УДК 512.552.12

DIAGONALIZATION OF MATRICES OVER RING WITH FINITE STABLE RANK

Bohdan ZABAVSKY

Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

In the present work we construct a theory of diagonalizability for matrices over rings with finite stable rank. We prove that if R is a regular ring, then every $m \times k$ and $k \times m$ matrices, where $m \geqslant bsr(R) + 2$, admits a diagonal reduction. If R is a directly finite regular ring, then R_n is directly finite for all $n \geqslant bsr(R) + 2$. We obtain an affirmative answer in greater generality to the question of Henriksen: if R is a right Bezout ring and R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to this question implies that a commutative Bezout ring is an elementary divisor ring if and only if R/J(R) is an elementary divisor ring.

Key words: stable rank, Bezout ring, elementary transformations, Hermite ring.

1. The aim of this paper is to study the question of diagonalizability for matrices over ring. In [1] Henriksen proved that if R is a unit regular ring, then every matrix over R admits diagonal reduction. The diagonalizability question for matrices was answered by Menal and Moncasi [2, Theorem 7], they showed that all matrices over regular ring R admit diagonal reductions if only if R is Hermite. Further, the stable rank (in the sense of K-theory) of a regular ring satisfying the above condition is at most 2 [2, Proposition 8].

We construct a theory of diagonalizability for matrices over rings with finite stable rank. We provide that if R is a regular ring with finite stable rank bsr(R), then every $k \times m$ and $m \times k$ matrices over R, where $m \ge bsr(R) + 2$, admit diagonal reduction. We provide an answer to a question in [4]: if R is a directly finite regular ring, is R_n directly finite? We prove that if R is directly finite regular ring with finite stable rank bsr(R), then R_n is directly finite for all $n \ge bsr(R) + 2$. We also obtain an affirmative answer to a question of Henriksen [6, Question 2]: if R is an right Bezout ring and R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to this question implies that a commutative Bezout ring is an elementary divisor ring if and only if R/J(R) is an elementary divisor ring.

All rings we consider are supposed to be associative with $1 \neq 0$. By a right Bezout ring we will mean a ring in which all finitely generated right ideals are principal, and by a Bezout ring a ring which is both right and left Bezout. We recall that a module is uniserial if its lattice of submodules forms a chain. A ring is right serial if as a right module over itself, it is a direct sum of uniserial modules. A ring is serial if it both right ad left serial [5].

We shall call two matrices A and B over a ring R equivalent, if there exist invertible matrices P,Q such that B=PAQ. An matrix A admits diagonal reduction if A is

[©] Zabavsky Bohdan, 2003

equivalent to a diagonal matrix. If every $1 \times n$ $(n \times 1)$ matrix over R admits diagonal reduction, then R is n-right (left) Hermite. A right (left) Hermite ring is a ring which is n-right (left) Hermite, for any $n \ge 1$. A ring which is both right and left Hermite is an Hermite ring. Obviously a right Hermite ring is right Bezout. A ring R is said to be regular if for every $a \in R$ there exists $x \in R$ such that axa = a. It is easy to see that a regular ring is Bezout [4]. A row (a_1, \ldots, a_n) over a ring R is called right unimodular, if $a_1R+\cdots+a_nR=R$. If (a_1,\ldots,a_n) is a right unimodular n-row over a ring R, then we say that (a_1,\ldots,a_n) if reducible if there exists an (n-1)-row (b_1,\ldots,b_{n-1}) such that the (n-1)-row $(a_1+a_nb_1,\ldots,a_{n-1}+a_nb_{n-1})$ is a right unimodular (n-1)-row. A ring R is said to have stable rank $n \ge 1$, if n is the least positive integer such that every right unimodular (n+1)-row is reducible. This number is denoted by bsr(R). A ring R is directly finite if xy = 1 implies yx = 1 for all $x, y \in R$.

We denote by R_n the ring of all $n \times n$ matrices over R, and by $GL_n(R)$ its group of unities. We write $GE_n(R)$ for the subgroup of $GL_n(R)$ generated by elementary matrices. The Jacobson radical of a ring R will be denoted by J(R). Denote by U(R) the group of unities of R.

2. Diagonalization of matrices over ring with finite stable rank.

Proposition 1. Let R be a right Bezout ring with finite stable rank bsr(R). Then any right unimodular row of length m over R, where $m \ge bsr(R)+1$, can be completed to an invertible matrix in $GE_m(R)$.

Proof. If
$$a_1R + \cdots + a_{n+1}R = R$$
, then there exists an m-row (c_1, \ldots, c_m) with
$$(a_1 + a_{m+1}c_1)R + \cdots + (a_m + a_{m+1}c_m)R = R.$$

There exist $u_1, \ldots, u_m \in R$ such that

$$(a_1 + a_{m+1}c_1)u_1 + \cdots + (a_m + a_{m+1}c_m)u_m = 1.$$

Set

$$P_{1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{1} & c_{2} & \dots & c_{m} & 1 \end{pmatrix} \in GE_{m+1}(R),$$

$$P_{2} = \begin{pmatrix} 1 & 0 & \dots & 0 & u_{1}(1 - a_{m+1}) \\ 0 & 1 & \dots & 0 & u_{2}(1 - a_{m+1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & u_{m}(1 - a_{m+1}) \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \in GE_{m+1}(R).$$

We see that for a row $(a_1, \ldots, a_{m+1})P_1P_2$ there exists a matrix $P_3 \in GE_{m+1}(R)$ such that $(a_1, \ldots, a_{m+1})P_1P_2P_3 = (1, 0, \ldots, 0)$. Thus we obtain a matrix $P \in GE_{m+1}(R)$ such that $(a_1, \ldots, a_{m+1})P = (1, 0, \ldots, 0)$. Then (a_1, \ldots, a_{m+1}) is the first row of the matrix P^{-1} . For any right unimodular row of length > m+1 the result follows by induction.

Proposition 2. Let R be a right Bezout ring with finite stable rank bsr(R), then R is an m-right Hermite ring, for any $m \ge bsr(R) + 1$.

Proof. Since R is a right Bezout ring, then for any $a_1, \ldots, a_m \in R$ there exists $d \in R$ such that $a_1R + \cdots + a_mR = dR$. Say $a_1u_1 + \cdots + a_mu_m = d$, $a_1 = db_1$, \ldots , $a_m = db_m$. From these relations we get $d(b_1u_1 + \cdots + b_mu_m - 1) = 0$ so that $b_1R + \cdots + b_mR + cR = R$ for some $c \in R$ such that dc = 0. Since $m \ge bsr(R) + 1$, we have $(b_1 + cx_1)R + \cdots + (b_m + cx_m)R = R$, where $x_1, \ldots, x_n \in R$. By Proposition 1, we can find an invertible matrix $P \in GE_m(R)$ of the form

$$P = \begin{pmatrix} b_1 + cx_1, & \dots, & b_m + cx_m \\ & * & \end{pmatrix}.$$

Clearly $(a_1, \ldots, a_m)P^{-1} = (d, 0, \ldots, 0)$, some R is m-right Hermite.

Now we are ready to prove a result which characterizes the regular rings which have finite stable rank.

Theorem 1. Let R be a regular ring with finite stable rank bsr(R). Then for every $k \times m$ $(m \times k)$ matrices A over R, where $m \ge bsr(R) + 2$, there exist invertible matrices $P \in GE_k(R)$ $(P \in GE_m(R))$, $Q \in GE_m(R)$ $(Q \in GE_k(R))$ such that PAQ is a diagonal matrix.

Proof. In order to prove that A admits diagonal reduction, we proceed by induction on k. If k = 1, the result follows by Proposition 2. If k > 1 it follows similarly as the proof of Theorem 9 [2].

Thus we provide an answer to Henriksen's question [1], whether a regular ring can be an elementary divisor ring without being unit regular.

Theorem 2. Let R be a directly finite ring. If every $n \times n$ matrix over R is equivalent to a diagonal matrix, then R_n is a directly finite ring.

Proof. Let $A, B \in R_n$ and AB = E, the identity n-matrix. If

$$PAQ = \begin{pmatrix} \varepsilon_1 & 0 & \dots & 0 \\ 0 & \varepsilon_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \varepsilon_n \end{pmatrix} = \varepsilon,$$

where $P,Q \in GL_n(R)$, then $PAQQ^{-1}BP^{-1} = \varepsilon Q^{-1}BP^{-1} = E$. Since R is directly finite, we see that $\Phi = Q^{-1}BP^{-1}$ is a diagonal matrix. Since R is directly finite, we obtain $\Phi \varepsilon = \varepsilon \Phi = E$ and $\varepsilon \in GL_n(R)$. Thus $A = P^{-1}\varepsilon Q^{-1} \in GL_n(R)$ and BA = E and hence R_n is directly finite.

Theorem 3. Let R be a directly finite regular ring with finite stable rank bsr(R). Then R_m is directly finite for every $m \ge bsr(R) + 2$.

This theorem follows from Theorem 1 and Theorem 2.

Theorem 2.5 in [3] provides a large class of regular rings over which all square matrices are diagonalizable, these rings are separative regular rings. Then we have

Theorem 4. Let R be directly finite separative regular ring. Then R_n is directly finite for all n.

Levy in [5] proved that all square matrices over serial rings are diagonalizable. Then we have

Theorem 5. Let R be a directly finite serial ring. Then R_n is directly finite for all n.

We obtain an affirmative answer to a question of Henriksen [6, Question 2].

Theorem 6. Let R be a right Bezout ring, and R/J(R) is a right Hermite ring. Then R is right Hermite.

Proof. We show first that any right unimodular row over R can be completed to an invertible matrix. Set $\overline{R} = R/J(R)$. Let aR + bR = R, then $\overline{aR} + \overline{bR} = \overline{R}$. Since \overline{R} is a right Hermite ring, the right unimodular row $(\overline{a}, \overline{b})$ over \overline{R} can be completed to an invertible matrix

$$\overline{A} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{u} & \overline{v} \end{pmatrix}.$$

Thus $\overline{AC} = \overline{CA} = \overline{E}$. Let

$$\overline{C} = \begin{pmatrix} \overline{c} & \overline{x} \\ \overline{d} & \overline{y} \end{pmatrix}.$$

Then $ac + bd = 1 + j_1$, $ax + by = j_2$, $uc + vd = j_3$, $ux + vy = 1 + j_4$, for any $j_1, j_2, j_3, j_4 \in J(R)$. Set

$$A = \begin{pmatrix} a & b \\ u & v \end{pmatrix}, \quad C = \begin{pmatrix} c & x \\ d & y \end{pmatrix},$$

then

$$AC = \begin{pmatrix} 1 + j_1 & j_2 \\ j_3 & 1 + j_4 \end{pmatrix} = J.$$

Since $1 + j_1 \in U(R)$, then $J \in GL_2(R)$ and $A \in GL_2(R)$.

Now we prove that R is right Hermite ring. Suppose that we are given $a, b \in R$, then aR + bR = dR, say $a = da_0$, $b = db_0$, d = au + bv. From these relations we get $d(a_0u + b_0v - 1) = 0$, so $a_0R + b_0R + c_0R = R$ for some $c_0 \in R$ such that $dc_0 = 0$. Since \overline{R} is a right Hermite ring, then $bsr(\overline{R}) \leq 2$ [2, Proposition 8]. Since for the ring R the following assertion hold: $u \in U(R)$ if and only if $u + J(R) \in U(\overline{R})$, then $bsr(R) \leq 2$. Thus $(a_0 + c_0x)R + (b_0 + c_0y)R = R$, where $x, y \in R$. By the above argument, we can find an invertible matrix of the form

$$P = \left(\begin{array}{cc} a_0 + c_0 x & b_0 + c_0 y \\ * & * \end{array}\right).$$

Clearly $(a, b)P^{-1} = (d, 0)$, so R is right Hermite.

Theorem 7. A commutative Bezout ring is an elementary divisor ring if and only if R/J(R) is an elementary divisor ring.

Proof. Obviously, every homomorphic image of an elementary divisor ring is an elementary divisor ring, so we have only to prove the sufficiency. Let R/J(R) be an

elementary divisor ring, then by Theorem 6, R is Hermite. By [6, Theorem 3] R is an elementary divisor ring.

- Henriksen M. On a class of regular rings that are elementary divisor rings // Arch. Math. - 1973. - 24. - P. 133-141.
- 2. Menal P., Moncasi J. On regular rings with stable range 2 // J. Pure Appl. Algebra. 1982. 24. P. 25-40.
- 3. Ara P., Goodearl K. R., O'Meara K. C., Pardo E. Diagonalization of matrices over regular rings // Linear Algebra Appl. 1997. 265. P. 147-163.
- 4. Goodearl K. R. Von Neumann regular rings. London, 1979.
- Levy L. S. Sometimes only square matrices can be diagonalized // Proc. Amer. Math. Soc. - 1975. - 52. - P. 18-22.
- Henriksen M. Some remarks on elementary divisor rings II // Michigan Math. J. 1955/56. – P. 159-163.

ДІАГОНАЛІЗАЦІЯ МАТРИЦЬ НАД КІЛЬЦЯМИ СКІНЧЕННОГО СТАБІЛЬНОГО РАНГУ

Б. Забавський

Львівський національний університет імені Івана Франка, вул. Університетська, 1 79000 Львів, Україна

Побудовано теорію діагоналізації матриць над кільцями скінченного стабільного рангу. Доведено таке: якщо R – регулярне кільце, то довільні $m \times k$ і $k \times m$ матриці над R, де $m \geqslant cm.p.(R) + 2$, володіють діагональною редукцією. Якщо R прямо скінченне регулярне кільце, то кільце матриць R_n є прямо скінченне для довільного $n \geqslant cm.p.(R) + 2$. Показано таке: якщо R праве кільце Безу таке, що R/J(R) є правим кільцем Ерміта, тоді R праве кільце Ерміта. Одержали, що комутативне кільце Безу є кільцем елементарних дільників тоді і тільки тоді, коли R/J(R) кільце елементарних дільників.

Ключові слова: стабільний ранг, кільце Безу, елементарна редукція, кільце Ерміта.

> Стаття надійшла до редколегії 14.02.2002 Прийнята до друку 14.03.2003