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1. Let S, be a symmetric group of order m. We suppose that an element of
Sm, a permutation of the set {1,2,...,m}, is encoded by a binary string of length
[ = [log, m!], m(log, m—0(1)) <! < mlogy m. Givenv € Spm, y € Sm,and Y C Sy,
we denote y* = v~ lyv and YV = {y* : y € Y}. Two subgroups G and H of S, are
similar if their actions on {1,2,...,m} are isomorphic or, equivalently, if G = H"
for some v € Sm. If X C Sy, let (X) denote the group generated by elements of X.

We address the following algorithmic problem.

SIMILITUDE OF PERMUTATION GROUPS
Given: Ag, Ay C Sm.
Recognaize if: Ag and A; are similar.

Note that the EquaLiTy oF PERMUTATION Groups problem, that is, recognition if
(Ag) = (A;) reduces to recognition, given X C S, and y € Si, if y € (X). Since the
latter problem is known to be solvable in time bounded by a polynomial of the input
length [20, 10], so is EQUALITY oF PERMUTATION GROUPS. As a consequence, SIMILITUDE
oF PERMUTATION Groups belongs to NP, the class of decision problems whose yes-
instances have polynomial-time verifiable certificates. The similitude of (4g) and
(A1) is certified by a permutation v such that (4:) = (Ag).

Another problem, IsomorpHISM OF PERMUTATION GROUPs, is to recognize if (Ag) and
(A;) are isomorphic. This problem also belongs to NP (E. Luks, see [5, Corollary
4.11]). Furthermore, it is announced [7] that IsoMORPHISM OF PERMUTATION GROUPS
belongs to the complexity class coAM (see Section 2 for the definition). By [8]
this implies that IsoMorpHisM oF PERMUTATION Groups is not NP-complete unless the
polynomial-time hierarchy collapses to its second level (for the background on com-
putational complexity theory the reader is referred to [12}).
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O. G. Ganyushkin [11] posed a question if a similar non-completeness result can be
obtained for SimiLiTubE oF PERMUTATION Groups. In this paper we answer this question
in affirmative. We actually prove a stronger result of independent interést, namely,
that SiMILITUDE oF PERMUTATION Groups has a perfect zero-knowledge interactive proof
system. It follows from [1] that SimiLiTupe oF PERMuTATION GrOUPs belongs to coAM
and is therefore not NP-complete unless the polynomial-time hierarchy collapses.

Informally speaking, a zero-knowledge proof system for a recognition problem of a
language L is a protocol for two parties, the prover and the verifier, that allows the
prover to convince the verifier that a given input belongs to L, with high confidence
but without communicating the verifier any information (the rigorous definitions are
in Section 2). Our zero-knowledge proof system for SimiLiTuDE OF PERMUTATION GROUPS
uses the underlying ideas of the zero-knowledge proof systeins designed in [16] for the
Quabratic Resipvosity and in [14] for the Grapu Isomorphism problem. In particular,
instead of direct proving something about the input groups (Ao) and (A;), the prover
prefers to deal with their conjugates (Ao)* and (A;)" via a random permutation w.
The crucial point is that these random groups are indistinguishable by the verifier
because they are identically distributed, provided (Ag) and (A;) are similar. However,
we here encounter a complication: the verifier may actually be able to distinguish
between (Ap)* and (A;)” based on particular representations of these groups by
their generators. Overcoming this complication, which does not arise in [16, 14],is a
novel ingredient of our proof system.

Our result holds true even for a more general problem of recognizing if (Ao) and
(Ay) are conjugated via an element of the group generated by a given set U C S,,.
We furthermore observe that a similar perfect zero-knowledge proof system works also
for the ELEMENT Consucacy problem of recognizing, given ag,a; € Sm and U C S, if
a; = a} for some v € (U). A version of this problem where ag,a; € (U) was proved
to be in coAM in [5, Corollary 12.3 (i)]. Note that the proof system deveioped in [5]
uses different techniques and is not zero-knowledge.

2. Preliminaries. Every decision problem under consideration can be represented
through a suitable encoding as a recognition problem for a language L over the binary
alphabet. We denote the length of a binary word w by |w|.

An interactive proof system {V, P}, further on abbreviated as IPS, consists of two
probabilistic Turing machines, a polynomial-time verifier V and a computationally
unlimited prover P. The input tape is common for the verifier and the prover. The
verifier and the prover also share a communication tape which allows message ex-
change between them. The system works as follows. First both the machines V' and
P are given an input w and each of them is given an individual random string, rv for
V and rp for P. Then P and V alternatingly write messages to one another in the
communication tape. V computes its i-th message a; to P based on the input w, the
random string rv, and all previous messages from P to V. P computes its i-th mes-
sage b; to V based on the input w, the random string rp, and all previous messages
from V to P. After a number of message exchanges V terminates interaction and
computes an output based on w, ry, and all b;. The output is denoted by {V, P }(w).
Note that, for a fixed w, {V, P}(w) is a random variable depending on both random
strings ry and rp.

Let ¢(n) be a function of a natural argument taking on positive real values. We say
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that {V, P} is an IPS for.a language L with error e(n) if the following two conditions
are fulfilled.

Completeness. If w € L, then {V, P}(w) = 1 with probability at least 1 — ¢(|w]).
Soundness. If w ¢ L, then, for an arbitrary interacting probabilistic Turing machine
P*, {V, P*}(w) = 1 with probability at most €(|w}).

We will call any prover P* interacting with P on input w ¢ L cheating. If in the
completeness condition we have {V, P}(w) = 1 with probability 1, we say that {V, P}
has one-sided error €(n).

An IPS is public-coin if the concatenation a; ...ax of the verifier’s messages is a
prefix of his random string ry. A round is sending one message from the verifier to
the prover or from the prover to the verifier. The class AM consists of those languages
having IPSs with error 1/3 and with number of rounds bounded by a constant for all
inputs. A language L belongs to the class coAM iff its complement {0,1}"\ L belongs
to AM.

2.1. Proposition (Goldwasser-Sipser [17]). Every IPS for a language L can be
converted into a public-coin IPS for L with the same error at cost of increasing the
number of rounds in 2.

Given an IPS {V, P} and an input w, let viewy p(w) = (ry,,a1,b1,... ,ak, bx)
where r{, is a part of ry scanned by V during work on w and ay,b;,...,ak, b are all
messages from P to V and from V to P (a; may be empty if the first message is sent
by P). Note that the verifier’s messages ay, ... ,ax could be excluded because they
are efficiently computable from the other components. For a fixed w, viewy p(w) is a
random variable depending on ry and rp.

An IPS {V, P} is perfect zero-knowledge on L if for every interacting polynomial-
time probabilistic Turing machine V* there is a probabilistic Turing machine My.,
called a simulator, that on every input w € L runs in expected polynomial time and
produces output My.(w) which, if considered as a random variable depending on
a random string of My., is distributed identically with viewy. p(w). This notion
formalizes the claim that the verifier gets no information during interaction with the
prover: everything that the verifier gets he can get without the prover by running the
simulator. According to the definition, the verifier learns nothing even if he deviates
from the original program and follows an arbitrary probabilistic polynomial-time pro-
gram V*. We will call the verifier V honest and all other verifiers V* cheating. If, for
all V*, My. is implemented by the same simulator M running V* as a subroutine,
we say that {V, P} is black-boz simulation zero-knowledge.

We call €(n) negligible if ¢(n) < n~¢ for every c and all n starting from some no(c).
The class of languages L having IPSs that are perfect zero-knowledge on L and have
negligible error is denoted by PZK.

2.2. Proposition (Aiello-Hastad [1]). PZK C coAM.

The k(n)-fold sequential composition of an IPS {V, P} is the IPS {V’, P’} in which
v’ and P’ on input w execute the programs of V and P sequentially k(|w|) times, each
time with independent choice of random strings rv and rp. At the end of interaction
V' outputs 1 iff {V, P}(w) = 1 in all k(Jw|) executions. The initial system {V, P} is
called atomic.
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2.3. Proposition.
DIf {V', P'} is the k(n)-fold sequential composition of {V, P}, then

max P [{V', P}(w) = 1] = (n}ﬁxp {V, P*}(w) = 1])”“‘"”.

Consequently, if {V, P} is an IPS for a language L with one-sided constant error ¢,
then {V', P'} is an IPS for L with one-sided error ¢*().

2) (Goldreich-Oren [15], see also [13, Lemma 6.19]) If in addition {V, P} is black-bozx
simulation perfect zero-knowledge on L, then {V', P'} is perfect zero-knowledge on L.

In the k(n)-fold parallel composition {V", P"} of {V, P}, the program of {V, P}
is executed k(|w|) times in parallel, that is, in each round all k(|w|) versions of a
message are sent from one machine to another at once ag a long single message. In
every parallel execution V” and P” use independent copies of rv and rp. At the end
of interaction V" outputs 1 iff {V, P}{(w) = 1 in all k(Jw|) executions.

2.4. Proposition. If {V", P"} is the k(n)-fold parallel composition of {V, P}, then

maxP [{V", P }(w) = 1] = (maxP {V, P"}(v) = i

3. Group Conjugacy. We consider the following extension of SimiLiTupE oF
PERMUTATION GROUPS.

Group CONIJUGACY
Given: Ag, A1,U C Sn.
Recognize if: (A;y) = (Ag)? for some v € (U).

3.1. Theorem. Group CoNiucacy 15 in PZK.

Designing a perfect zero-knowledge interactive proof system for Grour Conyucacy,
we will make use of the following facts due to Sims [20,10].
1) There is a polynomial-time algorithm that, given X C Sp, and y € Sm, recognizes if
y € (X). As a consequence, there is a polynomial-time algorithm that, given X C Sen
and Y C S, recognizes if (X) = (Y).
2) There is a probabilistic polynomial-time algorithm that, given X C S, outputs a
random element of (X). Here and further on, by a random element of a finite set Z
we mean a random variable uniformly distributed over Z.

Given A C S,, and a number k, define

G(A,k):{(:z:l,... ,:Bk) : .’E,’ESm,(w;,... ,zk}=(A)}.

In the sequel, the length of the binary encoding of an input Ag, A1, U C S will be
denoted by n. We set k = 4m. On input (Aq, A1, U), the IPS we design is the n-fold
sequential repetition of the following 3-round system. We will say that the verifier V
accepts if {V, P}(Ao, A1,U) =1 and rejects otherwise.

If (A, A1, U) is yes-instance of Grour CoNiucacy, P finds an element v € (U) such
that (A;) = (A4g)".

1st round.
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P generates a random element u € (U), computes A = A}, chooses a random element
(ai,...,ax) in G(A, k), and sends (ay,...,ax) to V. V checks if all a; € S, and, if
not (this is possible in the case of a cheating prover), halts and rejects.

2nd round.
V' chooses a random bit § € {0, 1} and sends it to P.

3rd round.

Case 3 = 1. P sends V the permutation w = u. V checks if w € (U) and if
(a1, ... ;8x) = {AT).
Case 3 # 1 (this includes the possibility of a message 3 ¢ {0,1} produced by a
cheating verifier). P computes w = vu and sends w to V. V checks if w € (U) and if
(B o B = (AT )

V halts and accepts if the conditions are checked successfully and rejects otherwise.

We now need to prove that this system is indeed an IPS for Grour Coniucacy and,
moreover, that it is perfect zero-knowledge.

Completeness. To show that the prover is able to follow the above protocol, we
have to check that G(A,k) # @ for k = 4m. The latter is true by the fact that
every subgroup of S, can be generated by at most m — 1 elements [18]. 1f (4¢) and
(A;) are conjugate via an element of (U) and the prover and the verifier follow the
protocol, then (ay,...,ax) = (A) = (A}) = (A§*). Therefore, the verifier accepts
with probability 1 both in the atomic and the composed systems.

Soundness. Assume that (Ag) and (A;) are not conjugate via an element of (U) and
consider an arbitrary cheating prover P*. Observe that if both (ai,...,ax) = (A})
and (a1,...,ak) = (A¥) with u,w € (U), then (4;) = (Ao)“*™". It follows that V
rejects for at least one value of 3 and, therefore, in the atomic system V' accepts with
probability at most 1/2. By Proposition 2.3 (1), in the composed system V' accepts
with probability at most 27".

Zero-knowledge. We will need the following fact.

3.2. Lemma. Let G be a subgroup of Sy, and ay,...,ar be random independent
elements of G.

1) If k = 4m, then {(ay,....ax) = G with probability more than 1/2.

2) If k = 8m, then (ay,...,ax) = G with probability more than 1 —27™.

Proof. We will estimate from above the probability that {ay,...,ax) # G. This
inequality is equivalent with the condition that all (a1), (a1,a2), ..., (a1, ... ,ax) are
proper subgroups of G. Assume that this condition is true. Since every subgroup
chain in S, has length less than 2m (see [3, 9]), less than 2m — 1 inclusions among

(a;) C {ay,a3) C -+ C {(a1,...,ax) are proper. In other words, less than 2m — 1 of
the events as ¢ (a1), a3 € (a1,a2), ..., ax € (@1, ... ,ax—1) occur. Equivalently, there
occur more than k—2m of the events as € {(a1), as € (a1,a2), ..., ax € (a1,...,ak-1).

Let p = |H|/|G| be the maximum density of a proper subgroup H of G. Given
ai,...,a; € G, define E(ay,...,a;) to be an arbitrary subset of G fixed so that
(i) E(ay,...,a;) has density p in G, and
(ii) E(ay,...,a;) contains (a1, ... ,a;) if the latter is a proper subgroup of G.
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If (a1, ... ,ax) # G, there must occur more than k — 2m of the events
a; € E(ar), a3 € E(a1,a2),...,ax € E(ay,...,ak-1). . (1)

It suffices to show that the probability of so many occurrences in (1) is small enough.
Set Xi(ai,...,ax) to be equal to 1 if ajy; € E(ay,...,q;) and to 0 otherwise. In
these terms, we have to estimate the probability that

k-1
Y Xi>k—2m. (2)

i=1

It is easy to calculate that an arbitrary set of ! events in (1) occurs with probability

p'. Hence events (1) as well as the random variables X;,..., Xx_-1 are mutually
independent, and Xy, ..., Xx—1 are successive Bernoulli trails with success probability
p

If k = 4m, inequality (2) implies that strictly more than a half of all the trails are
successful. Since p € 1/2, this happens with probability less than 1/2 and item 1 of
the lemma follows.

If k = 8m, inequality (2) implies

k—

[

1

% -1+ Xi>p+e

1

-
1l

-1
bound [2, Theorem A.4], this happens with probability less than exp (—2€%(k - 1))
= exp(—m + ) < 2~™. This proves item 2 of the lemma. O

By Proposition 2.3 (2) it suffices to show that the atomic system is black-box
simulation perfect zero-knowledge. We describe a probabilistic simulator M that uses
the program of V* as a subroutine and, for each V*, runs in expected polynomial
time. Assume that the running time of V* is bounded by a polynomial ¢ in the input
size. On input (Ao, A;,U) of length n, M will run the program of V* on the same
input with random string r, where r is the prefix of M’s random string of length g(n).
In all other cases of randomization, M will use the remaining part of its random
string.

Having received an input (Ao, A1, U), the simulator M chooses a random element
w € (U) and a random bit a € {0,1}. Then M randomly and independently chooses
elements ay,...,ax in (A%) and checks if

(ala'” =ak) = (A:f> (3)

If (3) is not true, M repeats the choice of aj,...,ax again and again until (3) is
fulfilled. By Lemma 3.2 (1), M succeeds in at most 2 attempts on average. The re-
sulting sequence (ay, . .. , ax) is uniformly distributed on G(Ay , k). Then M computes
B = V*(Ao, A1,U,r,ay,...,ax), the message that V* sends P in the 2-nd round after
receiving P’s message ay,...,ax. If # and a are simultaneously equal to or different
from 1, M halts and outputs (r’, ai,...,ax, 3, w), where 7’ is the prefix of r that V*
actually uses after reading the input (Ag, A1, U) and the prover’s message ay, . .. , ak.
If exactly one of § and « is equal to 1, then M restarts the same program from the

with deviation e = 1/4 from the mean value p=E [E‘L’ Zfz_ll X,-]. By the Chernoff
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very beginning with another independent choice of w, a, and aj,...,ax. Notice that
it might happen that in unsuccessful attempts V* used a prefix of r longer than »'.

We first check that, for each V*, the simulator M terminates in expected polyno-
mial time whenever Ag and A; are conjugated via an element of (U). Since V* is
polynomial-time, one attempt to pass the body of M’s program takes time bounded
by a polynomial of n. Observe that a and (r,ay,...,ax) are independent. Really,
independently of whether @ = 0 or @ = 1, r is a random string of length ¢g(n) and
{(ai,...,ax) is a random element of G(A, k), where A itself is a random element of
the orbit { AY : w € (U)} = { AY : w € (U)} under the conjugating action of (U) on
subsets of Sp,. It follows that « and @ are independent and therefore an execution
of the body of M’s program is successful with probability 1/2. We conclude that on
average M’s program is executed twice and this takes expected polynomial time.

We- finally need to check that, whenever Ag and A; are conjugated via an ele-
ment of (U), for each V* the output M (Ao, A;,U) is distributed identically with
viewy. p(Ag, A1,U). Notice that both the random variables depend on V*’s random
string r. It therefore suffices to show that the distributions are identical when condi-
tioned on an arbitrary fixed r. Dencte these conditional distributions by Dps (Ao, A1,
U,r) and Dy- p(Ag, A1,U,r). We will show that they are both uniform on the set

§= {(al,... Jak, B,w) + we(U), B=V"(Ao,ALU,ra1,. .., a),

(av,... ,ax) € G(A¥g k) },

where &(8) is equal to 1 if 3 = 1 and to 0 otherwise.

Let v € (U), such that (4;) = (Ao)”, be chosen by the prover P on input
(Ag, A1, U). Given zy,...,2x € G(A1,k) and u € (U), define ¢(z;,...,2k,u) =
(ai,...,ax,B,w) by a; = ¥ for all i < k, 8 = V*(40,A1,U,r.04,... ,ax), and
w = v~y As easily seen, ¢(zy,...,2zk,u) € S. :

Claim. The map ¢ : G(A1, k) x (U) = S is one-to-one.

Proof. Define ¥(ay,....ax, 8, w) = (z1,...,2x,4) by u = v*® 1w and z; = a?_l
for all i < k. It is not hard to check that the map ¥ is the inverse of ¢. [J

Observe now that if (z1, ... ,zk, u) is chosen at random uniformly in G(A;, k) x(U),
then ¢(z1,...,zk, u) has distribution Dy. p(Ao, A1,U,r). By Claim we conclude that
Dy. p(Ag, A1, U,r) 1s uniform on S.

As a yet another consequence of Claim, observe that if a random tuple (ay, ... ,ak,
3, w) is uniformly distributed on S, then its prefix (a1, ..., ax) is a random element of

G(A, k), where A is a random element of the orbit { A} : w € (U)} = {AY : we (U)}
under the conjugating action of (U) on subsets of Sp,. This suggests the following
way of generating a random element of S. Choose uniformly at random o € {0,1},
w € (U), (ay,...,ax) € G(AZ,k) and, if

J(V'(Aa,Al,U,r,al,...,ak))=a, (4)

output (aj,...,ax, V*(Ao, A1,U,r,a1,... ,ax), w); otherwise repeat the same proce-
dure once again independently. Under the condition that (4) is fulfilled for the first
time in the i-th repetition, the output is uniformly distributed on S. Notice now that
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this sampling procedure coincides with the description of Dps(Ap, Ay,U,7). It fol-
lows that Dy (Ao, A1, U, r) is uniform on S. The proof of the perfect zero-knowledge
property of our proof system for Grour Coniucacy is complete. )

The following corollary immediately follows from Theorem 3.1 by Proposition 2.2
and the result of [8].

3.3. Corollary. Group Consucacy is in coAM and is therefore not NP-complete
unless the polynomial-time hierarchy collapses.

We also give an alternative proof of this corollary that consists in direct designing
a two-round IPS {V, P} with error 1/4 for the complement of Grour Consucacy and
applying Proposition 2.1. More precisely, we deal with the Grour Non-Consugacy
problem of recognizing, given Ag, A;,U C Sn, if there is no v € (U) such that
(A1) = (Ao)". ‘

Set k = 8m. The below IPS is composed twice in parallel.

Ist round.
V chooses a random bit o € {0,1}, a random element u € (U), and a sequence of
random independent elements a;,...,ax € (A4%). Then V sends (ai,...,ax) to P.
2nd round.
P determines 3 such that (a;,...,ax) and (Ag) are conjugate via an element of (U)

and sends 3 to V.

V accepts if 8 = a and rejects otherwise.

Completeness. By Lemma 3.2 (2), (a1,...,ax) = (Ay) with probability at least
1 — 2™ If this happens and if (Ao) and (A;) are not conjugated via (U), the group
(ay,...,ax) is conjugated via (U) with precisely one of (Ao) and (A1). In this case P
is able to determine o« correctly. Therefore V accepts with probability at least 1 -2"™
in the atomic system and with probability at least 1 —2~™%! in the composed system.

Soundness. If (Ag) and (A;) are conjugated via (U), then for both values a = 0
and a = 1, the vector (ay,...,ax) has the same distribution, namely, it 1s a ran-
dom element of A¥, where A is a random element of the orbit { Af : w € (U)} =
{ AY : w € (U)} under the conjugating action of (U) on subsets of Sp. It follows
that, irrespective of his program, P guesses the true value of a with probability 1/2.
With the same probability V accepts in the atomic system. By Proposition 2.4, in
the composed system V accepts with probability 1/4.

Note that {V, P} is perfect zero-knowledge only for the honest verifier but may
reveal a non-trivial information for a cheating verifier.

4. Element Conjugacy. This section is devoted to the following problem.

ELEMENT CONJUGACY
Given: ag,a; € Sm, U C Sm.
Recognize if: a; = af for some v € (U).

L. Babai [5] considers a version of this problem with ag,a; € (U) and proves that
it belongs to coAM. His result holds true not only for permutation groups but also
for arbitrary finite groups with efficiently performable group operations, in particular,
for matrix groups over finite fields. It is easy to see that Theorem 3.1 carries over to
ELEMENT CONJUGACY.
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4.1. Theorem. ELeMeNT Coniucacy 1§ in PZK.

The proof system designed in the preceding section for Grour Coniucacy applies
to ELEMENT Conjucacy as well. Moreover, the proof system for ELemenT Consucacy
is considerably simpler. In place of groups (A}) and (A}) we now deal with single
elements aff and a} and there is no complication with representation of (A§) and (AY)
by generating sets. _

We now notice relations of ELement Coniucacy with the following problem consid-
ered by E. Luks [19] (see also [6, Section 6.5]). Given £ € Sp,, let C(z) denote the
centralizer of z in S,,.

CENTRALIZER AND COSET INTERSECTION
Given: 2,9 € Sy U C Sen.
Recognize if: C(z) N (U)y # 0.

Since, given a permutation z, one can efficiently find a list of generators for C(z), this
is a particular case of the CoseT INTERsEcTION problem of recognizing, given A, B C S,
and s,t € S, if the cosets (A)s and (B)t intersect.

4.2. Proposition. ELEMENT ConiuGacy and CENTRALIZER AND COSET INTERSECTION are
equivalent with respect to the polynomial-time many-one reducibility.

Proof. We first reduce ELEMENT ConJuGACY t0 CENTRALIZER AND COSET INTERSECTION.
Given permutations ag and ay, it is easy to recognize if they are conjugate in S, and,
if so, to find an s such that a; = aj. The set of all z € S, such that a, = af is the
coset C'(ag)s. It follows that (U) contains v such that a; = af iff C'(ao) and (U)s~1
intersect.

A reduction from CENTRALIZER AND COSET INTERSECTION tO ELEMENT CONJUGACY IS
based on the fact that C(z) and (U)y intersect iff z and yzy~' are conjugated via an
element of (U). 0O

Note that, while the reduction we described from ELEMENT ConJjuGacy to CENTRAL-
1ZER AND CoseT InTERsecTion works only for permutation groups, the reduction in the
other direction works equally well for arbitrary finite groups with efficiently per-
formable group operations, in particular, for matrix groups over finite fields.

We now have three different ways to prove that ELement Coniucacy is in coAM and
is therefore not NP-complete unless the polynomial-time hierarchy collapses. First,
this fact follows from Theorem 4.1 by Proposition 2.2. Second, one can use Proposition
4.2 and the result of [5, Corollary 12.2 (d)] that Coset InTERsECTION is in coAM. Finally,
one can design a constant-round IPS for the complement of ELemenT Coniucacy as it
is done in the preceding section for the complement of Grour Constcacy.

We conclude with two questions.

4.3. Question. Is there any reduction between Grour Conjucacy and COSET INTER-
secTion? We are not able to prove an analog of Proposition 4.2 for groups because,
given Ag, A; C Sm, such .that (A;) = (Aq)” for some v € Sp,, we cannot efficiently
find any v with this property (otherwise we could efficiently recognize the SimiLiTupe
oF PERMUTATION GROUPS).

4.4. Question. Does ELEmenT Conucacy reduce to Grour Conyucacy? Whereas
Corollary 3.3 gives us an evidence that Grour Consuaacy is not NP-complete, we
have no formal evidence supporting our feeling that Group Coniucacy is not solvable
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efficiently. A reduction from ELement Consucacy could be considered such an evidence
as ELEMENT ConJuGacy is not expected to be solvable in polynomial time [4, page 1483].

Note that the conjugacy of permutations ag and a; via an element of a group (U)
does not reduce to the conjugacy of the cyclic groups (ap) and (a;) via (U) because
(ap) and (a;) can be conjugated by conjugation of another pair of their generators,
while such a new conjugation may be not necessary via (U). For example, despite the
groups ((123)) and ((456)) are conjugated via ((14)(26)(35)), the permutations (123)
and (456) are not. :
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JOBEJIEHHSA BE3 PO3I'OJIOHNIEHHSA
JAJS CIIPSAXKEHOCTI 'PYII HNIACTAHOBOK

O. Bep6inpkuu

Kuiecvxutl naytonaavrut ynieepcumem imewt Tapaca [lesuenka,
6ya. Boaodumupcexa, 64 01033 Kuie, Yxpaina

Onucaso JOCKOHALy CHCTeMy JoBefeHHA 663 PO3roJOIeHHA JIA 3a/a4l pO3ni3Ha-
BatHA CHPAXEHOCTI ABOX TPYN MiACTAHOBOK. JBlACH BHILIMBAE, BlANOBIJAIOYM Ha
sanuTanud O. . Tanomkina, 1o 04 3a1a4a posnisnasanis He € NP-noBroio 3a ymoBr
HEBHPOAXKEHOCTI NOAIHOMIaJbHOI IepapXil.

K .ir04061 ca06a: 1oJIGHICTH IPyN MEPeCcTAHOBOK, allOPUTMIYHI 3aJa4l posnidHa-
panHa, N P-noBHOTa, CHCTEMHU JOBejeHb 6€3 po3ro/oieHHS.
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