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In the present work we construct a theory of diagonalizability for matrices over rings
with finite stable rank. We prove that if R is a regular ring, then every m x k and k xm
matrices, where m > bsr(R) + 2, admits a diagonal reduction. If R is a directly finite
regular ring, then Ry, is directly finite for all n 2> bsr(R) + 2. We obtain an affirmative
answer in greater generality to the question of Henriksen: if R is a right Bezout ring
and R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to
this question implies that a commutative Bezout ring is an elementary divisor ring if
and only if R/J(R) is an elementary divisor ring.
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1. The aim of this paper is to study the question of diagonalizability for matrices
over ring. In [1] Henriksen proved that if R is a unit regular ring, then every matrix
over R admits diagonal reduction. The diagonalizability question for matrices was
answered by Menal and Moncasi [2, Theorem 7}, they showed that all matrices over
regular ring R admit diagonal reductions if only if R is Hermite. Further, the stable
rank (in the sense of K-theory) of a regular ring satisfying the above condition is at
most 2 [2, Proposition 8].

We construct a theory .of diagonalizability for matrices over rings with finite stable
rank. We provide that if R is a regular ring with finite stable rank bsr(R), then every
k x m and m x k matrices over R, where m > bsr(R) + 2, admit diagonal reduction.
We provide an answer to a question in [4]: if R is a directly finite regular ring, is R,
directly finite? We prove that if R is directly finite regular ring with finite stable rank
bsr(R), then R, is directly finite for all n > bsr(R) +2. We also obtain an affirmative
answer 1o a question of Henriksen [6, Question 2]: if R is an right Bezout ring and
R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to
this question implies that a commutative Bezout ring is an elementary divisor ring if
and only if R/J(R) is an elementary divisor ring.

All rings we consider are supposed to be associative with 1 # 0. By a right Bezout
ring we will mean a ring in which all finitely generated right ideals are principal, and
by a Bezout ring a ring which is both right and left Bezout. We recall that a module
is uniserial if its lattice of submodules forms a chain. A ring is right serial if as a right
module over itself, it is a direct sum of uniserial modules. A ring is serial if it both
right ad left serial [5].

We shall call two matrices A and B over a ring R equivalent, if there exist invertible
matrices P,Q such that B = PAQ. An matrix A admits diagonal reduction if A is
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equivalent to a diagonal matrix. If every 1 x n (n x 1) matrix over R admits diagonal
reduction, then R is n-right (left) Hermite. A right (left) Hermite ring is a ring which
is n-right (left) Hermite, for any n > 1. A ring which is both right and left Hermite is
an Hermite ring. Obviously a right Hermite ring is right Bezout. A ring R is said to be
regular if for every a € R there exists z € R such that aza = a. It is easy to see that a
regular ring is Bezout [4]. A row (ai,...,a,) over aring R is called right unimodular,
ifaiR+---+a, R = R. If (a1,...,a,) is a right unimodular n-row over a ring R, then
we say that (ai,...,ay) if reducible if there exists an (n — 1)-row (b;,...,bs—;) such
that the (n — 1)-row (ay +anby,...,@8n-1+anbn_1) is a right unimodular (n — 1)-row.
A ring R is said to have stable rank n 2> 1, if n is the least positive integer such that
every right unimodular (n + 1)-row is reducible. This number is denoted by bsr(R).
A ring R is directly finite if zy = 1 implies yz = 1 for all z,y € R.

We denote by R, the ring of all n x n matrices over R, and by GL,(R) its group
of unities. We write GE,.(R) for the subgroup of GL,(R) generated by elementary
matrices. The Jacobson radical of a ring R will be denoted by J(R). Denote by U(R)
the group of unities of R.

2. Diagonalization of matrices over ring with finite stable rank.

Proposition 1. Let R be a right Bezout ring with finite stable rank bsr(R). Then
any right unimodular row of length m over R, where m 2> bsr(R)+1, can be completed
to an tnvertible matriz in GE,, (R).

Proof. If a3 R+ - - - + an41 R = R, then there exists an m-row (ci,...,¢m) With
(a1 -+ am+161)R e R o (am + @mpiem )R = K.
There exist uy, ..., un € R such that

(@1 + ams1c1)ur + -+ (@m + Gm416m)um = 1.

Set
1 0 ... 0 O
9 1 ... B B8
=l - : £ 2 € GEm41(R),

Cii 85 ses G

I B o 0 U](l—am+1)

0 1 ... 0 wull—uwmga)

Py = _ € GEm+1(R).
(O[T 1 um(lﬂamﬂ)
0 .. B 1|

We see that for a row (ay,...,am+1) Py P2 there exists a matrix P3 € GEp41(R)
such that (ai,...,am41)P1P2Ps = (1,0,...,0). Thus we obtain a matrix P €
GEm41(R) such that (a1,...,em+1)P = (1,0,...,0). Then (aj,...,am41) is the
first row of the matrix P~!. For any right unimodular row of length > m 4 1 the
result follows by induction.
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Proposition 2. Let R be a right Bezout ring with finite stable rank bsr(R), then R
s an m-right Hermite ring, for any m 2 bsr(R) + 1.

Procf. Since R is a right Bezout ring, then for any a,,...,a,, € R there exists
d € R such that ajR+ -+ amR = dR. Say ayju; + -+ - + amum = d, a1 = dby,

. @m = db,,. From these relations we get d(bju; + - -+ by, — 1) = 0 so that
byR+ - -+ bm R+ cR = R for some ¢ € R such that dc = 0. Since m 2> bsr(R) + 1,
we have (by +cz1)R+ -+ (b +czm)R = R, where z;,...,2, € R. By Proposition
1, we can find an invertible matrix P € GEn,(R) of the form

};:(61+cz1, — bm+czm).

*

Ll

Clearly (aj,...,am)P~1 = (d,0,...,0), some R is m-right Hermite.
Now we are ready to prove a result which characterizes the regular rings which
have finite stable rank.

Theorem 1. Let R be a regular ring with finite stable rank bsr(R). Then for every
k x m (m x k) matrices A over R, where m > bsr(R) + 2, there exist invertible
matrices P € GEx(R) (P € GEn(R)), Q € GEn(R) (Q € GEx(R)) such that PAQ

15 a diagonal matriz.

Proof. In order to prove that A admits diagonal reduction, we proceed by induction
on k. If k = 1, the result follows by Proposition 2. If k > 1 it follows similarly as the
proof of Theorem 9 [2].

Thus we provide an answer to Henriksen’s question [1], whether a regular ring can
be an elementary divisor ring without being unit regular.

Theorem 2. Let R be a directly finite ring. If every n x n matriz over R 1s equivalent
to a diagonal matriz, then R, is a directly finite ring.

Proof. Let A, B € R, and AB = E, the identity n-matrix. If

€1 0 0

0 = 0
PAQ=1 . . s | =5

G 0 ... Ea

where P,Q € GLn(R), then PAQQ 'BP~! = eQ~'BP~! = E. Since R is directly
finite, we see that ® = Q" !BP~! is a diagonal matrix. Since R is directly finite, we
obtain ®¢ = ¢® = E and € € GL,(R). Thus A= P~'¢Q~' € GLn,(R) and BA=E
and hence R, is directly finite.

Theorem 3. Let R be a directly finite regqular ring with finite stable rank bsr(R).
Then R,, is directly finite for every m 2 bsr(R) + 2.

This theorem follows from Theorem 1 and Theorem 2.
Theorem 2.5 in [3] provides a large class of regular rings over which all square
matrices are diagonalizable, these rings are separative regular rings. Then we have
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Theorem 4. Let R be directly finite separative regular ring. Then R,, 1s directly
finite for all n.

Levy in [5] proved that all square matrices over serial rings are diagonalizable.
Then we have

Theorem 5. Let R be a directly finite serial ring. Then R, 1s directly finite for all
n.

We obtain an affirmative answer to a question of Henriksen [6, Question 2.

Theorem 6. Let R be a right Bezout ring, and R/J(R) is a right Hermite ring.
Then R 1s right Hermate.

Proof. We show first that any right unimodular row over R can be completed to
an invertible matrix. Set R = R/J(R). Let aR+ bR = R, then R+ bR = R. Since
R is a right Hermite ring, the right unimodular row (@, b) over R can be completed
to an invertible matrix

Thus AC=CA =E. Let

Ql
i
T —
Q. ol
<| 8l
ST

Then ac + bd = 1 + ji, az + by = ja, uc + vd = j3, ur + vy = 1+ ja, for any
jl:j21j3:j46J(R)- Set

then

Since 1+ j; € U(R), then J € GLy(R) and A € GLa(R).

Now we prove that R is right Hermite ring. Suppose that we are given a,b € R,
then aR + bR = dR, say a = dag, b = dbg, d = au + bv. From these relations we get
d(aou + bov — 1) = 0, so agR + boR + coR = R for some co € R such that deg = 0.
Since R is a right Hermite ring, then bsr(R) < 2 [2, Proposition 8). Since for the
ring R the following assertion hold: u € U(R) if and only if u+ J(R) € U(R), then
bsr(R) < 2. Thus (ag + coz)R + (bo + coy)R = R, where z,y € R. By the above
argument, we can find an invertible matrix of the form

P = (ao+cgm bg+c0y>'

* *
Clearly (a,b)P~! = (d,0), so R is right Hermite.

Theorem 7. A commutative Bezout ring is an elementary divisor ring if and only
if R/J(R) is an elementary divisor ring.

Proof. Obviously, every homomorphic image of an elementary divisor ring is an
elementary divisor ring, so we have only to prove the sufficiency. Let R/J(R) be an
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elementary divisor ring, then by Theorem 6, R is Hermite. By [6, Theorem 3] R is
an elementary divisor ring.
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OIATOHAJIIBAUIA MATPHUIIb HA/J KIUVIBIIAMHA
CKIHYEHHOI'O CTABIJIBHOI'O PAHTY

B. 3abaBchkumn

Jvsisceruti nayionaabhutl ynigepcumem iment leana Ppanka,
sya. Ynieepcumemcebxa, 1 79000 Jlveis, Yxpatna

[To6y10Bano Teopilo Aiaronadizalil MaTpullb Ha A KIILUAMY CKinYeHHOr o cTabiib-
noro paury. /loBeaeHo Take: AKIWO R — peryasapHe Kiible, TO JOBUIBHI M X kikxm
vatpuui Hax R, ae m > cm.p.(R) + 2, BOAOAIOTH AlaroHanbHOWO peaykuieo. ko
R npsaMo ckiHueHHe peryaspHe Kiablle, TO Kiiblle MaTpulb R, € NpAMO CKiHYeHHE
naa aosiabeoro n > crn.p.(R) + 2. Tlokasaro Take: akmo R npase kinbue Beay Taxe,
mo R/J(R) e npasum kizbuem Epwmita, Togi R npase kizpue Epmita. Opepxain,
110 KOMyTaTUBHe Kinble Besy € KijbleM eleMeHTapHuX ALTHHAKIB TOJL I TWIBKH TOAL,
koan R/J(R) kiibne eleMeHTapHUX AUIBHUKIB.

Kawuoei caosa: crabinpuuil padr, Kiisue Besy, eremenTapHa peaykuisi, Kiable
EpmiTa.
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