УДК 515.12+517.51

TRIPLEABILITY OF THE CATEGORY OF (STRONGLY) SEMICONVEX COMPACTA OVER THE CATEGORY OF COMPACTA

Oleg NYKYFORCHYN

Vasyl Stefanyk Precarpathian University, 57 Shevchenka Str. 76000 Ivano-Frankivsk, Ukraine

The notion of (strongly) semiconvex compactum and semiconvex combination generalizes a notion of convex compactum and convex combination (a "segment" that connects a point with itself is allowed to be a non-trivial loop). It is proved that a quotient space of a (strongly) semiconvex compactum for an equivalence relation closed under semiconvex combination is a (strongly) semiconvex compactum as well. Also tripleability of the category of (strongly) semiconvex compacta over the category of compacta is established.

Key words: compactum, (strongly) semiconvex compactum, left adjoint functor, tripleability.

First recall some definitions and facts from [5]. We use the following terminology and denotations: I = [0,1] is a unit segment, a compactum is a (not necessarily metrizable) (bi)compact Hausdorff topological space. A semiconvex compactum is a compactum X with a continuous ternary operation $c: X \times X \times I \to X$ (we usually call it semiconvex combination and write $\lambda(x,y)$ instead of $c(x,y,\lambda)$) satisfying the following axioms:

- 1) for all $x, y \in X$, $\lambda \in I$: $\lambda(x, y) = (1 \lambda)(y, x)$ (commutative law);
- 2) for all $x, y, z \in X$, $\lambda, \mu, \nu \in I$, $\lambda + \mu + \nu = 1$, $\mu \neq 0$:

$$\lambda(x, \frac{\mu}{\mu + \lambda}(y, z)) = (\lambda + \mu)(\frac{\lambda}{\lambda + \mu}(x, y), z)$$

(associative law);

- 3) for all $x, y \in X : 1(x, y) = x$.
- 4) there exists a base β of a unique uniformity inducing the topology on X [2] such that $B \in \beta$, $(x, y), (z, t) \in B$, $\lambda \in I$ implies $(\lambda(x, z), \lambda(y, t)) \in B$.

The last axiom is equivalent to the following:

4') the topology on X is generated by a saturated family of pseudometrics [2] $(d_{\alpha})_{\alpha \in \mathcal{A}}$ such that $x, y, z, t \in X$, $\epsilon > 0$, $\alpha \in \mathcal{A}$, $d_{\alpha}(x, y) < \epsilon$, $d_{\alpha}(z, t) < \epsilon$, $\lambda \in I$ implies $d_{\alpha}(\lambda(x, z), \lambda(y, t)) < \epsilon$.

[©] Nykyforchyn Oleg, 2003

Extend the notion of semiconvex combination onto a finite number of elements of X. Let $\Delta_{n-1} = \{(\lambda_0, \ldots, \lambda_n) \in \mathbb{R}^{n+1} : \lambda_0, \ldots, \lambda_n \geq 0, \ \lambda_0 + \cdots + \lambda_n = 1\}$ denote the standard n-dimensional simplex. Given $(\lambda_0, \ldots, \lambda_n) \in \Delta_n$ and points $x_0, \ldots, x_n \in X$ let

$$(\lambda_0,\ldots,\lambda_n)(x_0,\ldots,x_n)=\left\{\begin{array}{ll}x_0,&\text{if }\lambda_0=1;\\\lambda_1(x_0,(\frac{\lambda_1}{1-\lambda_0},\ldots,\frac{\lambda_n}{1-\lambda_0})(x_1,\ldots,x_n)),&\text{if }\lambda_0\neq1.\end{array}\right.$$

If arguments x_0, \ldots, x_n of semiconvex combination are permutted simultaneously with the respective coefficients $\lambda_0, \ldots, \lambda_n$, the value of semiconvex combinations does not change.

For any subset $A \subset X$ the set

$$Cl\{(\lambda_0,\ldots,\lambda_n)(x_0,\ldots,x_n)\mid n\in\mathbb{N},\ x_0,\ldots,x_n\in A,\ (\lambda_0,\ldots,\lambda_n)\in\Delta_n\}$$

is the least closed subset in X that contains A and is closed under semiconvex combination. It is called the semiconvex hull of A.

There exists the largest closed under semiconvex combination closed subset $A \subset X$ such that $\lambda: A^2 \to A$ is surjective for any $\lambda \in I$. It is called the weak center of X and denoted WCtr(X). The center Ctr(X) of the semiconvex compactum X is a closed subset consisting of all points $b \in X$ such that $\lambda(b,b) = b$ for any $\lambda \in I$. Always $Ctr(X) \subset WCtr(X)$, and

$$WCtr(X) = \bigcap \{ (\lambda_0, \dots, \lambda_n)(x_0, \dots, x_n) \mid n \in \mathbb{N}, (\lambda_0, \dots, \lambda_n) \in \Delta_n, x_0, \dots, x_n \in X \}$$
$$Ctr(X) = \bigcap \{ (\lambda_1, \dots, \lambda_n)(x, \dots, x) \mid n \in \mathbb{N}, (\lambda_0, \dots, \lambda_n) \in \Delta_n, x \in X \}.$$

The center of X is closed under semiconvex combination and with operation induced becomes a convex compactum. Always $Ctr(X) \subset WCtr(X)$. If Ctr(X) = WCtr(X), then X is called a strongly semiconvex compactum. Here is an alternative definition: X is a strongly semiconvex compactum if and only if for any $x \in X$ the point $(\lambda_0, \ldots, \lambda_n)(x, \ldots, x)$ converges to a unique point $y \in X$, when $(\lambda_0, \ldots, \lambda_n) \in \Delta_n$ and $\max(\lambda_1, \ldots, \lambda_n) \to 0$. This implies that if $f: X \to Y$ is a surjective map of strongly semiconvex compacta that preserves semiconvex combination (i.e., $f(\lambda(x_1, x_2)) = \lambda(f(x_1), f(x_2))$ for any $x_1, x_2 \in X$, $\lambda \in I$), and X is strongly semiconvex, then Y is strongly semiconvex as well.

For proofs see [5].

Theorem 1. Let X be a (strongly) semiconvex compactum and " \sim " $\subset X \times X$ be a closed equivalence relation that is closed under semiconvex combination. If by [x] the equivalence class that contains $x \in X$, is denoted, then the formula $\lambda([x], [x']) = [\lambda(x, x')], x, x' \in X, \lambda \in I$, correctly defines an operation $Y \times Y \times I \to Y$ on $Y = X/\sim$ such that Y is a (strongly) semiconvex compactum.

Proof. Since "~" is closed, $X/_{\sim}$ is a compactum [2]. Denote by $q: X \to X/_{\sim}$ the quotient map. Let $x_1 \sim x_1'$, $x_2 \sim x_2'$, $x_1, x_1', x_2, x_2' \in X$, $\lambda \in I$. Then by the assumption of the theorem $\lambda(x_1, x_2) \sim \lambda(x_1', x_2')$, and the operation is well defined. Axioms (1)-(3) for Y are easy consequences of (1)-(3) for semiconvex combination in

X. Since q is a surjective continuous map of compacta, the diagram

$$\begin{array}{ccc} X \times X \times I & \xrightarrow{\text{semiconvex combination}} & X \\ & & & \downarrow q \\ & & & \downarrow q \\ & & & \downarrow q \\ & & \downarrow q \\$$

shows that new defined operation is continuous.

Denote by $\exp Z$ [3] the set of all nonempty closed subsets of an arbitrary compactum Z. Then the multivalued map $q^{-1}: Y \to \exp X$ is upper semicontinuous, i.e., for any open set $U \subset X$ the set $\{y \in Y \mid q^{-1}(y) \subset U\}$ is open. Thus for any closed $F \subset X$ the set $\{y \in Y \mid q^{-1}(y) \cap U \neq \emptyset\}$ is closed. It is easy to prove that the map $Q = (\times) \circ (q^{-1} \times q^{-1}): Y \times Y \to \exp(X \times X), \ Q(y_1, y_2) = d^{-1}(y_1) \times d^{-1}(y_2)$, is upper semicontinuous as well.

Take a saturated family $(\rho_{\alpha})_{\alpha \in \mathcal{A}}$ of pseudometrics that generates the topology on X and satisfies (4'). For any $\alpha \in \mathcal{A}$ the formula

$$\tilde{\rho}_{\alpha}((x_1, x_2), (x_3, x_4)) = \max\{\rho_{\alpha}(x_1, x_3), \rho_{\alpha}(x_2, x_4)\}$$

defines a continuous pseudometric on $X \times X$. For each $\epsilon > 0$ the set

$$F_{\epsilon}^{\alpha} = \{(x_1, x_2) \in X^2 \mid \tilde{\rho}_{\alpha}((x_1, x_2), ``\sim") \leqslant \epsilon\} = \{(x_1, x_2) \in X^2 \mid \exists z_1, z_2 \in X : z_1 \sim z_2, \rho_{\alpha}(x_1, z_1) \leqslant \epsilon, \rho_{\alpha}(x_2, z_2) \leqslant \epsilon\}$$

is closed, as well as the set

$$V_{\epsilon}^{\alpha} = \{ (y_1, y_2) \in Y^2 \mid Q(y_1, y_2) \cap F_{\epsilon}^{\alpha} \neq \emptyset \} = \{ (y_1, y_2) \in Y^2 \mid \exists x_1 \in q^{-1}(y_1), \\ \exists x_2 \in q^{-1}(y_2), \exists z_1, z_2 \in X : z_1 \sim z_2, \rho_{\alpha}(x_1, z_1) \leqslant \epsilon, \rho_{\alpha}(x_2, z_2) \leqslant \epsilon \}.$$

Since $(\rho_{\alpha})_{\alpha \in \mathcal{A}}$ is saturated, the family $(F_{\epsilon}^{\alpha})_{\alpha \in \mathcal{A}, \epsilon > 0}$ is a centered system of nonempty closed subsets of $X \times X$, and $\bigcap_{\alpha \in \mathcal{A}, \epsilon > 0} F_{\epsilon}^{\alpha} = " \sim "$. Suppose that $(y_1, y_2) \in \bigcap_{\alpha \in \mathcal{A}, \epsilon > 0} V_{\epsilon}^{\alpha}$. Then $\{Q(y_1, y_2) \cap F_{\epsilon}^{\alpha} \mid \alpha \in \mathcal{A}, \epsilon > 0\}$ is a centered system of nonempty closed subsets of $X \times X$. Thus its intersection is nonempty, and $Q(y_1, y_2) \cap \bigcap_{\alpha \in \mathcal{A}, \epsilon > 0} F_{\epsilon}^{\alpha} \neq \emptyset \implies Q(y_1, y_2) \cap " \sim " \neq \emptyset \implies y_1 = y_2$. Therefore we have $\bigcap_{\alpha \in \mathcal{A}, \epsilon > 0} V_{\epsilon}^{\alpha} = \Delta = \{(y, y) \mid y \in Y\}$. Obviously $V_{\epsilon}^{\alpha} \supset \Delta$ for any $\alpha \in \mathcal{A}, \epsilon > 0$. Moreover, Int $V_{\epsilon}^{\alpha} \supset \Delta$ for any $\alpha \in \mathcal{A}, \epsilon > 0$. This follows from the inclusion

$$V_{\epsilon}^{\alpha} \supset U_{\epsilon}^{\alpha} = \{ (y_1, y_2) \in Y^2 \mid \exists y_0 \in Y \ \forall x_1 \in q^{-1}(y_1), \forall x_2 \in q^{-1}(y_2), \\ \exists z_1, z_2 \in q^{-1}(y_0) : \rho_{\alpha}(x_1, z_1) < \epsilon, \rho_{\alpha}(x_2, z_2) < \epsilon \}.$$

The upper semicontinuity of Q implies the openness of U_{ϵ}^{α} . Obviously $U_{\epsilon}^{\alpha} \supset \Delta$. Thus $(V_{\epsilon}^{\alpha})_{\alpha \in \mathcal{A}, \epsilon > 0}$ is a base of a unique uniformity that generates the topology on Y.

Suppose that $(y_1, y_2), (y'_1, y'_2) \in V_{\epsilon}^{\alpha}, \lambda \in I$. Then there exist $x_1, x_2, z_1, z_2, x'_1, x'_2, z'_1, z'_2 \in X$ such that $q(x_1) = y_1, q(x_2) = y_2, z_1 \sim z_2, \rho_{\alpha}(x_1, z_1) \leq \epsilon, \rho_{\alpha}(x_2, z_2) \leq \epsilon, q(x'_1) = y'_1, q(x'_2) = y'_2, z'_1 \sim z'_2, \rho_{\alpha}(x'_1, z'_1) \leq \epsilon, \rho_{\alpha}(x'_2, z'_2) \leq \epsilon.$ Then $\rho_{\alpha}(\lambda(x_1, x'_1), \lambda(z_1, z'_1)) \leq \epsilon, \rho_{\alpha}(\lambda(x_2, x'_2), \lambda(z_2, z'_2)) \leq \epsilon, \lambda(z_1, z'_1) \sim \lambda(z_2, z'_2).$ As $q(\lambda(x_1, x'_1)) = \lambda(y_1, y'_1), q(\lambda(x_2, x'_2)) = \lambda(y_2, y'_2),$ we obtain $(\lambda(y_1, y'_1), \lambda(y_2, y'_2)) \in V_{\epsilon}^{\alpha}$.

Thus $(V_{\epsilon}^{\alpha})_{\alpha \in \mathcal{A}, \epsilon > 0}$ satisfies (4), $Y = X/_{\sim}$ is a semiconvex compactum and $q: X \to X/_{\sim}$ preserves semiconvex combination. Therefore if X is strongly semiconvex, then Y is strongly semiconvex as well.

Semiconvex compacta and their continuous mappings which preserve semiconvex combination form a category denoted by SConv. Strongly semiconvex compacta form a full subcategory $SsConv \subset SConv$.

By Comp the category of compacta is denoted. Let $U: SsConv \to Comp$ and $U': SConv \to Comp$ be the forgetful functors.

Recall that a functor $L: \mathcal{B} \to \mathcal{C}$ is called *left adjoint* [1] to a functor $R: \mathcal{C} \to \mathcal{B}$ if there are given bijections $\theta(X, Y)$ between arrows from LX to Y in \mathcal{B} and arrows from X to RY in \mathcal{C} for all $X \in Ob\mathcal{C}$, $Y \in Ob\mathcal{B}$, and these bijections are natural by both arguments, i.e., the diagram

$$\mathcal{B}(LX,Y) \xrightarrow{\theta(X,Y)} \mathcal{C}(X,RY)$$

$$\downarrow c(Lf,g) \qquad c(f,Rg) \downarrow$$

$$\mathcal{B}(LX',Y') \xrightarrow{\theta(X',Y')} \mathcal{C}(X',RY')$$

commutes for any $X, X' \in Ob \mathcal{C}, Y, Y' \in Ob \mathcal{B}, f : X' \to X, g : Y \to Y'$.

Theorem 2. There exist left adjoints to U and U'.

Proof. An explicit construction of a left adjoint to U was described in [5]. Now an independent proof suitable for both cases will be given. Due to Freyd General Adjoint Functor Theorem [1] for a category \mathcal{B} with all limits and a functor $R: \mathcal{B} \to \mathcal{C}$ the existence of a left adjoint $L: \mathcal{C} \to \mathcal{B}$ is equivalent to the following:

- 1) R preserves all limits;
- 2) R satisfies the solution set condition, i.e., for any $X \in Ob\mathcal{C}$ there exists a set $S \subset \{(Y,f) \mid Y \in Ob\mathcal{B}, f: X \to RY\}$ (solution set) such that for any arrow $g: X \to RZ, Z \in Ob\mathcal{B}$, there is a pair $(Y,f) \in S$ and an arrow $h: Y \to Z$ in \mathcal{B} such that $g = Rh \circ f$.

It suffices to check the existence of limits in SConv and SsConv and their preservation by U' and U for two partial cases: for products and pairwise equalisers.

If X_{α} , $\alpha \in \mathcal{A}$ are (strongly) semiconvex compacta, then their product in $\mathcal{S}Conv$ ($\mathcal{S}sConv$) is merely a topological product with semiconvex combination defined by a formula

$$\lambda((x_{\alpha}),(y_{\alpha}))=(\lambda(x_{\alpha},y_{\alpha})), \quad (x_{\alpha}),(y_{\alpha})\in\prod_{\alpha\in\mathcal{A}}X_{\alpha},\lambda\in I.$$

Clearly it is preserved by the forgetful functor.

If $f, g: X \to Y$ is a parallel pair in SConv of SsConv, then its equaliser in Comp is a set $X_0 = \{x \in X \mid f(x) = g(x)\}$ with the embedding $i: X_0 \to X$. This set is closed in X and closed under semiconvex combination. Therefore X_0 with the restriction of semiconvex combination from X and $i: X_0 \to X$ is the equaliser of f, g in SConv (SsConv) that is preserved by U' (respectively by U).

Prove that the solution set condition holds. Suppose that Z is a (strongly) semiconvex compactum, $g: X \to Z$ is a continuous map of compacta and $|X| \leqslant \tau$, τ is infinite. Then cardinality of the set

$$\{(\lambda_0,\ldots,\lambda_n)(f(x_0),\ldots,f(x_n))\mid n\in\mathbb{N},\ x_0,\ldots,x_n\in X,\ (\lambda_0,\ldots,\lambda_n)\in\mathbb{Q}^{n+1}\cap\Delta_n\}$$

is not greater than τ . Its closure Y is the semiconvex hull of f(X) in Z, and $g = h \circ f$, $h: Y \hookrightarrow Z$ is the embedding, $f \equiv g$, $f: X \to Y$. Therefore we can put S to be the set of all continuous maps from X to "representatives" of all (strongly) semiconvex compacts with density not greater than τ .

Any adjunction between $L: \mathcal{C} \to \mathcal{B}$ any $R: \mathcal{B} \to \mathcal{C}$ is uniquely determined by a pair of natural transformations [1] $\eta 1_{\mathcal{C}} \to RL$ (the *unit* of adjunction) and $\epsilon: LR \to 1_{\mathcal{B}}$ (the *counit*) such that $R\epsilon \circ \eta R = 1_R$, $\epsilon L \circ L\eta = 1_L$. Then the functor $T = RL: \mathcal{C} \to \mathcal{C}$ and natural transformations η and $\mu = R\epsilon L: T^2 \to T$ form a triple $\mathbb{T} = (T, \eta, \mu)$. This means that diagrams

$$T \xrightarrow{\eta T} T^{2} \qquad T^{3} \xrightarrow{\mu T} T^{2}$$

$$T^{\eta} \downarrow \downarrow \qquad T^{\mu} \downarrow \downarrow \qquad T^{\mu} \downarrow \downarrow \mu$$

$$T^{2} \xrightarrow{\mu} T \qquad T^{2} \xrightarrow{\mu} T$$

commute. Then η is called the unit and μ the multiplication of \mathbb{T} .

For an arbitrary triple $\mathbb{T} = (T, \eta, \mu)$ in \mathcal{C} a pair (X, f), where $f : TX \to X$ is a morphism in \mathcal{C} , is called a \mathbb{T} -algebra iff the following commute:

$$\begin{array}{ccc}
X \xrightarrow{\eta X} TX & T^2 X \xrightarrow{\mu X} TX \\
\downarrow f & Tf \downarrow & \downarrow f \\
X & TX \xrightarrow{f} X
\end{array}$$

An arrow $\phi: X \to Y$ is called a map of algebras $(X, f) \to (Y, g)$ if and only if $g \circ T\phi = \phi \circ f$. Algebras of a triple \mathbb{T} in \mathcal{C} and their maps form a category $\mathcal{C}^{\mathbb{T}}$. There exists a pair of adjoint functors $F^{\mathbb{T}}: \mathcal{C} \to \mathcal{C}^{\mathbb{T}}$ and $U^{\mathbb{T}}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$, $F^{\mathbb{T}}X = (TX, \mu X)$, $F^{\mathbb{T}}\phi = T\phi$, $U^{\mathbb{T}}(X, f) = X$, $U^{\mathbb{T}}\phi = \phi$. The triple \mathbb{T} arises from this pair in a way discribed above as well as from original pair L, R. There exist the unique functor (Eilenberg-Moore comparison functor) $\Phi: \mathcal{B} \to \mathcal{C}^{\mathbb{T}}$ that makes the diagram

$$\begin{array}{ccc}
B & \xrightarrow{R} & C \\
\downarrow L & & \downarrow U^{T} \\
C & \xrightarrow{F^{T}} & C^{T}
\end{array}$$

commutative. If Φ is an equivalence of the categories then \mathcal{B} is said to be *tripleable* [1] over \mathcal{C} (with implicit adjoint functors L and R). T. Świrszcz [4] proved that convex compacta are tripleable over compacta (the left adjoint is a probability measure functor). Here is a counterpart for (strongly) semiconvex compacta.

Theorem 3. Forgetful functors $U': SConv \rightarrow Comp$ and $U: SsConv \rightarrow Comp$ are tripleable.

Proof. Prove the statement for $U': SConv \to Comp$ (the case of $U: SsConv \to Comp$ is quite analogous). Due to Beck's precise tripleability theorem [1] it is sufficient to prove that

1) U' has a left adjoint;

2) U' reflects isomorphisms;

3) SsConv has and U' preserves coequalizers of U'-contractible coequaliser pairs [1].

(1) is proved above, (2) follows from the fact that isomorphisms in SConv are homeomorphisms that preserve semiconvex combination. Let us prove (3).

Let $f_0, f_1: X \to Y$ be an U'-contractible coequaliser pair in SsConv, i.e. there exists an arrow $t: Y \to X$ in Comp such that $f_0 \circ t = 1_Y$, $f_1 \circ t \circ f_0 = f_1 \circ t \circ f_1$, and the pair f_0, f_1 has a coequaliser $h: Y \to Z$ in Comp. Then h is the quotient map of the closed equivalence relation : $y_1 \sim y_2$ for $y_1, y_2 \in Y$ if and only if there exist $x_1, x_2 \in X$ such that $f_0(x_1) = f_0(x_2)$, $y_1 = f_1(x_1)$, $y_2 = f_1(x_2)$. Moreover " \sim " is closed under semiconvex combinations. Suppose $y_1 \sim y_1'$, $y_2 \sim y_2'$, $\lambda \in I$. Then there exist $x_1, x_1', x_2, x_2' \in X$ such that $f_0(x_1) = f_0(x_1')$, $y_1 = f_1(x_1)$, $y_1' = f_1(x_1')$, $f_0(x_2) = f_0(x_2')$, $y_2 = f_1(x_2)$, $y_2' = f_1(x_2')$. Put $x = \lambda(x_1, x_2)$, $x_1' = \lambda(x_1', x_2')$, $y = \lambda(y_1, y_2)$, $y_1' = \lambda(y_1', y_2')$. Thus $f_0(x) = f_0(x_1')$, $y = f_1(x)$, $y_1' = f_1(x_1')$ implies $\lambda(y_1, y_2) \sim \lambda(y_1', y_2')$. By the first theorem X/\sim is semiconvex, and $x_1' = x_1' = x_1$

Remark. In fact we have proved that U' and U form [1] coequalizers of U'-contractible (resp. U-contractible) coequaliser pairs. Thus the comparison functors are isomorphisms of categories.

- 1. Barr M., Wells Ch. Toposes, triples and theories. Springer, New York etc., 1988.
- Engelking R. General topology. Warsaw, 1977.
- 3. Fedorchuk V. V., Filippov V. V. General topology: Basic constructions. Izd-vo MGU, Moscow, 1988 (in Russian).
- Świrszch T. Monadic functors and convexity // Bull. Acad. Pol. Sci., Sér. Math., Astr. et Phys. - 1974. - Vol. 22. - P. 39-42.
- 5. Nykyforchyn O. R. Semiconvex compacta // Comm. Math. Univ. Carol. 1997. Vol. 38. P. 761-764.

МОНАДИЗОВНІСТЬ КАТЕГОРІЇ (СТРОГО) НАПІВОПУКЛИХ КОМПАКТІВ НАД КАТЕГОРІЄЮ ОПУКЛИХ КОМПАКТІВ О.Никифорчин

Прикарпатський національний університет імені В. Стефаника, вул. Шевченка, 57 76000 Івано-Франківськ, Україна

Поняття (строго) напівопуклого компакта і напівопуклої комбінації узагальнюють поняття опуклого компакта та опуклої комбінації (з різницею, що "відрізок", який з'єднує точку з собою, може бути нетривіальною петлею). Доведено, що фактор-простір (строго) напівопуклого компакта є (строго) напівопуклим за умови, що відповідне відношення еквівалентності замкнене стосовно формування напівопуклих комбінацій. Також доведено монадизовність категорії (строго) напівопуклих компактів над категорією компактів.

Ключові слова: компакт, (сильно) напівопуклий компакт, лівий спряжений функтор, монадичність.

Стаття надійшла до редколегіі 15.03.2002 Прийнята до друку 14.03.2003