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n-TRIVIAL KNOTS AND THE ALEXANDER POLYNOMIAL

Leonid PLACHTA

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
NAS of Ukraine, 3b Naukova Str. 79053 Lviv, Ukraine

For each integer n > 1, we construct via the pure braid cofnmutators (2n — 1)-trivial
knots with non-trivial Alexander polynomial. We formulate also a sufficient condition
under which an (n — 1)-trivial knot, n > 2, has trivial Alexander polynomial. As a
particular case, for each n > 1, we describe some class of “geometric” (n — 1)-trivial
knots with trivial Alexander polynomial.
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1. Knots K and L are called V;,-equivalent (n-equivalent) if they cannot be dis-
tinguished by the Vassiliev invariants (additive Vassiliev invariants, respectively) of
order < n, the invariants taking values in any abelian group. Goussarov [6] was the
first who has characterized the relation of n-equivalence on knots in combinatorial
terms. Later on, it turned out that the relations of V,-equivalence and n-equivalence
coincide on the knots in S (see [7,15]). Habiro [7] has characterized n-equivalence of
knots in terms of the so-called Cy,41-moves. Stanford [15] has given a description of
n-equivalent knots in terms of the pure braid (n + 1)-commutators. A knot in S? is
called n-trivial if it is n-equivalent to the trivial one. In [9], Kalfagianni and Lin have
introduced for each n > 2 the classes of “geometric” knots, among other the classes of
n-hyperbolic, n-elliptic and n-parabolic knots, and showed that all they are n-trivial.
Moreover, any n-hyperbolic and n-elliptic knot has the trivial Alexander polynomial
[9]. The latter two classes do not exhaust however all n-trivial knots. Kalfagianni
and Lin showed (Proposition 6.1 of [9]) that for each integer n > 1 there exists an n-
trivial knot with the non-trivial Alexander polynomial. The proof of the proposition
is based on Theorem 1 of [3] (which proves the Melvin-Morton-Rozansky conjecture)
and is rather of existence character. In the present paper, for each integer n > 1 we
indicate in an explicit form the (2n — 1)-trivial knots having non-trivial Alexander
polynomial. Our approach uses in essential way the characterization of n-equivalent
knots in terms of the pure braid commutators (see [14] and [15]).

In [12], H. Murakami and T. Ohtsuki have described the filtration en the vector
space S over the rationals Q spanned by Seifert matrices of knots,

S8 358728

© Plachta Leonid, 2003



n-TRIVIAL KNOTS AND THE ALEXANDER POLYNOMIAL 157

and related this to the Goussarov-Vassiliev filtration of the vector space spanned
by knots. They showed that a rational Vassiliev invariant of order n comes from the
Alexander polynomial (i.e. can be expressed as a sum of products of the coefficients of
the Alexander-Conway polynomial) if and only if it can be factored through the quo-
tient space §/Sn+1. In this paper, using the above mentioned results of H. Murakami
and T. Ohtsuki (see [12]) and the results of A. Kricker, B. Spence, and I. Aitchison
[10] on the characterization of rational weight systems coming from the Alexander-
Conway polynomial, we obtain a sufficient condition for an n-trivial knot, n > 2,
to have the trivial Alexander polynomial. As a particular case, for each n > 1 we
describe some class of “geometric” n-trivial knots with the trivial Alexander polyno-
mial, where each such “geometric” n-trivial knot is obtained from the trivial one by
inserting in it the “double” pure braid (n + 1)-commutators (see [14] for details).

Now we define some needed notions and review briefly the results on the char-
acterization of n-equivalent knots via pure braid commutators [15] and Cp4;-moves
(7). We shall also review the results of H. Murakami and T. Ohtsuki, and A. Kricker,
B. Spence, and 1. Aitchison on the characterization of the rational Vassiliev invariants
and weight systems coming from the Alexander-Conway polynomial (see [12] and [10]
for details).

Let K denote the free abelian group generated by the classes of equivalent oriented
knots in S® and K, the subgroup of K generated by all n-singular knots, n > 1. Here
an n-singular knot we regard as an element of K so that each double point of this
knot is replaced by a difference of the positive and negative crossings (see Fig. 1).
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Fig. 1
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be the Vassiliev-Goussarov filtration of K. A Vassiliev invariant of type n, n > 0,
taking values in an abelian group H is a map v:K — H vanishing on the subgroup
K.41. The smallest number m such that v vanishes on K4 is called the order of v.
The Vassiliev invariants are called also the invariants of finite type of knots (or links).

A trivalent diagram D of degree n is a connected graph with 2n vertices all of which
are trivalent. There is a distinguished subgraph which is homeomorphic to a circle,
called the external one. Each vertex of D which lies on the external circle is called
external, otherwise it is internal. At each internal vertex a of a trivalent diagram one
of two possible cyclic ordering of the edges around this vertex (the orientation at a) is
chosen. The subgraph of D having the same vertex set as D and the edge set of which
consists of all edges of D which do not lie on the external circle is called the internal
graph of D. An orientation of the external circle is chosen and the other edges of D are
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taken to be non-oriented. All trivalent diagrams are considered up to an isomorphism
of distinguished graphs that respects the above structures on them. Every trivalent
diagram D is pictured in the plane in such a way that each its interndl vertex has
the counterclockwise orientation. If a trivalent diagram has no internal vertices it is
called a chord diagram. Denote by D and D, the collections of all trivalent diagrams
and trivalent diagrams of degree n, respectively.

Define A, and A to be the quotient groups, A, = ZD,/{all STU relations} and
A = ZD/{all STU relations}, where STU is the homogeneous relation on ZD indi-
cated in Fig. 2.

t
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Fig. 2

Note that the graded abelian group A is naturally isomorphic to the graded abelian
group A°, the quotient of the group freely generated by chords diagrams via 4T-
relations (see [2]). A trivalent diagram D is called a tree diagram, if its internal graph
is a tree. A trivalent diagram T is called a one-branch tree diagram of degree n, if
its internal graph is isomorphic to the standard n-tree. There is a natural one-to-one
correspondence between the permutations of the symmetric group S, and the one-
branch tree diagrams of degree n. For a given permutation ¢ € S,, denote by To
the one-branch trivalent diagram of degree n corresponding to o (see [11]). Note that
A® Q has an algebra structure with respect to the connected sum of external circles
of trivalent diagrams (the product of trivalent diagrams) [2]. The co-product V on
A ® Q is defined in a natural way (see [2]). With respect to these operations, A® Q
is a commutative and co-commutative Hopf algebra and is generated by the primitive
elements of A ® Q [2]. The primitive subspace P of A ® Q is generated (as a graded
vector space) by the primitive trivalent diagrams, i.e. the trivalent diagrams with the
connected internal graph. It is known (see [5]) that the primitive space Pq,d > 1,
is generated by the trivalent diagrams of the two types. The first type of generators
consists of the primitive trivalent diagrams whose internal graph has the negative
Euler characteristic (see [8]). The second type (only for even d = 2n) consists of
the so-called ”wheel” ws, (see Fig. 3). Therefore, for odd d > 1 the primitive space
P, is generated by the primitive trivalent diagrams of the first type. The space Py
is one-dimensional and is generated by a chord diagram D; with a single chord. It
follows that as an algebra, A®Q is generated by D, the primitive trivalent diagrams
with negative Euler characteristic and the “wheels” wan,n 2 1.

An (unframed) Q-valued weight system of degree n is a map w: A, — Q which
vanishes on each trivalent (chord) diagram of degree n having an isolated chord. A
split diagram is a diagram which can be decomposed into a product of diagrams of
lower order. By Kontsevich’s integral, each Q-valued weight system of degree n can



n-TRIVIAL KNOTS AND THE ALEXANDER POLYNOMIAL 159

be integrated (in a non-unique way) to a Q-valued Vassiliev invariant of order n [2].
A rational-valued Vasiliev invariant v of order n is called canonical if it is determined
uniquely by its weight system w(v), of the same degree n [3]. Under the Alexander-
Conway polynomial we shall mean a canonical Vassiliev power series C satisfying the
following two axioms Al and A2:

) Wy Wsg

Fig. 3

Al (the skein-relation). C(K4) — C(K-) = (e"? — e~"/?)C(K,),
for any link diagrams K, K_ and Ky which are the same outside some small disc
in the plane where they look as positive crossing, negative crossing and smoothing,
respectively; .

A2 (the initial data). C(c-component unlink)=1if ¢ = 1 and 0, otherwise.

Therefore the Alexander-Conway polynomial is a renormalized and reparametrized
version of both the Alexander and Conway polynomials. Bar-Natan and Garoufalidis
described the Conway weight systems w: A° — Z in terms of intersection graphs of
chord diagrams (Theorem 3 of {3]) and the universal immanants of such intersection
graphs (Theorem 5 of [3]). Chmutov [5] has calculated the Alexander-Conway weight
systems on the generators of the space P4, d > 1. In particular, he showed that every
(framed or unframed) Alexander-Conway weight system of degree n > 1 vanishes on
primitive trivalent diagrams with the internal graph of negative Euler characteristic
(see also [10]). Basing on the results of the paper [10], Kricker (Lemma 2.11 of [8])
has described the algebra of (framed) Alexander-Conway weight systems (see also
Lemma 2.1 of [12]). We formulate its unframed version as follows.

1.1. Lemma. Ifan (unframed)Q-valued weight system w vanishes on every trivalent
diagram, the internal graph of which has a component with the negative Euler char-
acteristic, then it can be represented as a sum of products of weight systems coming
from the coefficients of the Alezander-Conway polynomial.

Let By be the braid group on k strands and Py its subgroup of pure braids. For
0<i<j<k—1letp;;€ P be the braid that links the ith and jth strands behind
the others (see Fig. 4). It is known [4] that the collection of braids {pi;}ogi<jgk-1
represents the standard generators of the group Pg.

By a tangle diagram we shall mean a knot diagram K with a single S L_boundary
which intersects each of the strands in the diagram transversely. To put it in another
words, K is the closure of an oriented tangle T with domT = codomT which is
positioned in R2 outside of a disc D, the latter being bounded by S*. As in [16], for a
fixed k by a tangle map T: P — {knot types} with domT = codomT = k, we shall
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mean a canonical way of putting a pure braid p € Py into a tangle diagram to get an
oriented knot T'(p) (see also [14] for details).

Let LCSn(Px) denote the nth subgroup of the lower central series 6f the group
Px. For each ¢ € S, denote by p, € LCSn(Pn+1), the pure braid n-commutator of
the following form ps = [...[Po,0(n), Po,o(n-1)]; - - -], Po,0(1)], and let p, € LC S, (Pn41)
be the pure braid n-commutator pn = [Pn—1,n, [Pn-2,n-1,-..,{P1,2,P0,1] ...]. In [14],
it is shown that each one-branch simple C,-move on a knot, defined by Habiro [7],
where n > 2, is equivalent to the insertion (in the non-oriented setting) in this knot
via some tangle map of the pure braid n-commmutator p,.

0 i Ho k1
LI
o m

Fig. 4

The operation on oriented knots, inverse to the insertion, is called the deletion (of
the pure braids) in knots. As discussed in [14], for each n > 2 the insertions of the
coloured pure braid n-commutator p,, in a knot via the tangle maps can be considered
as a topological realization of one-branch tree diagrams of degree n. Similarly, the
closure p, of the braid p, via the permutation (1,2,...,n), where o € S,, gives a
topological realization of the one-branch tree diagram T .

Let K’ denote the vector space over Q spanned by all knot types in S and let

K* 2K 3 K588 Dix

be the Vassiliev-Goussarov filtration of £’. A rational Vassiliev invariant of type n is
amap K'/K],,, = Q.

Let M be the set of integer matrices of even size such that M — M* is unimodular.
Denote by [M] the S-equivalence class of matrices in M which contains M. Let
S be the vector space over Q spanned by the S-equivalence classes of matrices in
M. H. Murakami and T: Ohtsuki [12] have defined a filtration of S in the following
way. For a matrix M € M of the size m x m and the integers ¢1,12,...,1,, Where
ij < n,1 < j < m, define the alternating sum

Z [_1)€1+-,-+£n[M + 51Ei1='1 + -4 S“E,-“,-“] = S,

Elltq,.‘.,tnzﬂ,l

where E;; is the matrix of the size m x m with (¢, 7)-entry 1 and the others 0. There isa
natural linear map s: K’ — S which takes a knot to the S-equivalence class of a Seifert
matrix for this knot. The map s respects the filtrations of both the vector spaces K’
and § and so, induces a map K'/K},,; = §/Sn+1, denoted also by s. We shall say
that a Vassiliev invariant v:K’//K, ., = Q comes from Seifert matrices if v can be
factored through the map s. H.Murakami and T.Ohtsuki [12] showed that a rational
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Vassiliev invariant v: K'/K}, . ; = Q comes from the Alexander-Conway polynomial if
and only if it comes from Seifert matrices. As a consequence, any rational Vassiliev
invariant of knots coming from Seifert matrices is equal to a linear sum of products
of coefficients of Alexander-Conway polynomial.

Now let us recall some needed notions and facts from Habiro’s clasper theory [7].
Let K be a knot in S3. A clasper G for K is a framed uni-trivalent graph embedded in
5?3 so that all its univalent vertices (and only they) are positioned on K and all possible
intersections between the edges of G and K are transversal. We use the blackboard
framing for description of claspers G. The degree deg(G) of the clasper G is the half
of the number of its vertices. Any pair (K, G), where K is a knot and G is a clasper
on it, defines a surgery of S2 and S® surgered will be always a three sphere. Denote
by K¢ a knot obtained from the knot K by surgery of S? defined by the pair (X, G).
Let G, be the vector space over Q spanned by all the pairs (K, G) with deg(G) = n.
Habiro (7] has defined for each n > 1 a natural surjective map e:G, — K;,. Let
~:Gn = An®Q be the map forgetting the embedding, ¢: A, ®Q — K}, /K], ., the map
which replaces chords by double points and let p: K, — K, /K; ., be the canonical
projection. Because of Kontsevich’s integral over Q, the map ¢ is an isomorphism [2].
Habiro actually showed [7] that the equality p-e = ¢ -7 holds. As a consequence, the
claspers on knots can be considered as topological realization of trivalent diagrams of
the same degree.

2. C,-moves and the Alexander-Conway polynomial.

2.1. Proposition. Let a pair (K,G), where K is a trivial knot in S® and G is a
clasper on K of degree 2n, be a topological realization of the wheel wan,n > 1, and
let K¢ be the knot obtained by surgery of S defined by the pair (K,G). Then K¢ 1s
(2n — 1)-trunal knot with the non-trivial Alezander polynomial.

Proof. The proof of the proposition follows from Habiro’s clasper theory and the
characterization of weight systems coming from the Alexander-Conway polynomial.
Indeed, the knot K¢ is obtained from the trivial knot K by Cs,-move defined by the
pair (K,G). By Theorem 6.18 of [7], K¢ is (2n — 1)-trivial knot. Let w: A, ® Q —
Q be the rational weight system of degree 2n defined as follows: w(w2,) = 1 and
w(D) = 0 for any trivalent diagram of degree 2n, the internal graph of which has the
negative Euler characteristic. By Kontsevich’s integral over Q, w can be integrated
to a canonical Q-valued Vassiliev invariant of order 2n [2]. By the definition of the
topological realization of trivalent diagram, we have then v(Kg)—v(K) = tv(wen) =
+w(wsn) = +1. Therefore, by Lemma 1.1, v is a non-trivial Vassiliev invariant of
order 2n coming from the coefficients of the Alexander polynomial. It follows that
the Alexander polynomial of K¢ is non-trivial.

Now, for each n > 1 we indicate explicitly the (2n — 1)-trivial knots with the
non-trivial Alexander polynomial. For this, consider two the following pure braid 2n-
commutators: py, and ps,, where o1 = (1)(2)(3)...(2n) and o2 = (1,2,3,...,2n).
Let § denote the closure of the braid ¢ € LCSzn(Pans1) with the strands
Ug, Uy, U2, ...,y
usy, via the permutation (0,1,2,...,2n) and let K be a trivial knot. Set p = po, gzl
Then the knot Kz, = p is the desired knot. Indeed, the knots K and Kj, are
LC Son(Pan+1)-equivalent. Then, by Theorem 0.2 of [15], they are (2n—1)-equivalent.



162 LEONID PLACHTA

It follows that K, is (2n — 1)-trivial. On the other hand, by Lemma 1.11 of [11}, for
each Vassiliev invariant v of order 2n we have v(K3,) = v(K) % (v(T5,) — v(Ts,)) =
+(v(To,) — v(Ty,)). Note that in Az, ® Q we have T, — T, = w2p, 50 K2n — K is a
topological realization of the wheel wy,. Then the same reasoning as in the proof of

the Proposition 2.1 shows that K,, has the non-trivial Alexander polynomial.

2.2. Proposition. Suppose that knots K and L in S are related by a sequence
of Cn-moves M;,n > 3, and possibly isotopies, K = Ko =+ K; = --- = K; = L,
with the following properties. Each move M;,1 2 1 2 |, is determined by the pair
(Ki-1,Gi-1), where G;_, is a clasper on the knot K;_ such that the internal graph
of the trivalent diagram y(G;-1) is connected and has a negative Euler characteristic.
Then K and L are (n — 1)-equivalent and have the same Alezander polynomial.

Proof. The fact that K and L are (n — 1)-equivalent fo]lows directly from Theorem
6.18 of [7). Therefore, we have only to show that the knots K and L share the
same Alexander polynomial. The proof of the last assertion is by induction on the
number . Suppose that K and K;, where i < I — 1, have the same Alexander
polynomial, Ag(t) = Ak,(t). We now proceed as in the proof of Theorem 1.2 of
[12]. Let H; be the intérnal graph of the trivalent diagram D; = (K, G;i). By
the assumption, H; is a connected graph having the negative Euler characteristic. It
follows that there exists an internal vertex u of D; which is not connected to any
external vertex of D;. It follows from the proof of Theorem 1.2 of [12], that the
knots K;;+1 and K; have S-equivalent Seifert matrices. Since the Alexander-Conway
polynomial of a knot is determined by the S-class of its Seifert matrix, the knots
Kiy1 and K; have the same Alexander polynomial, Ak,,,(t) = Ak,(t). Therefore,
Ag(t) = Ak,,,(t). The induction step completes the proof. Note that the diagram
D= Zi:l D;, regarded in A, ® Q, is an integral linear combination of trivalent
diagrams, the internal graphs of which have the negative Euler characteristic, i.e. the
generators of A, ® Q of the first type. Then for each Vassiliev invariant v of order
< n we have v(L) — v(K) = Zi-:l v(D;) = v():izl D;).

2.1. Corollary. Under the assumptions of Proposition 2.2, if the knot K 1s (n—1)-
trivial and has the trivial Alezander polynomial, then L is also (n — 1)-trivial and has
the trivial Alexander polynomial.

2.1 Remark. The restriction n > 3 in Proposition 2.2 is essential. Indeed, there are
no trivalent diagram of degree 1 and 2, the internal graph of which has the negative
Euler characteristic. On the other hand, it is well known that any two knots A and
L in S3 are related by a sequence of simple one-branch Ca-moves (Cz-move is also
called the A-unknotting operation, see [13]). On the level of the vector space A, ®Q,
each A-operation on knots contributes the value +(1/2)w; to the total sum Zizl D;
of trivalent diagrams D;. It follows that if for a Vassiliev invariant v, of order 2 there
holds va(K) — v2(L) = 0, then [ must be even.

2.2. Remark. Recently Traczyk [17] has proved that for any integer n > 3 the
Alexander (Conway) polynomial of oriented links is not changed by the rotation op-
eration of Anstee, Przytycki and Rolfsen [1] of order n. Rotants (the pairs of links
obtained via rotation operation) are known to share the same Homply polynomial for
n < 4 and the same Kauffman polynomial for n < 3 [17]. In this context, it would be
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interesting to know whether the n-rotants of knots are m-equivalent for appropriate
m (depending on n), and if this is the case, whether one can pass from a knot of
the pair of rotants to another one of this pair via the particular C,4+;-moves just
indicated in Proposition 2.2.

3. Band equivalence of knots. In the study of geometric properties of knot
invariants of finite order, Kalfagianni and Lin [9] have introduced for each n > 2
several classes of knots, called n-hyperbolic, n-elliptic and n-parabolic. All these
knots are characterized by the property that they bound in S® the regular Seifert
surfaces having certain geometric properties and called n-hyperbolic, n-elliptic and
n-parabolic surfaces, respectively. Thus Vassiliev invariants can be thought of the
obstructions for knots to bound the regular Seifert surface of the corresponding type.
One of the main result of Kalfagianni and Lin in [9] is that all n-hyperbolic, n-elliptic
and n-parabolic knots are n-trivial. Kalfagianni and Lin proved also [9] that for each
n > 2 all n-hyperbolic and n-elliptic knots have trivial Alexander polynomial, so
they do not exhaust entirely the class of n-trivial knots. For example, there exists a
2-parabolic knot with the non-trivial Alexander polynomial. It is unknown likely if
n-hyperbolic, n-elliptic and n-parabolic knots exhaust all the class of n-trivial knots.
In the present paper, we consider Seifert surfaces for knots (not necessarily regular)
in S° represented in the disc-band form and some specific moves on them, the band-
analogues of insertions in knots of pure braids commutators.

Let K be a knot in R® ~ R2 x R and S a Seifert surface for K given in the
disc-band form in the projection to the plane F = R? x {0}. Suppose that in some
disc D? = I x I C F the projection of S looks like the geometric trivial braid
1,, with each strand s;, i = 1,...,m, being replaced by a thin band b; (see Fig.
5,a). Each band b;, i = 1,...,m, is bounded by two strands uz;—1 and u; (with
opposite orientations). All the strands u;,1 < j € 2m, taken together with the ap-
propriate orientations, give a diagram of the trivial braid 13,, € By, positioned in
a disc D? C R3. Let p be a geometric pure braid representing an element of the
group LCSp(Pm), where m > 3. We can also thicken the strands s;, i=1,...,m
of the braid p, replacing s! with a thin band b}, respecting all under-crossings and
over-crossings of the strands s! of p. Now we can replace the part of the projection
of Seifert surface S contained in the disc D? and consisting of m separate bands
bi,i=1,...,m (the “thickened” braid 13,,) with the “thickened” braid p consisting
of m band-strands b.,7 = 1,..., m. To this operation on Seifert surfaces represented
in the disc-band form there corresponds the operation of insertion of the "doubles”
of pure braids in a knot diagram K [14]. The orientation of the boundary compo-
nents uh;_, and ub; of b} is inherited from the orientation of the surface S (see Fig.
5,b). Denote by K, and.S,, respectively, the surgered knot and the Seifert surface
bounded it in R3. We shall say that S, is obtained from S by inserting the thickened
pure braid p or the “double” of p in it. The inverse move on the Seifert surfaces,
represented in the disc-band form, and on the knots bounded by them, consists in
replacement the ”"double” of the pure braid p € LCSna(Pn), m 2> 3, with the "dou-
ble” of the trivial one with the same number of strands. Both the moves on Seifert
surfaces for knots are called n-elementary moves with m bands, where m > 3. Any
two knots K and L are called LCS,(Pn)-band-equivalent, where m > 3, if there
is a sequence of knots K = K, K»,...,Ki-1,K; = L and pairs of Seifert surfaces
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51,851,582, 85,...,581-1,5/_1,S:, where S; and S} bound the knot K;, such that each
Seifert surface S;4; is obtained from S; by an n-elementary move with m bands or
an isotopy. It follows from Proposition 2.3 of [14] that any two LCS,{Bnm)-band-
equivalent knots are LC'Sy, (P )-equivalent. The converse implication does not hold,
of cause.

3.1. Proposition. If the knots K and L are LCS,(Pp)-band-equivalent for some
n > 2 and m > 3, then they share the same Alezander polynomial.

Proof. Suppose that K and L are LCS,(Pnm)-band-equivalent for some n > 2
and m > 3. The Alexander polynomial of any knot K’ in S® is determined by S-
equivalence class of Seifert matrices for K’. Let S be any Seifert matrix for K’,
represented in the disc-band form. It is easy to see that an n-elementary move with
m strands on S does not affect its Seifert matrix M. On the other hand, passing from
any Seifert surface of K’ to an other one, for a knot of ‘the same knot type as K’
does not also change the S-equivalence class of M. It follows that K and L have the
S-equivalent Seifert matrices, completing the proof.

3.1. Corollary. If a knot K is LCS,(Pr)-band-equivalent to a trivial one for some
m > 3, wheren > 2, then K is (n—1)-trivial and has the trivial Alezander polynomial.

Therefore, all the knots which are LCS;,(Pm)-band-equivalent to a trivial one for
some m > 3, form a class of “geometric” (n — 1)-trivial knots with trivial Alexander
polynomial. Suppose that two knots K and L are related via an n-elementary band
move. By Proposition 2.3 of [14], L— K, considered modulo K7, can be represented
as some integral linear combination of n-singular knots ) ; A;K;. Since the map
¢ A, ® Q = K. /KL, is an isomorphism of vector spaces (see [2]), the diagram
D = ¢~ Y3, MiK;) in A, ®Q is determined uniquely. Then it is not difficult to check
directly that in A, ® Q the diagram D is a sum of trivalent diagrams, the internal
graphs of which have the negative Euler characteristic.

I l-nl

&) b)

Sy 8; §

Fig. 5

Question. How does the class of ” geometric” n-trivial knots described by Corollary
3.1 relate to the classes of n-hyperbolic and n-elliptic knots?
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166 LEONID PLACHTA

n-TPUBIAJIBHI BY3JIK TA IIOJIITHOM AJIEKCAHIEPA
JI. IInaxra

Incmumym npuxaaoNuT npobaem MAMEMBMUKY | METAHIKY
iment A. C. IIidcmpueava HAH Yxpainu,
sy4. Hayxosa, 36 79053 JIveis, Yxpaina

115 KOXHOro HATYpPaJbHOTrO N 2> 1, BUKOPHCTOBYIOYH KOMYTATODPM I'DYIH YHCTHX
koc Py, nobyaoBano (2n — 1)-TpuBiaabHi By3iu 3 HeTPUBiaJbHUM MOJIHOMOM AJieK-
canjiepa. ChopMyIb0BaHO JOCTATHIO YMOBY TPMBiadbHOCTI noxiHoMa AJleKcaHjepa
(n — 1)-Tpusiansroro Bysaa npu n > 2. Onucano karac “reomerpmunnx” (n — 1)-
TPUBIATbHUX BY3/iB, n > 1 3 TpuBiasbHMM NoOAIHOMOM AJsieKcaHepa.

Karnouo6t caoea: 1HBapiaHT CKIHYEHHOIO THIY, KOMYTaTOP KOC, MoBepxHA 3audepTa,
noJiHoM AJekcaHjepa, TPMBaJEHTHA Jiarpama, n-TPUBiaJbLHHN BY30/.

Crarra Hajgifaa go pegkorerii 15.03.2002
IpuinaTa xo apyxy 14.03.2003
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