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ABSORBING SETS RELATED TO HAUSDORFF DIMENSION

Natalia MAZURENKO
Ivan Franko National Unwversity of Luiv, 1 Universitetska Str. 79000 Lviv, Ukraine

It is proved that the hyperspace of compact sets in the n-dimensional cube I™ of
the Hausdorff dimension > a, 0 < o < n, forms an Fs-absorber in the hyperspace
exp(I™) homeomorphic to the Hilbert cube. Moreover, for arbitrary sequence (a;),
0< a; € ag € ... < n, the sequence of hyperspaces of compact sets in I" of the
Hausdorff dimension > a; forms an F,-absorbing sequence in exp(I™).
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The classical result of West, Curtis, and Schori asserts that the hyperspace of any
nondegenerate Peano continuum is homeomorphic to the Hilbert cube. This allows
us to apply methods of infinite-dimensional topology to investigation of classes of sets
with prescribed geometric properties.

In particular, in a series of papers [1],{2],(3],[5], the topology of the hyperspace of
sets of given Lebesgue dimension (see also [1] for the case of cohomological dimension)
is described. In this note we consider the case of the Hausdorff dimension.

PRELIMINARIES. A typical metric will be denoted by d. By diamn(A) we denote
the diameter of a subset A in a metric space Given a cover U of a metric space,
we define mesh{l) as sup{diam(U)|U € U}. For z € X and ¢ > 0 the set O((z) =
{y € Xid{z,y) <e¢} is an open =-hall centered at .

(e S]
By Q we denote the Hilbert cube, @ = [][~1,1];. The class of absolute neighbor-

hood retracts is denoted by ANR. A close(i slubset A of X € ANR is called a Z-set in
X if for every continuous function £: X — (0, 00} there exists a map f: X — X\A
which is e-close to the identity in the sense that d(z, f(z)) < (), for every z € X.
An embedding g:Y — X is called a Z-embedding if its image g(Y') is a Z-set in X.

By B(Q) = Q\ ﬁ (—1,1); we denote the pseudoboundary of Q.
i=1

HYPERSPACES. Let X be a metric space. The hyperspace of X is the space
exp X of nonempty compact subsets of X endowed with the Vietoris topology. A
base of this topology consists of the sets

n
(Vh,....Va)={A€expX|AC U V; and for every i € {1,2,...,n} ANV; # 0},

g=1
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where V1,..., V, run over the topology of X. The Vietoris topology is generated by
the Hausdorff metric dy,

d(A, B) = inf{e > 0| A C O.(B), B C O.(A)}.

For n € N, we denote by exp, X the subspace of exp X consisting of sets of cardi-
nality < n. Let exp, X = U{exp, X|n € N}.

HAUSDORFF DIMENSION. Let F be a subset of R™ for some n and s a non-
negative number. For € > 0 define

Hi(F) = inf Y _ (diamB)*,
BeB

where the infimum is over all covers B of F with mesh(B) < e.
Let H*(F) = li_l;I‘lg H:(F). There exists a unique number s, the Hausdorff dimen-

sion of F, such that H*(F) = oo whenever 0 < s < sp and H*(F) = 0 whenever
sg < § < 0o. We write dimgyg F = s¢.

Proposition. For every a > 0 the set Co = {A € expR" | dimy(4) < o} 5 a
Gs-subset of expR™.

Proof. For every A € C,, by the definition of Hausdorff dimension, ?{“"’1"‘(14) = )
for every i € N. Therefore, for every A € Cq there exist open sets Up, , ..., Um,, which
are elements of a fixed countable base I/ of R", such that

k
A€ (Unyy i Um,) and 3 (diamUp, )2+ < 1/i.
=1
Let
a5 o Ui | }_;(aiarnymj)“+1f’=< 176 Uiy yoneslliny € 13

F=1

20 oo
We have just shown that C, C () Vi. Prove the inclusion (| Vi C Cy. Assuming the

i=1 i=1
opposite, choose B € expR™ such that dimygB = s > a and B € (| V;. Then there
i=1
is ig € N such that a + 1/i< s for every 1 € N, 1 2 1,.
We therefore have H>+!/(B) = oo for all i € N, i > io. Taking into account that
*+1/%B) > 0, we conclude that I(i) = inf{#Z*'/(B)|0 < e < 1} > 0.
The function (i) is an increasing function of i. Thus, there is 93 € N with
o0
(i) > 1/4;. Then obviously B ¢ Vi, D [ Vi and we obtain a contradiction.

i=1

0
We have proven that C, = () Vi. Since V; are open in expR", this completes the
=1
proof. 0O
ABSORBING SYSTEMS. We briefly recall some definitions from the theory of

absorbing systems; see (3], [4] for details.
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Let T be an ordered set and M, a class of metric spaces for ¥y € I'. Put Mp =
(M4)yer. An Mp-system in a space X is an order preserving indexed collection
(Ay)~er of subsets of X such that A, € M, for every 7.

An Mr-system X in X € ANR is called strongly Mr-universal in X if for every
Mr-system (A,) in Q, every map f:@Q — X that restricts to a Z-embedding on
some compact subset K of @ can be approximated by a Z-embedding ¢:Q — X
such that g|K = f|K and for every ¥ € I we have g7} (X, )\K = A,\K.

An Mp-system X is called Mr-absorbing in X if the set | ¢r X5 is contained in
a o-compact 0-Z-set in X and & is strongly Mr-universal in X.

By F, we denote the class of o-compact spaces.

MAIN RESULT.

Lemma 1. Let n € N. For every continuous function f:Q — exp(I") that re-
stricts to a Z-embedding on some compact subset K of Q and for every ¢ > 0
there is a Z-embedding h: Q — exp(I™) such that h|K = f|K, for every z € Q\K
d(f(z), h(z)) < € and dimg (h(z)) = 0.

Proof. Consider a sequence of compact subsets {B;}{2, in I" defined as follows:

Bl—_-g'ﬁn,
| R | )
BQ—“'Q‘E'JJ- +§'y01

where s = (L, 1,.., 1).
Let a; be an embedding [-1,1] into B;. Forevery r € Q, z = (2:){2, let Z € () be
defined as follows:

z= [.'51,:El,.’52,1:1,172,1'3,31,1!2,33,34,_ . )

Let the map £ be given by the formula
oC
&(z) = |J ai(@:) U {no}-
=1

It is clear that for every z € @, £(z) is a compact subset in I". On the other hand,
£(z) is a countable subset of I", therefore, dimg (§(z)) = 0.

Choose two points z,z’ € Q, z = (2;)82,, ' = (z}){2,. If ¢ # z’, then there is
i € N such that z; # z/. In this case for some j € N, a;(%;) # a;(2}). Therefore,
&(z) # &(z'). This implies that £ is an injective map.

Let ¢ > 0. Let f:Q — exp(I™) be a map that restricts to a Z-embedding on
some compact subset K of Q. Without loss of generality we may assume that f
is a Z-embedding because exp(I™) is homeomorphic to the Hilbert cube (see [4]).
Define u: Q@ — [0, 1] by u(z) = } -min{e, dg(f(z), f[K])}. The set exp(I")\ exp, (I")
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is locally homotopy negligible in exp(I™)(see [4]). Therefore, there is a homotopy
H:exp(I®) x I — exp(I"™) such that

1) HU = Iexp(i"];

2) for every t € (0,1], He(exp(I™)) C exp, (I").

It is clear that we may additionally assume that

3) for every t € [0, 1], dy (H;, lexp(in)) < 2t;

4) for every t € (0, 1], He(exp(I™)) C exp, ([0,1 — 3t/4]").

For every r € Q, let F(z) = H(f(z),p(z)). Then, if p(z) > 0, F(z) is a finite
approximation of f(z).

Now define h: Q@ — exp([™) as follows:

he) = Fe)u | Wa@)/4-€@)+ 9.

yEF{z)

CLAIM 1. The map h is well-defined, continuous and satisfies h|K = f|K.
Moreover, for every z € Q, dg(f(z), h(z)) < 3 min{e,d(f(z), f[K])} and for every
z € Q\K, dimg(h(z)) = 0.

a) Let z € Q. Then by (4), F(z) C [0,1 — 3u(z)/4]". For every y € F(z), the
diameter of the set [u(z)/4-&(z) + y] does not exceed u(z)/4, which implies that
h(z) C (0,1 - p(z)/2)".

b) If u(z) > 0, then h(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, ther h(z) = f(z) which is also compact and non-empty.
Therefore for every x € Q, h(z) € exp(l™).

¢} That A is continuous follows from the continuity of the involved maps.

d) If u{e) > 0, then h{z) is a finite union of countable sets. Therefore for every
z € (NK dimplh(r)) = 0.

oi Fix 2 € Q. It is clear that dy(fiz), h(z)) < 2-p(x)+p{z)/4=9- pnlaei/4, frow
which it tollows that dy (f(z), k{x)) < 3/4 - min{e,dg(f(z), fIK])]. So we are done
because this inequality implies that hj{K = fIN.

CLAIM 2. The map h is injective.

Let us first observe that from Claim 1 and the fact that f is an embedding it follows
that

 R[Q\K]NA[K] = 0. (%)

Now fix z,z' € Q. 1f both z and z’ belong to K, then since h|K = f|K and since f
is an embedding, it is trivial that h(z) = h(z') implies z = 2’. If z ¢ K and 2’ € K,
then from (x) it follows that h(z) # h(z'). So without loss of generality we may
assume that z,z’ € Q\K.

Let h(z) = h(z’). Our task is to show that z = z’. We will first prove that
p(z) = p(z'). Assume the contrary, e.g. assume p(z) < p(z'). For some y € F(z),
consider in I" the set By = (u(x)/4) -I" 4+ y. There exists a point m € h(z) such that
im| < |p| for all p € h(z). Moreover, this point m is an element of F(z) N F(z’) (by
construction of the map h and since h(z) = h(z')). For this m, we see that B, Nh(z)
is infinite while By, N h{z’) is a finite set, being a finite union of finite sets. This
contradiction establishes that p(z) = p(z’).
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Again consider the point m = (my,...,my) € h(z) such that |p| < |m| for every
p € h(z). Since p(z) = u(z'), we have

m* = (my — pu(z)/4,... ,m, — p(z)/4) € F(z) N F(z').

Since F(z) and F(z') are finite, /n is maximal, there are a neighborhood U of 7 and
a d € (0,1] such that

UNh(z) =m" + p(z)/4(€(z) N Os(y0)) =
=m" + pu(z")/4(£(z") N Os(yo)).

Since the coordinates of z appear infinitely often in the coordinates of #, and the
same is true for z’, it now easily follows that z = z'.

CLAIM 3. The map h is a Z-embedding.

Since h[K] = f[K] is a Z-set, it suffices to show that h[Y]is a Z-set if Y C Q\ K is
compact. But this easily follows from the fact that the map h’: Q — exp(I™) defined
by

W)= |J Do) Ulua)/4-£(z) +3]

yEF(z)

maps @ into the complement of h[Y], for every positive §, and is d-close to the identity.
This completes the proof of the Lemmal. O

Theorem 1. Ifn > 1 and o € (0, n), then the set Dso(I") = {A € exp(I™)|dimy A >
a} is strongly Fo-universal in exp(I™).

Proof. Let € > 0. Choose a sequence A; C Ay C ... of compact subset in the
Hilbert cube @ and let A = [J)_, An. Let f:Q — exp(I") be a map that restricts to
a Z-embedding on some compact subset K of Q. Let p: Q — [0, 1], H:exp(I") x1 —
exp(I”), F: Q — exp(I™) be maps, as in the proof of Lemma 1.

For every t € [0, 1] let ¢:I — exp(I") be defined as follows: ¢(t) = H,(I"). Then,
it is clear that ¢(0) = I" and ¢((0,1]) C exp,, (I").

Let {B;}2, be a sequence of compact subsets of 1", as in the proof of Lemma
1, let 8;:1" — B; be a homeomorphism. For some A € (0,1} and y € I" define
(ﬂ,-); = AB; + y + Ayo, where yo = (1,1, ...,1).

Let h: Q — exp(I") be a map that satisfies the conditions of Lemma 1.
Now define g: Q — exp(I”) as follows

g@) =h@)u |J [UBEH((d(z, A1) U {n(=)/2-v0 + v}
yeF(z) Li=1

U{h(z) + p(z)/2- yo} -

We claim that g is a required map, i.e., g is an approximation of f with the
properties stated in the definition of strong F,-universality.

CLAIM 1. The map g is well-defined, continuous and satisfies g| K = f|K. More-
over, for every z € Q, dy(f(z),9(z)) < 35 min{e, d(f(z), f[K])}.
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a) Let € Q. Then by Lemma 1, h(z) C [0,1 — p(z)/2]". For every y € F(z), the
= =]
diameter of the set J (ﬁi);(z}ﬁ(cﬁ(d(a:, A;))) does not exceed u(zx)/4, which implies
i=1 -
that g(z) C I".

b) If u(z) > 0, then g(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, then g(z) = f(z) which is also compact and non-empty.
Therefore for every z € @, g(z) € exp(I”).

¢) That g is continuous follows from the continuity of the involved maps.

d) Fix ¢ € Q. It is clear, by the proof of Lemma 1, that dg(f(z),g(z)) < 9/4-
u(z) + p(z)/2 = 11 - p(z)/4, from which it follows that dg(f(z),g(z)) < 11/12-
min{e,dg(f(z), f[K])}. So we are done because this inequality implies that g|K =
fIK. -

CLAIM 2. The map g is injective. '

Injectivity of g follows from injectivity of h and construction of the map g.
CLAIM 3. We have g~ }[Dso(I")]\K = A\K.

By analogy to the proof of Lemma 1, we first observe that from Claim 1 and the
fact that f is an embedding it follows that

glQ\K]Ng[K] =0. (*)

Choose ¢ € Q\K. If r € Ax for certain k, then d(x, Ax) = 0. This implies that
é(d(z, Ag)) = I". In this case, we see that g(z) contains the n-dimensional cube and
this implies that dimg (g(z)) > n. Therefore, g(z) € D5 o(I").

If + ¢ A, then d(z,Ax) > 0 for every k € N and ¢(d(z, Ax)) is a finite set for
all & € N. In this case, by construction, g(z) is a countable set, being a countable
union of finite sets. This implies that dimg(g(z)) = 0. Therefore, g(z) &€ D5 (I").
Equality (x) completes the proof of Claim 3.

CLAIM 4. The map g is a Z-embedding.

Follows from the same results for the map A.
This completes the proof of Theorem 1. U

Corollary. In the assumptions of Theorem I, the pair (exp(I™), Dso(I")) s home-
omorphic to (Q, B(Q)).

Proof follows from the standard results of the theory of absorbing sets in @Q;
see [4]. O

Theorem 2. Ifn > 1 and T = {9 }§L, is a countable ordered set, where 0 <
1 < ... € Yk < ... < n then the sequence {Ds~, (I")}5%, is strongly F,-universal in
exp(I™).

Proof. Let € > 0. Choose a decreasing sequence of g-compact subsets {Am}oo_,
in Q and a map f:Q —> exp(I™) that restricts to a Z-embedding on some compact
subset K of Q.

Write N as the disjoint union of infinitely many infinite sets, say, Nj, Na,.... It is
clear that for every ¥ € (0, n] there is a set C € exp(I") such that dimy(C) = 7. For
p>=1and i€ Ny, let C; € exp(I™) be a set such that dimgy(Ci) = 1p41.
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Since the set exp(I™)\ exp,, (I") is locally homotopy negligible in exp(I")(see [4]), w
can find a continuous function ¢;: I —» exp(I") such that ¢;(0) = C; and ¢;((0,1]) C
exp, (I7).

Let 1:Q — [0,1], F: Q — exp(I[") be maps, as in the proof of Lemma 1.

For every m > 1 write A, = U AP, where AP are compact subsets of Q. Let

p=1
i(m, p) be the pth element of N,.

Let {B;}{2, be a sequence of compact subsets of I", as in the proof of Lemma 1,
and 3;:I" — B; be a homeomorphism. For some A € (0,1] and y € I" define
[,6‘,v)" ABi + y + Ayo, where yo = (1,1, ..., 1).

Let h: Q@ — exp(I") be a map that satlsﬁes the conditions of Lemma 1.

Now define g: @ — exp(I") as follows:

g(z) =h(z)u |J U U (Bitm. )4 4 ($i(m,p) (d(z, AF))) U {n(2)/2 - yo + v}

yEF(z) Lm=1p=1
U {h(z) + p(z)/2 - yo} .

We claim that g is a required map, i.e., g is an approximation of f with the
properties stated in the definition of strong F,-universality.

CLAIM 1. The map g is well-defined, continuous and satisfies g|K = f|K. More-
over, for every z € Q, du(f(z),g(z)) < 1; min{e, d(f(z), f[K])}.
a) Let z € Q. ’Ihen by Lemma 1, h(z) C [0,1 — p(z)/2]". For every y € F(z), the

diameter of the set U U (Bi(m p))“(x] (¢i(m p)(d(z, AB,))) does not exceed p(z)/4,

m=1p=1
which implies that g(z) C I".

b) If u(x) > 0, then g(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, then g(z) = f(z) which is also compact and non-empty.
Therefore, for every z € Q, g(z) € exp(I").

¢) That g is continuous follows from the continuity of the involved maps.

d) le z € Q. It is clear, by the proof of Lemma 1, that dy(f(z),9(z)) < 9/4-
u(z) + p(z)/2 = 11 - p(z)/4, from which it follows that dp(f(z), g (z)) < 11/12.-
min{e, dH f(z), f[K])}. So we are done, because this inequality implies that g|K =
fIK.

CLAIM 2. The map g-is injective.

Injectivity of g follows from injectivity of h and construction of the map g.

CLAIM 3. For every k € N we have g7![Dy, (I")\K = Ax\K.

By analogy to the proof of Lemma 1, we first observe that from Claim 1 and the
fact that f is an embedding it follows that
g[Q\K]ng[K]=0. (%)

Choose z € Q\K. If z € Ax\Ak41 for certain k, then z € A}, for some p. This
implies that d(z, AY) = 0 and ¢;k p)(d(z, A})) = Ci(x,p), Where dimg (Cix, o) =t
Thus, g(z) is a union of finitely many countable sets and countable union of the sets for
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which the Hausdorff dimension does not exceed 4x41. Therefore, dimg(g9(z)) = Yk41-
This implies that for z € A\ Ak 41, 9(2) € Dy, (I")\ D5, ,, (I").

If z ¢ Aj for every k € N then g(z) is a countable set and therefore dimg (g(z)) = 0.
Equality (x) completes the proof of Claim 3.

CLAIM 4. The map g is a Z-embedding.

Follows from the same results for the map h.
This completes the proof of Theorem 2. O

Corollary. The pair (exp(I"), D=n(I")), where D=, (I") = {A € exp(I")|dimyA =
n}, ts homeomorphic to (Q“, B(Q)¥).

Proof. Since B(Q)“ is F,s-absorbing set in Q“ (see [4]) and we can write
D=zn(I") = () Dsn-1/:(I"), this follows from Theorem 2. O
i=1 '
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