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ON H-CLOSED PARATOPOLOGICAL GROUPS
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A Hausdorfl paratopological group is H-closed if it is closed in every Hausdorff
paratopological group tontaining it as a paratopological subgtoup. We give a crite-
rion of the H-closedness of an abelian topological group for some classes of abelian
paratopological groups are obtained simple criteria of the H-closedness.
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All topological spaces considered in this paper are Hausdorff, if the opposite is not
stated. We shall use the following notations. Let A be a subset of a group and n be
an integer. Put A" = {ajaz - -an : a; € A} and nA = {a" : a € A}. For a group
topology T the closure of a set A is denoted by A" and B, stands for a neighborhood
base of the unit.

A topological space X is C-closed in a class C of topological spaces provided X
is closed in any space Y € C containing X as a subspace. It is well known that
when C is the class of Tychonoff spaces, then the C-closedness coincides with the
compactness. For the class of Hausdorff spaces the following conditions for a space
X are equivalent [1, 3.12.5]:

1) The space X is H-closed;

2) If V is a centered family of open subsets of X then MV :VeV}+#e;

3) Every ultrafilter in the family of all open subsets of X is convergent;

4) Every cover U of the space X contains a finite subfamily V such that U{V- :
VeVl=X.

The group G with a topology 7 is called a paratopological group if the multiplication
on the group G is continuous. If the inversion on the group G is continuous, then (G, 1)
is a topological group. A group (G, ) is paratopological if and only if the following
conditions (known as Pontrjagin conditions) are satisfied for a neighborhood base B
at unit e of G [4,5]:

(H{UU-1:.U e B} = {e};

. (VU,VeB(BWeB):WcCUNV;

. (YU € B)(3V € B) : V2 C U;

(YU € B)Vu e U)(3V € B) :uV C U,

. (VWU eB)(YgeG)EVERB) :g-'VgCU.

The paratopological group G is a topological group if and only if
6. (VU eB)(3VeB):VIcCU.

o

[

© Ravsky Oleksandr, 2003



ON H-CLOSED PARATOPOLOGICAL GROUPS 173

A topological group is absolutely closed if it is closed in every Hausdorff topological
group containing it as a topological subgroup. A topological group G is closed in the
class of topological groups if and only if it is Rajkov-complete, that is complete with
respect to the upper uniformity which is defined as the least upper bound £V R of
the left and the right uniformities on G. Recall that the sets {(z,y) : 7'y € U},
where U runs over a base at unit of G, constitute a base of entourages for the left
uniformity £ on G. In the case of the right uniformity R, the condition ™'y € U
is replaced by yz~=! € U. The Rajkov completion G of a topological group G is the
completion of G with respect to the upper uniformity £V R. For every topological
group G the space G has a natural structure of a topological group. The group G can
be defined as a unique (up to an isomorphism) Rajkov complete group containing G
as a dense subgroup.

A paratopological group is H-closed if it is closed in every Hausdorff paratopological
group containing it as a subgroup. In the present section we shall consider H-closed
paratopological groups.

Question. Let G be a regular paratopological group which is closed in every regular
paratopological group containing it as a subgroup. Is G H-closed?

1. Lemma. Let (G, ) be a paratopological group. If there ezxists a paratopology o on
the group G x Z such that o|G C 7 and e € (G,1) then (G, ) is not H-closed.

Proof. We shall build the paratopology p on the group G x Z such that p|G = 7 and
G’ # G. Determine a base of unit B, as follows. Let S = {(z,n) :z € G,n > 0}. For
every neighborhoods U, € 7, U; € o such that U, C U; put (U, Uz) = U, u(U2nS).
Put B, = {(U1,U2) : Uy € B;,U; € B,}. Verify that B, satisfies the Pontrjagin
conditions.

1. It is satisfied since (Uy, Us) C Us.

2. It is satisfied since (U; N V4, U2NV3) C (U, Uz2) N (W1, V2).

3. Select V5 € B, and V; € B, such that Vf C U,, Vﬁ C U; and V; C V. Let
y1,y2 € (V1, V2). The following cases are possible

A.yi,y2 € V1. Then y1y; € Vi € (U1, U2).

B.y1 € Vi,y2 € VaNS. Then iy € V¢ € Up. Since y; € G and y2 € S, we get
y1y2 € S and hence y1y2 € U2 N S.

C.y1 € VoN S, y2 € V is similar to the case B.

D. y1,y2 € Vo NS. Since S is a semigroup, y1y2 € U2 N S.

4. Let y € (U1,Us). There exist V» € B, and V; € B, such that yV, C U; and
Vi C Vo. The following cases are possible:

A. y € U;. We may suppose that yV; C U;. Since y € G, y(VaNS) C U2NS.

B.ye U;NS. Since V; C G then yV; € U N S. Since S is a semigroup and y € S
then y(Va N S) C Us N S. Therefore y(Vy, V2) C (U1, U2).

5 Let (¢,n) € G x Z. There exist V2 € B, and V; € B, such that V; C V;,
g-Wig C U, and g~'Vag C Uz. Then (g,n)"}(V1,V2)(g,n) = g~ (W1, Va)g =
g~ (ViU (Van S)g C U, U (U2 S) = (U1, U2).

Therefore (H, p) is a paratopological group. Taking into account that (Uy, U2)NG =
U, we get p|G = .

Since e € (G, 1) , for every U; € B, there exists g € G such that (9,1) € Uz. Then
g € (e,~1)(U2 N S) and therefore (e, ~1) € G. O
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A group topology 7 on the group G is called complementable if there exist a
nondiscrete group topology 7 on G and neighborhoods U; € 7; such that Uy NU, =
{e}. In this case we say that 7 is a complement to 7;. Proposition 1.4 froni [1] implies
that in this case the topology m A 72 is Hausdorff.

A Banach measure is a real function y defined on the family of all subsets of a
group G and satisfies the following conditions:

a) p(G) =1

b)if A, BCG and AN B = @ then pu(AU B) = p(A) + u(B);

c¢) u(gA) = p(A) for every element g € G and for every subset A C G.

2. Lemma. [3, p.37]. Let G be an abelian group and let i be a Banach measure
on G. Let T be a group topology on G. Suppose that the set nG is U-unbounded
for some natural number n and for some neighborhood U of zero in (G,7). Then
p({z € G : nz € gW}) = 0 for every element g € G and for every neighborhood W of
zero satisfying WW -1 C-U.

Let U be a neighborhood of zero in a topological group (G,7). We say that a
subset A C G is U-unbounded if A ¢ KU for every finite subset K C G.
Given any elements ag, a1, .. ., a, of an abelian group G put

Y(ag, 05, ..48n) = {agtai* a1 0€ 2, € i+ 1,i € n,Zx? > 0},

Xidg by «liy) = {0300 -l sl e m <+ 1,ig u).
Then X(ag,ai,...,an) = Y(ag,ay,. N 4 1 T S o

3. Lemma. Let (G, 1) be an abelian paratopological group of infinite ezponent. If
there erists a ncighborhood U € B, such that the group nG is UU ™! -unbounded for
every natural number n, then the paratopological group (G, 1) is not H-closed.

Proof. Define a seminorm | - | on the group G such that |zy| < || + [y] for all
z,y € G. Suppose that there exists a non periodic element zo € G. Determine a map
o : (zo) — Z putting ¢o(z]) = n. Since Q is a divisible group, the map ¢, can be
extended to a homomorphism ¢ : G = Q. Put |z| = |¢(z)| for every element z € G.
If G is periodic, then put |e] = 0 and |¢| = [Inord(z)] + 1, where ord(x) denotes the
order of the element z.

Fix a neighborhood V € B, such that V2 C U and put W = VV~!. We shall
construct a sequence {a,} such that

a) lap| > n;

b) WnN X(ao,a1,...,an) = {e};

c) Y(ag,a1,...,8n) P €;

d) if —n < k < n, k # 0 then aj; & 2X(ao,a1,...,8n-1).

Take any element ap & W. Suppose that the elements ao, ..., a, have been chosen
to satisfy conditions (a) and (b). Put

B, = {r € G: (Vg € X(a0,a1,...,an-1))(Yk € Z\{0} : —e"*! <k < ") : kz & gW)

If the group G is periodic, then |z| > n for every element z € B,. Lemma 2
implies that u(B,) = 1. If the group G is not periodic, then the construction of the
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seminorm | - | implies that p({z € G : |z| < n}) = p(¢~[—n;n]) = 0. In both cases
there exists an element a, € B, such that |a,| > n. Then WNX(ag,ay,...,a,) = 2.
Considering a subsequence and applying condition (a) we can satisfy conditions (c)
and (d) also.

Define a base B,(4,} at the unit of group topology 7{a.} on the group G x Z as
follows. Put A} = {(e,0)} N {(ak,1) : k > n}. For every increasing sequence {nj}

put Afni] = U Af ---Af . Put Br(q,) = {A[nk]}. We claim that (G x Z,7{a,}) is
leN
a zero dimensional paratopological group.

Put F = |J X(ao,a1,...,8n). Let A[ni] € Br(a,},(z,nz) € Aln]. If z ¢ F, then

new
(z,nz)A[n] N Alng] = @. Let z € X(ao,a1,...,a8m). Put mg = m + k. Suppose that
(z,nz)A[mg] N A[ng] # @. Select the minimal k such that (z,n;)(Af, - A%, )N
A[nk] # @. Let

(*) (z, n%)(ah 1) (ayy,, 1) = (al',‘ s '(G!L,! 1)

and for all 7,4 holds m; < I; < Ly, nf < U, < Ii,;;. Remark that a member g,
occurs in each part of the equality (¥x) no more than ¢ times. If [, > I}, then if we
move all members which are not equal to (a;,,1) from the left side of the equality
(*) to the right one, we obtain contradiction to condition (d). The case [y < I}, is
considered similarly. Therefore [y = [,, a contradiction with the choice of k as a
minimal number satisfying the equality (*). It is showed similarly that if z # ¢ and
me = m+ k+ 1, then (z,n;) € Almg]. If ¢ = e and n; # 0, then the condition
(c) implies that A[n] # (z.n.). Hence Pontrjagin condition 1 for Br(,,} is satisfied.
Since A[nqx)? C Alni]. Pontrjagin condition 3 is satisfied. All the other Pontrjagin
conditions are obvious.

Condition (b) implies that A[n]A[r]"2NVV~1 = {(e,0)}. Therefore the topology
7{an}, is a complement to the topology (7 X {0})4, where 7 x {0} is the product
topology on the group (G,7) x Z. Therefore the topology ¢ = 7{a.}(r x {0}) is

——r{a

Hausdorff. Since (e,0) € (G,1) x C (G,1) we can apply Lemma 1 to show that
(G, ) is not H-closed. O
We shall need the following lemma.

4. Lemma. Let G be a paratopological group and H be a normal subgroup of G. If
H and G/H are topological groups then so is the group G.

Proof. Let U be an arbitrary neighborhood of the unit. There exist neighborhoods
V. W of the unit such that V c U, (V- 1)2’NnH CcUand W C V, W= C VH.
If £ € W1, then there exist elements v € V,h € H such that z = vh. Then
h=vlz e V''W-'NH CU. Therefore z € VU C U?. Hence G is a topological
group. O

The following criterion was suggested by T. Banakh.

5. Theorem. An abelian topological group (G, 1) is H-closed if and only if (G, T) 1s
Rajkov complete and for every group topology ¢ C T on G the quotient group G/G 1s
periodic, where G is the Rajkov completion of the group (G, o).

Proof. Suppose that there exists a group topology ¢ C 7 on G such that the
quotient group G/G is not periodic, where G is the Rajkov completion of the group
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(G, o). Select a non periodic element z € G such that (z)NG = {e}. Then G x (z) is
naturally isomorphic to the group G x Z and Lemma 1 implies that the group (G, 1)
is not H-closed.

Let a paratopological group (H, ') contains (G, 1) as non closed subgroup. Since
G is abelian, G is an abelian semigroup. Choose an arbitrary element ¢ € G\G.
Then the group hull F = (G, z) with the topology 7'|F is an abelian paratopological
group. Then the group G is dense in (F,7'y). Since the Rajkov completion F' of the
topological group (F,r'|Fy) is periodic, there exists a natural number n such that
z" € G. Therefore F* C G. Lemma 4 implies that F is a topological group and
therefore G is closed in (£, 7'g), a contradiction. O

6. Corollary. A Rajkov completion of a isomorphic condensation of H-closed abelian
topological group 1s H-closed.

7. Proposition. Let G be a Rajkov complete topological group, H be H-closed
paratopological subgroup of the group G. If a group G/H has finite exponent then
G 1s an H-closed paratopological group.

Proof. Select a number n such that ¢" € H for every element ¢ € G. Let F D G
be a paratopological group. Since H is closed in F then for every element g € G we
get g" € H. Denote the continuous maps ¢ : G > G as ¢(g) =¢"'and v : G = H
as ¥(g) = (g")~!. Then for every element g € G we get g~! = ¢(g)¥(g) and hence
the inversion on the group G is continuous. Since G is a topological group and G is

Rajkov complete, G=G. O

8. Proposition. Let G be a paratopological group and K be a compact normal
subgroup of the group G. If the group G/K is H-closed then the group G 1s H-closed.

Proof. Suppose that there exists a paratopological group F' containing the group
G such that G # G. Since K is compact then F/K is a Hausdorff paratopological
group by Proposition 1.13 from [4]. Let 7 : F' — F//K be the quotient homomorphism
map. Then G/K D n(r~1(G/K)) D n(G) # n(G) = G/K. This implies that the
group G/K is not H-closed, a contradiction. [

Let G be a topological group, N be a closed normal subgroup of the group G. If N
and G/N are Rajkov complete, then so is the group G [5]. This suggests the following

9. Question. Let G be a paratopological group, N be a closed normal subgroup of
the group G and the groups N and G/N are H-closed. Is the group G H-closed?

Let (G, 7) be a paratopological group. Then there exists the finest group topology
T4 coarser than 7 (see [2]), which is called the group reflection of the topology 7.

10. Proposition. Let (G,7) be an abelian paratopological group. If (G,74) is H-
closed then (G,7) is H-closed. If (G,r) is H-closed and (G, ) is Rajkov complete
then (G, 1g) 1s H-closed.

Proof. Suppose that the group (G,7y) is H-closed and (G, ) is not. Suppose
a paratopological group (H,7) contains (G, ) as a non closed subgroup. Without
loss of generality we may suppose that there exists an element z € H \G such that
H = (G, z) and the group H is abelian. Let 7, be the group reflection of the topology
#. Since 74|G C 74, Theorem 5 implies that the group H/G is periodic. Without loss
of generality we may suppose that zP € G for some prime p.
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Denote by B; the family of neighborhoods at unit in the topology r. Let U € B;.
If UNzG = @ then there exists a neighborhood V' of unit such that V? C U and thus
V C G and G is open in (H,7). Therefore a set F = {"'(zGNU):U € B,}isa
filter. Let U € B7. There exists V € B; such that V? C U. Then (zGNV)? C U. Let
zg € (xGNV). Then z- (zGNV) Cz7}((zg)!"P(zGNV)P)NG C 2~ Pg!~P(UNG)
and hence F is a Cauchy filter in the group (G, 75). Let h € G be a limit of the filter F
on the group (G, 7y). But then for every neighborhood of the unit U in the topology
7q we get UNzhU D U Nzh(UNG) # @ and therefore (H, 7,) is not Hausdorff, a
contradiction.

Let (G, 74) is Rajkov complete and (G, 75) is not H-closed. Then Theorem 5 implies
that there exists a group topology o C 7 on G such that the quotient group G/G of
the Rajkov completion G of the group (G, ¢) is not periodic. Then Lemma 1 implies
that a group (G, 7) is not H-closed. O

11. Lemma. Let topological group (H,op) be a closed subgroup of an abelian topo-
logical group (G, ) and oy C 7|H. Then there exists a group topology o C T on the
group G such that o|H = op.

Proof. Let B; and B,y be bases of unit of (G, 7) and (H, oy) respectively.

Put B, = {U Uz : Uy € B;,Us € Byu}. Verify that the family B, satisfies the
Pontrjagin conditions.

2. It is satisfied since (U; NV1)(Ua N Vo) C U U NV Vs,

3. Select Vo € B,y and Vi € B, such that V2 C Us, V2 C Ur. Then (ViVa)? C
UL U».

4. Let y € U1U,. Then there exist points y; € Uy and y; € U, such that y = y192.
Therefore there exist a neighborhoods V) € B, and V, € B, g such that y,V; C Us.
Then yVi Vo C U, Us.

5. It is satisfied since G is abelian.

6. (L C ot

1. Since all others Pontrjagin conditions are satisfied, it suffices to show that
Bs ={e}. Let z€Gandz#£e Iz € H then there exists Us € B,y such that
U# # « and Uy € B, such that Uy N H C Uz. Then U Uz N {z} =UU2n{z}NHC
Uin{z}=o. If ¢ ¢ H then (G\zH)H 3 z.

Therefore (G, o) is a topological group. Since UyUsNH = (UyNH)U», we conclude
O’lH =0H. O

12. Proposition. A closed subgroup of an H-closed abelian topological group s H-
closed.

Proof. Let H be a closed subgroup of an H-closed abelian group (G, 7). Then G
and H are Rajkov complete. Let oy C 7|H be a group topology on the group H.
Lemma 11 implies that there exists a group topology ¢ on the group G such that
o|H = oy. Let (G.5) be the Rajkov completion of the group (G, ). Then a closure
H° of the group H in the group (G, &) is a Rajkov completion of the group (H,ox).
Let z € H’. Theorem 5 implies that there exists n > 0 such that " € G. Since
H° NG = H then z" € H. Therefore Theorem 5 implies that H is H-closed. O
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13. Proposition. Let G be a H-closed abelian topological group. Then K =
NnennG is compact and for each neighborhood U of zero in G there e:r:sts a nat-
ural n with nG C KU.

Proof. Let ® be the filter on G generated by base {nG : n € N}, and ¥ be an
arbitrary ultrafilter on G with ¥ D ®. Let U be a closed neighborhood of the unit in
G. Lemma 2 implies that there exists a number n such that the set nG is U-bounded.
Since nG € ® and ¥ is an ultrafilter, there exists ¢ € G with gU € ¥. Hence
¥ is a Cauchy filter on G. By the completeness of G, ¥ is convergent. Therefore
each ultrafilter ¥ on G with ¥ D & converges. In particular each ultrafilter on K is
convergent, and since A is closed, K is compact.

To show that there exists a number n with nG C KU, it suffices to prove that
KU € ®. Assume that KU ¢ ®. Then there exists an ultrafilter ¥ D ® with
G\RKU € V. As we have proved, ¥ is convergent. Clearly im¥ € K. Therefore
KU € ¥ which is a contradiction. Hence KU € &, and this completes the proof. O

14. Corollary. A divisible abelian H-closed topological group is compact. O

15. Proposition. Every H-closed abelian topological group is a union of compact
groups.

Proof. Let G be such a group. It suffice to show that every element z € G
is contained in a compact subgroup. Let X be the smallest closed subgroup of G
containing the element z. Then X = |J;_,(kz + nX) for every natural n. Let U be
an arbitrary neighborhood of the zero. By Lemma 15 there exists a natural number
n such that nG is U-bounded. Then X is also U-bounded. Hence X is a precompact
group. Since X is Rajkov complete then X is compact. O

16. Conjecture. An abelian topological group G is H-closed if and only if G is
Rajkov complete and nG is precompact for some natural n.

17. Proposition. The Conjecture 16 is true provided the group (G, ) satisfies the
following two conditions:

1) There erists a o-compact subgroup L of G such that G/L is periodic.

2) There erists a group topology " C T such that the Ragkov completion G of the
group (G, ') is Baire.

Proof. Let G be such a group and L = |Jy¢n Lk be a union of compact subsets
L. Put G(n,k) = {x € G : nz € Ly} for every natural n and k. Then every set
G(n, k) is closed. By Theorem 5 G = |/, kenG(n, k). Since G is Baire, t.here exist
natural numbers n and k such that int G(n k) # @. Then F = G(n,k) — G(n,k)
is a neighborhood of the zero. By Corollary 6 the group G is H-closed. Put K =
MNnen nG. By Proposition 13 there exists a natural m such that mG C F + K. Then
mnG C mnG C Lx — Ly + K and hence the group mnG is precompact. O
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IIPO H-3AMKHEHI ITAPATOIIOJIOI'TYHI I'PYIIHA

0. PaBcbkun

Jvetecoxuti HaylonatbHutli yHieepcumem iment leana Ppanka,
6ya. Ynieepcumemcevra, 1 79000 Jveis, Yxpaina

lNaycaopdoBa mapaTonojoriyHa rpyna Ha3upaeTbcd H-3aMKHeHOIO, AKWIO BOHA
3AMKHEHa y /OBiTbHIM raycaop¢osii NapaTONOJOTIYHIM Tpymi, WO ii MICTUTE.
OTpuMmano kpuTepiit H-3amMxHeHOCTI abeneBoi TONONOTiIYHOI FPyNM 1 JAA [AeAKAX
KJ1acis abefieBUX MapaTONOJIOTIYHHX IPYN ofepKaHo MpocTi KpuTepii H-samxnenocTl.

Kanouo8i caoeéa: napaToNOAOriYHa Tpyna, MiHIMalbHa TONOJNOTIYHA Ipyna,
abCoMOTHO 3aMKHEHA TONOJOT19Ha rpyna.
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