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INVARIANT HYPERCOMPLEX STRUCTURES

Igor MYKYTYUK

National University “L’viv Politechnica”,
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G-invariant Kihler structures (J;,§2) on the cotangent bundles T*(G/K) (symplec-
tic manifolds with the canonical 2-form §2) of Hermitian symmetric spaces with the
standard antiholomorphic involution are considered. For arbitrary such a structure
(J1,9) a hypercomplex manifold (T*(G/K), {J1, J2}) is constructed.
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1. A hypercomplex manifold (X, {J1, J2}) is a pair consisting of a 4n-dimensional
manifold X together with two anticommuting complex structures Jy,J;. It then
follows that X has a family of complex structures Jy = Ay Ji+X2Ja+A3J3, J3 = JiJs,
parametrized by points A = (A1, Az, A3) in the unit sphere S? C R®.

This article concerns the construction of hypercomplex structures on the cotan-
gent bundle of Hermitian symmetric spaces. Non-compact homogeneous manifolds
carrying such a structure were considered by Barberis and Miatello in [1], the case of
compact homogeneous manifolds was considered by Joyce in [2].

Let M = G/K be a Hermitian symmetric space and o : TM — TM the involution
which maps any tangent vector Y at m € M onto —~Y at m. Let € be the canonical
symplectic structure on TM (the standard G-invariant metric gy on M identifies
the cotangent bundle 7* M and the tangent bundle TM). The main purpose of this
note is to construct the following rich family of examples: let 9 be a set of all G-
invariant Kahler structures on some tube T°M = {v € TM : g(v,v) < s} (with Q
as the Kahler form) such that the mapping ¢ is an antiholomorphic involution. We
prove here that for any J, € P there is a complex structure J; on T°M for which
(T* M, {J1, J2}) is a hypercomplex manifold. The proof is simple because it is based
on a Lie algebraic method of description of the elements J; € P [4] (usually the
tensors J, are described in terms of geometric structures associated with the metric
gm on M [5,6]). Remark that the set 9B is non-empty because it contains the adapted
complex structure [3]; for all rank-one symmetric spaces this set P is described in [4].
Moreover, the obtained set of hypercomplex structures on TM contains the hyper-
Kahler structure constructed in [5,6].

2. Anticommuting structures. We recall some facts on Kahler and hyper-
complex structures (see for example [4]). Let X be a (real) manifold with a symplectic
form  and J be an almost complex structure on X. J is a complex structure
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if the complex subbundle F of (0, 1)-vectors of J is an involutive subbundle of the
complexified tangent bundle TCX. By definition, for any z € X we have F(z) = {Y +
iJ:(Y),Y € T, X} (J? = —1). Wesay that a complex structure J is a Kahler structure
with the Kaler form Q if 1) Q,(Jz(Y1), Jz(Y2)) = Q:(Y1,Y3) for any Y1,Y2 € T: X;
2) the quadratic form B.(Y1,Y2) = Q. (J-Y1,Y2) is symmetric and positive-definite.
Such a Kahler structure J will be denoted by (J, F, Q).

A pair (J;, J2) formed by two anticommuting complex structures Jy, Js is a hyper-
complex structure on X. Then J3 = J;J is also a complex structure on X (for a
proof see [7]).

3. G-invariant complex structures. Let M = G/K be a symmetric space with
a real reductive connected Lie group G and a compact connected subgroup K. Let g
and  be the Lie algebras of the groups G and K respectively,

g=tom,  [EmlCm [mm]CE (1)

Suppose that there is a nondegenerate Ad G-invariant bilinear form (,) on g such
that its restriction (,)|m is a positive definite form and ¢Lm. This form defines the
G-invariant Riemannian metric g on M = G/K. The metric gy identifies the
cotangent bundle 7" M and the tangent bundle TM and thus we can also talk about
the canonical symplectic 2-form Q on TM. This form Q is G-invariant with respect
to the natural action of G on TM.

Since g = ¢@ m is an Ad K-invariant (orthogonal) splitting of g, we can consider
the trivial vector bundle G x m with the two Lie group actions (which commute)
on it: the left G-action, {4 : (g,w) — (hg,w) and the right K-action rx : (g, w) =
(gk, Adg- w). Let m : G x m = G xg m be the natural projection. It is well

known that G x g m and TM are isomorphic. Using the corresponding G-equivariant

diffeomorphism ¢ : G xg m = TM, [(g.w)] = d;‘tLg exp(tw)K and the projection

7 define the G-equivariant submersion IT: G xm = T'M, I1 = ¢o 7. Let &' be the
left-invariant vector field on the Lie group G defined by a vector £ € g. Since Q 1s a
symplectic form, the kernel K C T(G x m) of the 2-form Q = II*Q is the kernel of
Il., i.e. is generated by the global (left) G-invariant vector fields L, ¢CetonGxm,
¢E(g,w) = (€'(9), [w, <))

For given s, 0 < s < oo consider the tube T° M def {v € TM of length < s}. Put
W € {wem:|w| < s}, where |w)| Lf V{w, w). We will say that a smooth mapping
P:W?* — GL(m), w— P, is K-equivariant if

Adi 0Py, 0 Adg-1 = Paq,w onm forall we W keK. (2)

This mapping determines a complex (left) G-invariant subbundle F(P) C T¢(GxW*)
generated by nowhere vanishing on G x W?* (left) G-invariant vector fields L tem
and (£ € TK, ¢ € &, where

59, w) = (§'(9),iPu(£))- (3)

The subbundle F(P) is (right) K-invariant because the mapping P is K-equivariant.

Therefore F(P) & I1.(F(P)) is a well-defined (smooth) complex subbundle of the

complexified tangent bundle T¢(T* M) (K€ C F(P)).
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Consider two (left) G-invariant and (right) K-invariant subbundles 7, 7, of the
tangent bundle 7(G x m) given by

Talg, w) = {(€'(9),0), E€m}, T(g,w)={(0,u), u€m=T,m}.

Put 7 = 73 @®T,. Since T(Gxm) = K&T, the map I, |7(4, ) is an isomorphism of the
spaces T(g.w) and Try(g,w)(TM), in particular, by (right) K-invariance of 7, and 7, the
images 11.(75) and 1L1.(7,) are well-defined subbundles. But the natural projection
p:G = G/K is a locally trivial fiber bundle so that for any g € G there is a (regular)
submanifold D C G such that the restriction p: D — G/K is an embedding. Since
[1 = ¢ om, the restriction IT : D x W* — TM is also an embedding. Denote by Up
the image I1(D x W*). Now using the splitting

TUp =IL.(Ta|D x W*) @ IL.(T | D x W?), (4)
we obtain that the subbundle F(P)|Up is a subbundle of (0, 1)-vectors of the al-

_p-1
most complex tensor J(P)|Up : TUp — TUp, where Ju(guw)(P) = (F[’) };‘” )
) w

(J2(P) = —1). The tensor field J(P) on T(T*M) is smooth because F'(P) is a
well-defined subbundle. J(P) defines a complex structure if the subbundle F(P) is
involutive.

Fix base {W,} in m. Let {ws} be the coordinates in m with respect to the basis
{W,}. For any vector-function 7 : W* — m, r(w) = ), n(w)Ws by 7 we denote

the vector field P &' b n,a . Let P(€), where £ € m, denote the vector-function
P(€) : w > Py(§).

3.1. Proposition. [4] Suppose that M = G/K is a Riemannian symmetric space.
Let F(P) be a complex subbundle of TC(G x W*) defined by a K -equivariant mapping
P W?* = GL(m). Thcn

1) the subbundle F(P) = Il (.T(P)) is involutive on T* M if and only if the Lie bracket

identities [P_S m](w; w, [€,n]] hold on W* for all (fized) §,n € m;

2) the complex structure J(P) surh that o, (F(P)) = F(P) is a Kahler structure with
the Kihler form Q if and only if Py, is a symmetric positive-definite operator for each
w € W* (with respect to the bilinear form (,) on m).

For any G-invariant Kdhler structure (J, F,Q) on T*M for which o.(F) = F there
ezists a unique K -equivariant mapping P : W* — GL(m) such that J = J(P) and
F = F(P).

4. Examples: adapted complex structures. Let J# be a (smooth) complex
structure on some tube 7° M. The complex structure J4 on T* M is called adapt-
ed [3,8] if for every geodesic v in M a map ¥ : C = T(G/K), (z + iy) — yy(z)
is holomorphic on 9~}(T*M). Since the Riemannian manifold M is complete, an
adapted complex structure on T*M is unique (if it exists) [8]. Since the Riemannian
manifold (M, gm) is real-analytic and is also a symmetric space, on some tube 7° M
there exists a real-analytic adapted structure J# [8]. If the Lie group G is compact,
by Corollary 21.1 of [9] (see also [5]) FA = F(P#), where

ad,, cos ady,
sinady, |..’

m

PA.W? = GL(m), w— P2, P2 = wem', s=o0. (5)
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In this case the adapted structure F4 is defined on the whole tangent bundle TM
and (J4, F4,Q) is a Kahler structure.

If G is a noncompact semisimple Lie group and if g = ¥ @ m is the Cartan de-
composition of its Lie algebra g then the (real) Lie algebra t @ im C g€ is compact.
Now it follows easily from Proposition 3.1 that formula (5) defines a Kahler struc-
ture (J(P4), F(P#),Q) on some tube T°M, 0 < s < oco. For this s eigenvalues of
symmetric operators ad’, [m, w € W* are positive.

5. Hypercomplex structures on the cotangent bundles of Hermitian
symmetric spaces. We continue with the previous notations but in this subsection
it is assumed in addition that G/K is an irreducible Hermitian symmetric space (of
the compact or noncompact type).

We will review a few facts about Hermitian symmetric spaces (see Ch.VIII, §§4-
7,{10]). Since G/K is an irreducible Hermitian symmetric space, then g is a simple
Lie algebra and the center ¢ of ¢ is one-dimensional. There exists a unique (up to

sign) element 2o € ¢ C ¢ such that for the operator I = ad,, |[m on m we have I? = —1.
Moreover, taking into account relations (1) and the Jacobi identity, we obtain that
g, In)=1[€,m), I, =[I§(] forall{,n€m, (et (6)

Since the Lie group K is connected, the group Ad(K) commutes elementwise with /
(on m). This endomorphism determines an G-invariant complex structure on M [10].

Now fix some K-equivariant mapping P : W* — GL(m). The mapping P/,

(P df p I is also K-equivariant because the group Ad(K) commutes element-

wise with I. As an application of the proposition above we will prove
5.1. Lemma. If J(P) is a complez structure then so is J(PI).

Proof. Suppose that J(P) is a complex structure, i.e. F(P) is an involutive
subbundle. Since I is independent of w, by the definition of the Lie bracket and from
relations (6) it follows that

il

d
‘&IL:o ((PI)wa‘i”f)w(U(’f‘) - (P")wmmw(n)(&))

d
= EI:—_-D (P“”'“P“(“)Uq) i Pw+th{In)(If))

= [P{&, Pl w)
= —[w, [I¢, In]]
e —[‘w.[ﬁ,?}']]

on W* for any €, n € m. Thus by assertion 1) of Proposition 3.1 the subbundle F(PI)
is involutive, i.e. J(PI) is a complex structure on T'(T* M).

Remark that locally on the open subset Up C T'(7* M) with respect to the splitting
(4) the maps J(P), J(PI) and its product J(P)J(PI) are represented by

g —p= 0 IRt
Jl’](g.w](P) = (Pw Ow ) ’ JH(QJW}(P” e (ow Ow ) ;

i 0
Jii(g,w) (P)Jn(gw)(PI) = ( 0 P ”,_1).
Wt w

[(P1)&), PI)) (w)
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Therefore J(P) and J(PI) is a pair of anticommuting complex structures on 7° M.
Thus we have proved

5.2. Theorem. Let (J(P), F(P),Q) be an arbitrary G-invariant Kahler structure
on T*M such that o.(F(P)) = F(P). Then (T°"M,{Jy = J(P),J2 = J(PI)}) isa
hypercomplex manifold.

5.3. Remark. Using the results of [5,6] we obtain that the constructed above
hypercomplex structure (T* M, {J; = J(P), J, = J(PI)}) is a hyper-Kahler structure
if and only if PI = IP,ie. if P,I = IP, for any w € W*.

5.4. Remark. If G/K is a rank-one symmetric space isomorphic to U(n+1)/(U (1) x
U(n)), n > 2 then each G-invariant Kahler structure J(P) on TM is determined by
the following operator-function P : m — GL(m), w — Py, {4]

Pu(€) = W(r)E + ($(2r) = 9() 72 (Tw,&)Tw + (A(r) = $(r)) ™2 - (w, E)uw,

where w € m, r = |lw|]|'= /=3 Trw?, A\, : [0,400) = R are arbitrary positive
cosha(r) , 1

functions satisfying the relations y(r) = rm, o(r) = X
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IHBAPIAHTHI I'lTTIEPKOMIIJIEKCHI CTPYKTYPHU
I. MukuTiok

Hayionaavruti ynisepcumem “/lveiecoxa noaimerHixa”,
sya. C. Bandepu, 12 790183 /lveis, Yxpaina

PoarasnyTo G-inBapianThi kenepoBi cTpykTypu (Ji,§)) Ha KOAOTUYHUX po3lua-
pyBannax T*(G/K) (cAMIIEKTHYHAX MHOIOBHJAX 3 KaHOHiuHOIO 2-opmoio ) ep-
MITOBHUX CUMETPUYHUX NPOCTOPIB 31 CTaHAAPTHOIO AHTHUIOJOMOPMHOI IHBOMIOLIEIO.
Nas posiabnol Takol crpykrypu (Ji,{2) nobyaoBano rinépKOMIUIEKCHUA MHOT'OBMJ

(T*(G/K), {1, J2}). ‘
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