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Pairs (A4;, A2) and (B;, B2) of matrices over an adequate ring R are called general-
ized equivalent pairs if Ay = UB1Vy, Ay = UB;V; for some invertible matrices U, Vi,
V> over R. A standard form to which a pair of matrices can be reduced by means of
generalized equivalent transformations is established. Conditions under which pairs of
matrices will be generalized equivalent are founded, Classes of pairs of matrices which
have the unique standard form are given.
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Let R be an adequate ring, i.e. R be domain of integrity in which every finitely
generated ideal is principal and for every a,b € R with a # 0, a can be represented as
a = cd where (c,b) = 1 and (d;, b) # 1 for any non-unit factor d; of d [1]. Further let
M (n. k, R) and M (n, R) be the sets of n x k and n x n matrices over R respectively; dz,
be the greatest common divisor of minors of the order m of the matrix A € M (n, k, R);
DA be the canonical diagonal form (the Smith normal form) of the matrix A, i.e.

DA = UAV = diag(e1, 92, .- - pr,0....,0), o, #0, o1 l@2| - |er

for certain invertible matrices U € GL{(n,R) and V € GL(k,R). Pairs of matri-
ces (A, B;) and (A, By), where Ay, A2 € M(n, k1, R) and By, By € M(n, k2, R)
are called generalized equivalent pairs if A, = UA Vi and By = UB;V; for certain
matrices U € GL(n, R) and U; € GL(k,R),i=1,2.

The reducibility of finite sets and pairs of matrices over polynomial and other
rings by the same transformations to the triangular forms and their applications is
considered in [2-7]. V. Dlab and C. M. Ringel [8] have established the canonical
form of the pairs of complex matrices (Aj, A2) with respect to the transformation
(A1, A2)(Q, P, Pp) = (QAlPl'l, QAsz_l), where @ is a complex invertible matrix,
P, and P, are real invertible matrices.

The problem of the classification up to generalized equivalence of pairs of matrices
over the rings as and the problem of the classification up to equivalence of matrices
and of pairs of matrices, is wild [9]. Therefore such classification of pairs of matrices
is possible only in some cases.
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In this paper some form to which a pair of matrices can be reduced by means
of generalized equivalent transformations is established. Conditions for generalized
equivalence of pairs of matrices are given.

Lemma 1. Let B € M(n,k,R) and DB = diag(vs,...,¥r,0....,0). Then there
erist an upper unitriangular matriz U € GL(n, R) and an invertible matriz V €
GL(k,R) such that

R 0 0 B e N
by ... 0 0 O e B
UBV =TB =|b,_11%1 ... Yr1 0 0 ... o0,
brl'pl € br,r—ld’r—l brr‘wr 0 v 0
bnld’l - c E»';.1'1.,1"—1."\f"’:\"--1 bnrﬂ’r 0 R 0
where (byr,...,bnr) = 1.
Proof. By Lemma 1 [7] there exists a row matrixu = {|1 wuz ... up||such that
uB=|ley e ... cxl|, where (e1,¢2,...,¢) = d®? = ¢;. Then for the matrix
1 u2 ... us
Ul _— ‘ 0 ]n—l }

where I,,_; is the (n—1) x (n—1) identity matrix, and for some matrix V) € GL(k, R)
we get

B G o B
B BV, = ”21_‘_”1 B =By Baikmi€M(n—1k-LR).
bn1w1

We now carry out similar reasoning on the matrix B,_; -1 etc. In the end we
obtain the matrix B,_1, such that at the lower right corner of B,_; there is a matrix
Bn-(r-1)k—~(r-1) and rank By, _(,_1) k=(r-1) = L.

Then for some matrix V,-; € GL(k — (r — 1), R) we have

brr?,bf 0 e 0
Bn_(,»_l)‘k_f,_l}V,_l =
bﬂru‘)r 0 0
The lemma 1s proved.

Corollary 1. Let B € M(n,k,R), rank B = n. Then there exist an upper uni-
triangular matriz U € GL(n, R) and an invertible matriz V € GL(k, R) such that
UBV = TB = TDB, where T is a lower unitriangular matriz in GL(n, R).

Further by U(R) we denote the group of units of the ring R, by Rs a complete set
of residues modulo 4, and by Rj5 the maximal subset of Rs such that ua # b(mod )
for any a,b € Rj and every u € U(R).
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Theorem 1. Let A € M(n,k1,R), B € M(n,k2,R), n < k1, n < kg, and D4 =
diag(e¢1, ..., ¢r,0....,0), DP = diag(¥;,...,%,,0....,0), r < s < n. Then a pair of
matrices (A, B) is generalized equivalent to the pair (DA, TB), where

(1) if s =r=n, then

T 0 0 0o ... 0
TB — tyqy %2 ... 0 0 ... O
tnl'wl tn2w2 l()n 0 0

pi Yi) .. ey
andti'eR’.,,whemd’":(“s—)! 11}=1!"':n=1>.};
= T\ ¥
(i) if r < s < n, then

(21
ta191 U2
tr11 tras Yy
B tr+1,1wl tr+l,2w2 ik tr-{-i‘rﬁ)r I!’w-l»l
e —=
Ls1¥n lsata tyrtn 0 coi o b,
teg1,1¥1 Lsyy,a¥%s - lsg10%r 0 0 0
tn1Yn tnaWn tﬂr!i’r 0 0 0 0
and t; € R‘éu_, 55 pny By T2 Lo § 559, where
o i
J (f}“-?)' f ij=1ir 1>,
NP Wy
51’_}' = tr",-‘i "
[T’ f i=r+1,...,5 7=1..,7
J
0, # s=E4l. 8 321 P
(ti1) if r = s < n, then
(3 0 0 0 0
t219 0 0 0 0
T Lrpwa (W1 ans Wp-1 0 o ... 01,
t1y R tr,rvlwr&} trrr 0 e 0
tnlwl v tn.r—-ld’r—l tnrwr 0 v 0

(owionns tne) = L and ty € Ry, where &g = (&,E), 7L P, 1B )
" ®i i

Proof. The pair of matrices (A, B) is generalized equivalent to the pair (D4, B),
where DA = PAQ, By = PB for some matrices P € GL(n, R) and Q € GL(k,, R).
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Further we shall reduce the matrix B; to a triangular form by means of admissi-
ble equivalent transformations (U, V), U € GL(n,R) and V € GL(k2, R) such that
UDA = DAV, for some matrix Vi € GL(k;,R). Then the matrix U has a form
I = Hu;‘j”’;, where u;; = ,%;-u‘:-j fotali> . 4.i=100u0:

Let rank B; = rang B = s > r. Then by Lemma 2 there exist an upper unitrian-
gular matrix U; € GL(n, R) and a matrix V; € GK (k2, R) such that

¥ e 0 .. 0
ba1 () e 0 0 cee 0
UyBVi = || butr  bra%z - ¥y 0 - 0 [=B8B
bre11%1 brgr2¥2 o begrs¥r brgretr 0 brgikg
ba1¥1 bnota -+ burty bnrgr 0 bpky

Therefore for some matrices P, € GL(n — r, R) and Qk,—r € GK (ks — 1, R) we
have Py—yBn—s kst Qis—r = didg(¥rg1,..:,¥s,0,...,0), where

5r+1,r+1 B2 br+1.k:
Bisoiliev 2
bn‘r-]-l RS bnk;

Put Us = I, & Pa—y, Vo = I, & Px,—r. Thus U3 ByVs is a lower triangular matrix with
the principal diagonal DF .

Then similarly as in the proof of Theorem 1 [6] we reduce the elements b;; of the
matrix 'TIB modules &;; ¢ = 2,...,n, j = 1,...,7r, j < i. Thus we get a matrix
= UsTE V3 whose (i, j)-element is equal to ¢;;9;, where ¢;; € Rs,,. If ¢ij 7 R:;U.
then there exists ¢;; € R such that ujeij = tij(modd;;) for some u; € U(R). Then
sinnlarly as in the previous case we obtain the matrix 7% = UsTF V4 whose (i, j)-
element is equal to ti;¥;, i = 2,...,n, = 1,...,7r, j < 1, ets. Therefore we get
the matrix T® which is defined in Theorem 1. Since we made admissible equivalent
transformations over matrices B; and T2, i = 1,2,... the pair of matrices (A, B)
is generalized equivalent to the pair of matrices (D4, 7). In cases (i) and (iif) the
proofs are similar. Therefore the proof of the theorem is complete.

Definition 1. The pair (D#, T?) which defined in Theorem 1 is called the standard
form of the pair of matrices (A, B).

We remark that the standard form (D4, T2) of the pair of matrices (A4, B) with
respect to generalized equivalence is uniquely determined only in some cases.

Corollary 2. Let A€ M(n,k;,R), B€ M(n,kq,R), n < ki, n < ks, and (dA,dB) =

1. Then the pair diagonal matrices (D4, DB) is the unique standard form of the pair
of matrices (A, B).

Further we shall establish some conditions for generalized equivalence of pairs of
matrices. Since for any matrix A € M(n,k, R), n < k there exists a matrix V €
GL(k, R) such that AV = ||A; 0}, where A} € M(n, R) it is sufficient to consider
the generalized equivalence of pairs of square n X n-matrices.
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Any pair of matrices is generalized equivalent to the pair of matrices of standard
form. Hence it is sufficient to consider the generalized equivalence of pairs of matrices
of the standard form. .

Theorem 2. Let (D,T)) and (D,T3) be pairs of matrices of standard form, i.e.
D = diag(w1,...,¢n), Yn #0, ¢1 | w2 | -+ | ¢n and Ty, T3 are lower triangular
matrices with the principal diagonal ¥ = diag(yy,...,%s,0,...,0), ¥y | ¥1 | ... ¥s.
Then the pairs of matrices (D,Ty) and (D, T,) are generalized equivalent if and only
if the following condition holds:

(i) the matrices (adj D)T, and (adj D)T5 are equivalent, t.e.

S(adj D)Th = (adj D)T2Q, S,Q € GL(n, R); (1)

(ii) in the set S = {S | S(adj D)T1 = (adj D)T2Q, S,Q € GL(n, R)} the ezists a
matriz

S =|lsi; ]|, such that s;; = %s;j, ij=1,...n, j>i @)

Proof. Necessity. Let be UDVy, = D and UT)} Vo = T, where U, V;,V, €
GL(n, R). The matrix V; = ||vi; ||} has the form (2). Then

(adj D)T2 = (adj V4)(adj D) (adj U)UT, V2 = (adj Vi)(adj DTy Vau,  (3)
v € U(R). Since adjVy = v, V)%, v; € U(R), then the equality (3) implies
V,"'(adj D)7y = {adj D)T>Q, Q € GL(n,R).

Since the matrix V; has a form (2), therefore V;™! has the same form [10].
Sufficiently. Assume the conditions (1) and (2) hold. It is easily to see, that

S(adj D) = (adj D)U, where

p-
U=|lu;lly, wy=—uy,
Yj

S il al P (4)
Then the equality (1) implies (adj D)UT; = (adj D)T2Q or UT; = T2Q. Since the
matrix U has the form (4), then UD = DV. Therefore the pairs of matrix (D, T;)
and (D, T,) are generalized equivalent.

Corollary 3. Let A, B € M(n, R) and A be a nonsingular matriz. Then the pair of
matrices (A, B) 1s generalized equivalent to the pair of diagonal matrices (D#, DB) if
and only if the matrices (adj A)B and (adj DA)D® are equivalent.

Proof. The pair matrices (A, B) is generalized equivalent to the pair of matri-
ces of standard form (D4, T#). The matrix (adj D4)T® is equivalent to the matrix
(adj A)B and hence it is equivalent to (adj DA)D®. Then there exist lower unitrian-
gular matrices S,Q € GL(n, R such that S(adj DA)T2 = (adj DA)DPQ. Therefore
the statement (ii) of Theorem 2 holds for the matrix S. .
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Let (D,T;) and (D, T,) are pairs of matrices of such form: D = diag(1,...,1,¢,),
en # 0,

1 0 0 0
0 Yy oo 0 0
e S A N ES AT N
0 8 s Yno1 0
tiv tis¥a ... lin—1¥n-1 ¥n

i = 1,2. Without loss of generality we may assume that ¢; = 1. Further by d; we
denote the greatest common divisor of elements of the last row of the matrix 7;:

d; = (i1, taaVa, o o s tin=1¥n-1,¥n), t=1,2.

Lemma 3. If the pairs of matrices (D,Ty) and (D, T») are generalized equivalent,
then (dy, ¢n) = (d2, Pn)-

The proof of lemma follows from Theorem 2.

Lemma 4. Let (D, T1) be a pair of matrices of the form (5) and (dy, pn) = 1. Then
the canonical diagonal form of the matriz (adj D)T; is equal to the product of canonical
diagonal forms of the matrices adj D and T3, 1.e.

DA BT = PP ph = disg(L,eathai- - Patba):

Proof. By Cauchy-Binet formula the minors of product of matrices we get that
PP~ 1yq .. .Y, divides every minor of order p of the matrix (adj D)T;. Since (d1, ¢n) =

d}(}adj D)T,

1 we have = @2 4y ... ¢p. This implies the statement of the lemma.

Theorem 3. Let (D,Ty) and (D,T3) be pairs of matrices of form (5). If
(di,¥n) = (d2,¢n) = 1, then the pairs of matrices (D,Ty) and (D, T;) are gener-
alized equivalent.

Proof. By Lemma 4 the canonical diagonal forms of the matrices (ad) D)7} and
(adj D)T; coincide, i.e. the following matrices are equivalent:

S(adj D)1 = (adj D)T2Q, S,Q € GL(n,R), S=|s;l}- (6)

Thus we have @, | sint1;9;, forallj=1,...)n,i=1,...,n—1, where %) =t;, = 1.
Since (dy,®n) = 1 we obtain that ¢, | s;n foralli=1,...,n -1, i.e. statement (ii)
of Theorem 2 holds for the matrix S. Therefore the proof of the theorem is complete.

Corollary 5. Let (D,T)) be a pair of matrices of form (5). If (dy,pn) = 1, then
(D, Ti) is generalized equivalent to the pair (D, TV), where ¥ = diag(1,¥a,...,%n),

In-.-] 0

T=ly 0 .. 0 1

and
foe { 0, if the matrices (adj D)T; and (adj D)¥ are equivalent,

1, otherwise,

Put R} = {a € R | (a,d) # 1 forall a # 1}.
Then Theorems 1 and 3 imply
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Corollary 6. Let A,B € M(n, R),
DA =diag(l,...,1,¢n), D? = diag(1,%2,...,%n), 5

(¢n,%n) = 8, and (Yn-1,0,) = 1. Then the pair of matrices (A, B) is generalized
equivalent to the pair (DA, TD#B), where

1:’31 ta ... th—1 1

“, tjGR", j=1...,n-1.

Theorem 4. Let A;, B; € M(n,R), D4 = D* = diag(1,...,1,¢,), DB = DB =
diag(1l,%¢2,...,%n), i = 1,2. Let (pn,¥n) = p, (¥n-1,p) = 1 and p be a prime element
of the ring R. Then .
(i) the pairs of matrices (A1, By) and (A3, Bz) are generalized equivalent if and only
if the matrices (adj A;)B; and (adj A2)B2 are equtvalent;
(ii) the pair of matrices (Ay, By) is generalized equivalent to the parr (DA, TDBY),

where
2 In_l 0
T‘H: 0 ... 0 1‘
and
g { 0, if the matrices (adj A1)B; and (adj D#1)D?! are equivalent;
~ | 1, otherwise.

Proof. The pair of matrices (4;, B;) (i = 1,2) is generalized equivalent to the pair

(DA',’I;B‘) of form (5) and t;; € Ry, j = 1,...,n—1. Then (di, pn) = 1 if there
exists t;; #0,j=1,...,n—1. Further we use Theorem 3, which completes the proof
of the statement.
Example. Let N = {(A4,B) | A,B € M(2,Z) such that D* = diag(1,25), D? =
diag(1,175)}. Then 6 = (25,175) = 25, Rs = {0,1,...,24}, R; = 10,1,....12F and
RY = {0,1,5,10}. Then the set A is partitioned up to the generalized equivalence on
four disjoint classes with representations

(: 311 3

t 175
The direct verification shows that the pairs of matrices

(o 5115 ) = (o sl b %))

0 25 5 175
are not generalized equivalent.

), t=0,1,56,10.
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CTAHJIAPTHA ®©OPMA IIAP MATPUIIb BIJHOCHO
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eya. Hayxosa, 36 79053 Jlvsis, Yxpaina

[lapn marpuus (A1, Az) i (Bi,B2) Hajg ajexBaTHUM KiabueM R Ha3uBaloThCA

y3aranbHeHO ekBiBaJeHTHuMMH, fskmo A; = UB; Vi,A; = UB3V, ana jeakux
oboporanx matrpuue U, Vi, Vo maxg R. lllogo Takux nepeTBOpeHb BU3HAYEHO
cTaujapTHY GopMy Map MaTpuub Ta 3a3Ha4eHO YMOBH iX 3arajlbHOl €KBIBaJeHTHOCTI.
BujiieHo KJacd map MaTpulb, JIf AKHX UA ¢opMa BHIHAYAETBCA OJHO3HAYHO.

K 104061 caosa: Tapy MaTpulb, y3araibHeHa eKBiBaJeHTHICh, KaHOHIYHO Jlaro-

HabHA GopMa, cTaHJaapTHa dopMma.
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