogy with Lemma 1.1 [3]
the following lemma can be proved.

Lemma 3.1. Let R be a ring and J = J(R) its Jacobson radical. Then G(R) 1s a
periodic group if and only if J is a nil ideal with periodic additive group J* and the
group G(R/J) 1s periodic.

Remark 3.2. [t s clear that for any ring R with identity the following statements
are equivalent:

1) the group G(R) 1s periodic if and only if so is the group of units U(R),

2) charR 1s finite.

Let us recall that a field 7" is absolute if T is a field of prime characteristic p and
T is an algebraic extension of its simple subfields. Hence the multiplicative group T™
of an absolute field T is a periodic p’-group.

Lemma 3.3. Let R be a comutative ring with identity. Suppose that R has no zero
divisors and Q(R) its field of quotients. Then G(Q(R)) is a periodic group if and only
if R 1s an absolute field.

Proof. (<) Sufficiency of the lemma is clear.

(=) Suppose that G(Q(R)) is a periodic group. Then for all elements r € R there
exists n = n(r) € N such that 7™ = 1. Therefore the element r is invertible in R. The
lemma is proved.

Theorem 3.4. Let R be a ring with identity and suppose that R has no zero divisors.
Then G(R) is periodic group if and only if the following statements are equivalent:
1) P[z] is a field, where P is simple subfield of R;
2) the element z € R 1s algebraic over P;
3) z € U(R).

Proof. Necessity. Suppose that the group G(R) is periodic. Then charR = p,
where p is prime.
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(1) = (2). If P[x] is a field, then the element « is invertible. It follows that z™ = 1
for some n € N, hence z is algebraic over P.

(2) = (1). If z is algebraic over P, then the domain P[z] is finite and therefore it
is a field. :

Implications (3) = (2) and (1) = (3) are obvious.

Sufficiency. Suppose that the items (1), (2) and (3) are equivalent for the ring R.
Assume the contrary, that a is an element of infinite order in the adjoint group R°.
Then 1+4a € U(R), hence P[1+a] is a field and the condition (2) imply that element
a is algebraic over P. This contradiction completes the proof.

Corallary 3.5. Let R be a ring with identity, P be a prime subring of R. If R has
no zero divisors, then R® = {0} if and only if the following statements are true:

1) P=GF(2);

2) any element € R — P is transcendental over P,

8) Plz] 1s not a field for arbitrary element ¢ € R — P.

Proof. Suppose R° = {0}, then 2 = -2 and therefore charR = 2. Assume that
there exists an element a € R — P algebraic over P. Then P[a] is a finite ring without
zero divisors. It means that Pla] is a field and a € U(R), giving a contradiction. So
condition (2) is true. Condition (3) is obvious. The converse is trivial.

The rings R with torsion free additive group R* and periodic group of units U (R)
were studied in paper [5].

Remark 3.6. If K[G] is a group ring, of a non-trivial group G over a skew field K
of zero characteristic, then the group of units U(K[G]) is not periodic.

Indeed, if charK = 0, then the prime subfield P of skew field K is isomorphic to
Q, but @~ is not a periodic group.

Corollary 3.7. Let K[H] be a group algebra of a group H over a skew field K. Then
the following statements are equivalent:

1) G(K[H]) is a periodic group;

2) U(K[H]) is a periodic group;

3) K 1is an absolute field, H 1s a locally finite group.

Proof. (1) <> (2) is obvious.
(2) = (3). Since the groups H and K* can be embedded in U(K[H]), it follows
from Lemma 2.1 [15] that K is an absolute field and H is a periodic group.
oo

Let ¥;,...,Yn be arbitrary elements of the group H. Since K = |J Ki, where
i=1
K; are finite fields and K;[y, ... ,yn] are finite domains (hence fields), the subgroup
(y1,--- ,Yn) < H is finite:
(3) = (2). Clearly, for any element ¢ € K[H] there exists a finite subfield F' of
the field K such that z € F[C] for certain finite subgroup C of the group H. Since
subring F[C] is finite, the group U(K[H]) is periodic.

4. Associated Groups with Finite Conjugacy Classes. A group G is called
an FC-group if every conjugacy class is finite, i.e., if |G : Ce(z)| < oo for all element
reG.
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Lemma 4.1. Let R be a ring with identity. Then G(R) is an FC-group if and only
if G(R) is a locally normal group.

Proof. Let G(R) = A » B, where A = R* and B = R°. If the group R° is not
periodic, then by Corollary 3.10 [20] Cg(A) # 1. But it contradicts Lemma 2.2 (vii).
Therefore, the subgroup R° is periodic. Let (a,0) be an arbitrary element of A. Since
(a,0)" € Z(G(R)) for some n = n(a) € N, we obtain

(na,8) = (na,0)(0,8) = (0,8)(na,0) = (bna + na, b). (4.1)

Hence,
bna=0 (4.2)

for arbitrary non-zero element a € R. '

If charR = 0, then (—2)e € R°, where e is the idenjity element of the ring R.
From (4.2}, if we put a = ¢ we get nb = 0 for arbitrary b € R°. It contradicts that
the order | — 2el, is infinite. Therefore charR = n is finite. Thus G(R) is a locally
normal group. The converse is trivial. The lemma is proved.

Corollary 4.2. Let R be a ring with identity. Then G(R) is a fibrewtse finite group
if and only if R is a finite ring.

Corollary 4.3. Let R be a ring with identity. Suppose R has no zero divisors, then
G = G(R) is an FC-group if and only if R® = {0} or R is a finite field.

Indeed, if the adjoint group R° is not trivial, then it follows from Lemma 4.1 and
fact, that quotient-group G/Cg(z€) (where z€ = (g7 'zg | g € G)) of FC-group G
is finite forallz € G. -

Theorem 4.4. Let R be a ring with identity. If G = G(R) is an FC-group, then
G = A x B is a locally normal group with finite commutant, moreover, the subgroup
B is finite, |G : Z(G)| < o0 and BN Z(G) = 1.

Proof. Let G = G(R) = A x B be an FC-group. Then for all element g € G the
quotient-group G/Cg(g®) is finite. Lemma 4.1 implies that subgroup B is finite. By
Lemma 3.10 [20] |G : Z(G)| < oo and by theorem of Baer the commutant G’ is finite.

Corollary 4.5. Let K[H] be a group algebra of a group H over a field K. Then
G(K[H]) 1s an FC-group if and only if the algebra K[H} is finite.

Proof, Taking into account that the groups H and K* can be embedded into the
adjoint group (K[H])°, we see that H and K* are finite by Theorem 4.4. Therefore,
the algebra K[H] is finite as well. The converse is trivial.

5. Rings with nilpotent associated groups.

Lemma 5.1. Let T be a skew field. Then G(T) is a nilpotent group if and only if
T = GF(2). .

Proof. (<«=) is obvious.-

(=). If the associated group G(T) is nilpotent, then T is a field of characteristic
p for some prime p. Since the field GF(p) embeds in T and by Lemma 2.2 we have
|IGF(p)) =p—1=1,s0 p= 2. Let p= GF(2) be a prime subfield of T, then
Exercise 9 [19] implies that that T D P is a finite algebraic extension and 7' = P.
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Remark 5.2.
1, n=1;
U(Zazn) = § Za, n=19 (5.1)
Ly X Zign-2, n 2 3.

The equation above implies that G(Za») is a nilpotent 2-group.
Remark 5.3. Ifp is an-odd prime and n € N, then
U(an) = Zpu—1(9_1)- (5.2)
From Lemma 2.2 (vii) it follows that the group G(Zy») is not nilpotent.

Lemma 5.4. Let R be a ring with identity e and suppose that R has no zero divisors.
Then G(R) is a nilpotent group if and only if charR = 2 and R° = {0}.

Proof. Let G(R) = A x B be a nilpotent group. Then C4(B) # 1 by Proposi-
tion 1.6 [20]. According to Lemma 2.2 (vii), B is an identity group and consequently
R® = {0}. Moreover, charR = 2. Conversely, if R® = {0}, then G(R) = R® is an
abelian group. The lemma is proved.

Below N (R) will denote the set of all nilpotent elements of a ring R.

Theorem 5.5. Let R be a ring with identity e. If the associated group G(R) is
nilpotent, then charR = 2™ (m € N). If, thereto, ring R is a commutative, then
R° = N(R).

Proof. Let additive order |e|ly = m for some m € NU {0}, then the group G(Zn)
is embedded in G(R) (where Zo = Z). According to Lemma 54 m # 0. If m =
2°p$t...p" is a canonical decomposition of m, then by Theorem 3 [19)]

U(Zm) 2 U(Zoe) x U(ZE) % ... x U(Z3,), (5.3)
where U(Zg!) = Zjei-1, and U(Zass) is described in Remark 5.2. Remark 5.3

implies a=...=a = 0 and m = 2°.

Let R = R/2R. If a torsion part T(R°) # {0} then by Lemma 2.2 (vii), T(R°) is
a 2-group and therefore T(R°) C N'(R). Conversely, let # € N'(R), then " = 0 for
some n € N. It follows, that the adjoint power #2°) = 0, where s € N is such that
n < 2°. Hence T(R°) = N'(R).

Suppose R is a commutative ring. Then, clearly, N(R) is an ideal of R. Let

G(D) = A x B is a group associated with a ring D = R/N(R), then B is torsion
free and Cg(A) = 1. This means, that B is embedded in the group Aut(A) of the
subgroup A.

If B is not identity subgroup, then [4, B] = A. It contradict to the nilpotency of
the group G(D). Hence B is an identity subgroup and R° = N(R). The theorem is
proved.

Remark 5.6. Let R = Q[a], where a®> = 0. Then R is a local Artinian ring. From
the results in [21] we have R = B + J(R), where the field B = Q. It follows that
R° = B° x J(R)® is a mized abelian group. Assume (a,0) is non zero element of
G(R), then

(a,0)71(0, =2)(a, 0) = (~a,0)(0, =2)(a, 0) = (—2a,~2) & T(G(R)). (5.4)



112 YURIY ISHCHUK

Since (0,—2) € T(G(R)), then G(R) 1s a nilpotent group.

Remark 5.7. Let F = GF(p™),n > 2 and o is the Frobenius automorphism of the
field F. Suppose Flz,c) is a skew polynomial algebra such that za = o(a)x for all
a € F. Then R = F|z,0]/(z?) is a local Artinian ring. Since R = J(R) + B, where
field B = F, then U(R) = (1+J(R)) x B*, where 1+ J(R) is a p-group, |B*| = p" —1.
As a corollary of [11] we have that the group U(R) is not nilpotent.
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IIPO ACOLIIMOBAHI 'PYIIM KUIEIL 3 YMOBAMM CKIHYEHHOCTI
IO. Imyx

Jv6iecoruti HayionaabHutli ynieepcumem imeni Ieana Ppanxa,
eya. Ynieepcumemcevra, 1 79000 Jlvets, Yxpaina

Po3riaHyTO KOHCTPYKIIO acoLiioBaHol rpynu Kiasnd 3 oaununeo. OxapakTepu-
30BaHO Kinblg 3 nepioguynoio, FC-rpynoio, HiILIOTEHTHOIO aCOLIMOBAHUMU Ipyna-
mu. Iloka3ano, 10 3 YMOB CKiHYeHHOCTI Aas acouiifoBanol rpynu G(R) BHIIMBAIOTEH
NeBHi YMOBH CKIHY€HHOCTI YH KOMYTaTHBHICTH Kiabusg R.

K aouosi caosa: acomniitoBaHa rpyna Kiibug, npuefHana rpyna, FC-rpyna, nepio-
JUYHA Tpyna.
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