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ON THE BRAUER GROUP AND THE HASSE
PRINCIPLE FOR PSEUDOGLOBAL FIELDS

Vasyl ANDRIYCHUK
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

We prove the Tate critérion for the Hasse principle in finite extensions of an algebraic
function field K with pseudofinite constant field. Also any central simple algebra of finite
dimension over such a field is cyclic and its index and exponent coincide.

Key words: class field theory, algebraic function field, Brauer group, Hasse principle,
finite dimensional central simple algebra.

The aim of this paper is to show that the basic properties of the Brauer group of
a global field hold as well for the Brauer group of an algebraic function field with
pseudofinite [1] constant field. We call such a field pseudoglobal field. We prove also
that any central simple algebra of finite degree over a pseudoglobal field K is cyclic
and its index and exponent coincide. Besides, we discuss the Hasse principle in finite
extensions of a pseudoglobal field.

The basic properties of the Brauer group of a pseudoglobal field will follow as the
simple corollaries from the fundamental sequence

0— BrK —— @, v, Brk, —— Q/Z— 0, (1)

which is exact both for global and pseudoglobal fields {1,2]. Here Vi denotes the set
of all the valuations of pseudoglobal field K (which are trivial on the constant field),
BrK is the Brauer group of K, and BrK, is the Brauer group of the corresponding
completion of field K at the valuation v € Vk.

The elements of BrK are the equivalence classes of central simple K-algebras A
of finite dimension with respect to the following equivalence relation: two algebras
A and B are equivalent if there exist two natural numbers m,n > 1 such that the -
algebras A®x M, (K) and B®k My (K) are isomorphic. All matrix algebras over K
are equivalent and form the zero element of Brauer group. The class of the opposite
algebra A° (that is A° is the additive group A equipped with the new multiplication
« such that a * b = ba) is the inverse for the class of A. We shall denote the class of
A in the Brauer group by [A]. :

The field extension L of K is said to be a splitting field of algebra A, if the algebras
A®xk L and Mp (L) are isomorphic. Two equivalent algebras have the same splitting
fields. The subset Br(L/K) of BrK, consisting of all the elements of Br(X) which
split in L, is a subgroup of BrK.

© Andriychuk Vasyl, 2003
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In the exact sequence (1) the map i sends [A] € BrK to (...,[AQk K,), ...) € ®BrK,
(notice that there are only finitely many of valuations v of K such that [A ®x K,]
1s a nontrivial element of BrK, (see e.g. [3], p. 441, or [4])). Any local algebra

A, = A® K, is a simple central algebra over a general loca.l field K, so it determines
an element of the Brauer group Br K,. It is known [5] that for a general local field
K, there exists an isomorphism inv, : BrK, — Q/Z.

The image of the element [A,] under this isomorphism is said to be the invariant
of Ay (or the local invariant of the algebra A at the valuation v). It is denoted by
invy(A). The homomorphism j maps an element of the group ®yev, BrK, into sum
of all corresponding local invariants. ’

The following proposition is an analogue for pseudoglobal fields of the classical
Albert-Brauer-Hasse-Noether theorem on central simple algebras over global fields.

Proposition 1. A central simple K -algebra A splits over pseudoglobal field K if and
only if it splits locally everywhere, that s all its local invariants vanish.

Proof. If the algebra A splits locally everywhere, then all its local invariants vanish.
The injectivity of the homomorphism ¢ in the exact sequence (1) show that the only
trivial element of the group BrK ( that is the matrix algebras over K') may have all
trivial local invariants.

Proposition 2. Suppose that a central simple K-algebra A over a pseudoglobal field
K splits locally at all the valuations of K exzcept possibly the valuation vy. Then it
splits over K. ;

Proof. The exact sequence (1) yields that the sum of all local invariants of A is
zero, so the local invariant of A,, must be zero as well. Thus the algebra A splits
locally everywhere, and by Proposition 1 it splits over K.

The following proposition is an analogue for pseudoglobal fields of the Hasse norm
theorem for cyclic extensions of global fields.

Proposition 3. Let L/K be a cyclic extension of a pseudoglobal field K. An element
a € K is a norm from L if and only if a is a norm locally everywhere, that is
a € Npvk, LY for all v € Vi, where LY denotes the completion of L at an extension
of valuation v € Vg to L.

Proof. Consider the exact sequence 0 = L* — J;, = Cp — 0, where J and C}, are
the idele group and the idéle class groups of the field L respectively. It was proved in
[2] that H!(Gal(L/K),CL) = 0, thus we have the short exact cohomological sequence

0 — H?(G,L*) = Oyevy H*(Gy, L**), (2)

where LY is the completion of L at some extension of the valuation v, and G, is the
decomposition group of the valuation v.
Since the extension L/K is cyclic, we have

H*G,L*) ~ K* /Ny ;xL*, H¥Gy,L"*) ~ K} [Ny vk, L"*,
so the exact sequence (2) may be written as follows

0 — K.XNL{KL* — HUEVKK;/NL“,'K”LU'-
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This exact sequence yields the desired statement.

Remark. Using the arguments given in the hints to the exercise 4 in [4, pp. 465-
469], one can prove that Proposition 3 implies the Minkowski-Hasse theorem on qua-
dratic forms: a nonsingular quadratic form over a pseudoglobal field K is isotropic if
and only if it is isotropic over all the completions K, of K.

To formulate the next Proposition, let us denote by ix the composition of ho-
momorphism i from sequence (1) and the isomorphism BrK, ~ Q/Z. Then iK
maps the class of algebra A over K into the collection of its local invariants,
ik (A) = (..., ik, [A Ok Ky, ...).

Proposition 4. Let K be a pseudoglobal field.

a) ix defines an injective homomorphism BrK — @vevi Q/Z.

b) Two K-algebras A and B are equivalent if and only if ik (A) = ig(B).

¢) Two K-algebras A and B are isomorphic if and only if ix(A) = ix(B) and
deg A = deg B.

Proof. a) ix (A) depends only on the class [4] of A. The injectivity of ix : Br(K) —
Q/Z follows from the injectivity of the homomorphism i in the exact sequence (1}

b) This follows immediately from a).

c) If the algebras A and B are isomorphic, it is obvious that ik (A) = ig(B) and
deg A = deg B.

Conversely, if ix (A) = ix(B), then the algebras A and B are equivalent, so there
exists a skew field D of finite dimension over K such that A = M,(D), B = Mn(D)
for some natural numbers m, n > 1. Since deg A = deg B, we have m = n and A >~ B.

Proposition 5. a) Let L/K be a finite Galois extension of a pseudoglobal field K,
A be a central simple algebra of finite dimension over K, v € Vk, w € Vi, w is an
extension of the valuation v to the field L, K, and Ly, be the corresponding completions
of the fields K and L. The algebra A splits over L if and only if [Lw; Ky]-inv,(A4) = 0.

b) The field L is isomorphic to a strongly mazimal subfield of the algebra A if and
only if deg A = [L : K], and [Ly : K] - invy(A) = 0 for all valuations v of K and
their extensions w to L.

Proof. a) By Proposition 1 the field L splits A if and only if invy (A ®k Lu) =0
for all valuations w of L. It is easy to check that the following diagram
BrK, —— Q/Z

inv,

lres ln
BrL, — Q/Z
Mvy
commutes, and we have invy, (A ®x L) = [Ly : Ky]invy (A).
b) Let L be a maximal subfield of A, then it is known (see e.g. (6] or {3]) that A
splits over L, and deg A = [L : K]. _ :
Thus, by the above arguments [L, : K,]inv, A = 0. Conversely, if for a subfield
L of A the condinions deg A = [L : K] and [Ly : Ky]inv, A = 0 hold, then the first
of them implies that L is the maximal subfield of A, and the second one implies that
the algebra A splits over K by statement a).
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Proposition 6. Let ai,...,as be a finite set of elements of the group Q/Z. Then
there 1s a simple central algebra A over a pseudoglobal field K with the invariants
@1,...,0 if and only if 3 i, @i = 0. :

Proof. This is an i‘nimediat_e corollary from the exactness of sequence (1) in the
middle term @,ev, BrK,.

Proposition 7. Let L/f{ be a finite abelian extension of a pseudoglobal field K. If
an element a € K is a local norm at all the completions K,,, where v € Vi \ {vo},
then a is a local norm in the field K,,. i

Proof. Consider the local and the global norm residue s;rmbols 8, i Ok determined
in 2] . They are related by the equality 6 = I,ev,B,. Using the product formula
for pseudoglobal field, we get Ok (a) = 1 = Il evi 0y (a) = 0y,(a). The last equality
and Proposition 7 follow from the fact that 6,(a) = 1, for @ € K, if and only if
ae NLW’KU e

The following Proposition 8 is a counterpart for pseudoglobal fields of Theorem 10
from (7, Chapter 6].

Proposition 8. Let L/K be a finite abelian extension of a pseudoglobal field K, and
let o, € G, be the set of elements of the decomposition groups G, such that almost
all of them are trivial. Suppose that ,ev, 0oy = 1. Then there is an element a € K
such that 0,(a) = 0., /k,(a) = 0y.

Proof. Let 81,/k, : Kv/NLy = Gal(Ly/K,) be the local norm residue symbol
[2]. By the local class field theory generalized to general local fields (see [5]), one
can find an idéle (ay) € Jk such that 0y, ,k, (ay) = oy. Since Iyev oy = 1, we
have Myevy0y(ay) = 6x((ay)) = 1. Then (ay) € K*Ny/xJr,(ay) = a(by), where
(by) € Np/xJr- Thus fx ((by)) = 1, and we have 8, (a) = 0.

The following Proposition asserts that the conditions for a valuation v of K to be
unramified or to split completely in a given Galois extension L/K can be formulated

in terms of subgroups of idele class group of the field K exactly in the same manner
as for the global fields (see {7, Chapter 8, Theorem 3]).

Proposition 9. Let L/K be a finite abelian extension of a pseudoglobal field K. The
valuation v of the field K is unramified in the field L if and only if U, C NpjxCL. The
valuation v of the field K splits completely in the field L if and only if Ky, C Np/kCL.

Proof. In Proposition 9 it is assumed that the completion K, is embedded into the
group Cx by using the composition K, < Jg¢ — Ck. To prove Proposition 9 we
follow the arguments which were used in the case of global field (see [7, Ch.8]). First,
we show that Ny xCL( Ky = Np,/k,Lw, where w is an extension of the valuation
v to L. It is enough to prove the inclusion KN /g JL (\KKy C KNL /K, Lw. Let
a € K,a, € K,, and aay, = Ny /k((aw)), where (ay) € Jr. Thus a is a local norm at
all the valuation, except possibly at v, but then it follows from Proposition 7 that a
is a local norm everywhere, so a, is a local norm in K, and the desired inclusion is
proved.

Let U, be the unit group of K,. If the valuation v is unramified, then all el-
ements of U, are norms by [5], thus U, C Ny xCr. f Uy, C Np/kCrL, we have
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Uy C (NykCLNKy) = Npy/x,Lw. Using the local class field theory for general
local fields [5], we get that the valuation v is unramified in L.

To finish the proof of Proposition 9, it is enough to consider in the above argument
the group K, instead of U, and the property “to split completely” instead of “to be
unramified”. _

Let X be an algebraic curve defined over the field k. The Brauer group Br(X) of
the curve X is the kernel of the homomorphism BrK — @,ecvy BrK,, where K is
the function field on X.

Proposition 10. For a pseudoglobal field K with constant field k the following equiv-
alent properties hold:

a) the reciprocity law holds for K /k;

b) for any finite cyclic extension L/K the sequence

BNL/K) — € Br(Lw/Ky,) = [L: K|7'Z/Z—0
veEVE
us eract,
c) for any finite cyclic extension L/ K,

HY(Gal(L/K),Br(Y)) =0,

where Br(Y) is the Brauer group of the nonsingular projective algebraic curve Y with
function field L;
d) for any finite cyclic eztension L/K the map

K'*/NL;KL* —id @ K:/NL..,{K.,L:U
vEVg
5 injective;
e) HY(G(k), Jacx(ks)) = 0, where G(k) is the absolute Galois group of k and
Jacx (k,) is the jacobian of the curve X regarded over a separable closure ks of the
field k;

f) Br{X) =0.

Proof. For a pseudoglobal field K/k assertion a) was proved in [2]. Assertion d)
follows from Proposition 3. Conversely, as was proved in [2] d) implies a). The equiv-
alence of a), b) and c) follows from Proposition A.12 [8, p. 167], and the equivalence
of d),e),f) follows from Proposition A.13 [8, p. 168].

Now we shall show that the existence of class formation for pseudoglobal field K
yields the same corollaries about the 3-dimensional Galois cohomology groups of the
field K (respectively of idéle group and idéle class group of K) as in the case of a
global field. Besides, it turns out that for abelian extensions of a pseudoglobal field
one can get the Tate criterion for the Hasse principle.

Let L/K be a finite Galois extension of a pseudoglobal field K and let G =
Gal(L/K) be its Galois. Let H be a subgroup of G. Since the idele classes of K
form the class formation, it follows from Tate’s theorem [4, p. 181] that the multipli-
cation by the fundamental class vy x € H (G, CL) defines the isomorphisms

H"(H,Z) = H***(H,Cy) (3)



8 ) VASYL ANDRIYCHUK

for all n € Z.

Let K’ be the subfield of L corresponding to the subgroup H by Galois theory,
H = Gal(L/K").
Proposition 11. The diagrams

H™(G,Z) - H"t%G,Cy)
J res | res (4)
H™(H,Z) - H™"t3(H,CL)

and
H"(G,Z) — H" (G, C) *
1 cor 1 cor (5)
H™(H,Z) - H“+2(H,CL)
commute.

Proof. The commutativity of (4) follows from the equalities
res(aUup k) = (resa) Uuy g = resaUresup/k,
and diagram (5) commutes according to
(cora)Uup g = cor(aUup k) = cor(aUresur k).

By using isomorhisms (3) one can prove, exactly in the same manner as in the
case of global fields [4, c. 301}, the Tate criterion for the Hasse principle for Galois
extensions of pseudoglobal fields.

The kernel of the homomorphism

foryx : HYG,L*) — H°(G,J1)

is called the obsruction for the Hasse principle for the Galois extension L/K with
Galois group G. One says that the Hasse principle holds for L/K if Ker fo L/x = 0.

Proposition 12. Let L/K be a finite Galois extension of a pseudoglobal field K,
G = Gal(L/K). Then

Ker fO.L,fK ™~ KET(HS(G,Z) - HuEVKHS(Gv,Z)),
where G is a decomposition group Gy, of an extension to L of the valuation v of K.

Proof. For the sake of completeness, we present the proof, despite it essentially
coincides with that for the global field (see [4, p. 301]). Consider the exact sequence
of G-modules

0= L"—=J,—>CL—0, (6)

and the corresponding sequence of Tate’s Galois cohomology
.. — H"Y(G,Jp) 2= A"-Y(G,CL) ——
— 3 H"(G,I%) —I* H™(G,J1) — ...
From the exactness of this last sequence we get

Ker f, ~ Coker gn-1.
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Now, by the local class field theory for general local fields [5],
H*YG,J) ~ Myev  H* Y (G?, LY) =~ Hyev H* 3G, Z),

and by (3), ) )
H""YG,CL) =~ H*3(G, Z).

Using the fact that the groups H*(G,Z) and H~"(G, Z) are dual, one can write
Ker fn ~ Coker(Ilyev, H"~3(GY, Z) —==%3 H"-3(G,Z))

~ Ker(H3"(G,Z) —25 [yev, H*"(G", 2)),
where g, (3", 2v) = 3, cor 2y, h3—n(2) = [], v, resz. Setting n = 0, we get
Ker fo ~ Ker(H3(G, Z) = I, ev, H3(GY, Z)),
as was to be proved. '

Proposition 13. Let L/K be a finite Galois extension of a pseudoglobal field K,
n = [L: K], g. be the number of all distinct valuations w of L which are the ex-
tensions of a valuation v of K, d be the greatest common divisor of all g,. Then, by
identifiyng the group H*(G,L*) with a subgroup of H*(G,JL), the quotient group
H?*(G,JL)/H*(G,L*) 1s a cyclic group of order 5, and the image of the group
H?(G,CL) in H3(G,L*) 1s a cyclic group of order d.

Proof. We have H*(G, JL) ~ @, ¢v, (7-Z/Z), where n, = [L" : K,]. On the other

hand, H!(G,CL) = 0, and H*(G,CL) ~ :Z/Z, thus the exact Galois cohomology
sequence corresponding to (6) can be written as follows

0 — H2(G, L") - g (%zm) - %zuz - H3(G,L"). (7)

Consequently, the quotient group H?(G,J.)/H?*(G,L") is isomorphic to a sub-
group of 1Z/Z, so it is cyclic. Let us find in this quotient group an element of
maximal order.

Let {i,}yevx be the set of integers such that almost all of them are zero, and
Y., ivgy = d. Since n = nyg,, we have ), ﬁ': = £. Hence, it follows that the element

of the quotient group H?(G,Jp)/H?(G, L*) with representative ((}:I".,‘) (modl)) has

the order 5.

Futher, if ((f‘f) (modi)) is the representative of another element @ of this quo-

tient group, then one can find an integer m, such that 3. juny = md. Consequently,
5, & = m<, thus the order of & divides 5. Hence the order of considered quotient
grou;; is 5.

Now, the exact sequence (7) shows that the image of H*(G,CL) in the group
H3(G, L*) is a cyclic subgroup of order d generated by the image of fundamental
class up/kx € H?(G,CL).. '

Finally, we consider the central simple algebras of finite dimension over a pseu-
doglobal field. We shall show that any such algebra A is cyclic, its index and exponent
coincide, and the reduced Whitehad group SK1(A) is trivial.
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We shall use one result of Saltman [9] on existence of abelian extensions of valued
fields, namely, a part of Theorem 5.10 from [9].

Theorem (Saltman [9]). Let G be an abelian group, K be a field with real valued
valuations vy, ..., vm. Let r be the highest power of 2 dividing the exponent G. Let K;
be the completions of K with respect to v;,1 < 1 < m. Denote by p(r) the primitive
2" -th root of 1.

a) Suppose that K has nonzero characteristic or Ki(p(r))/ K; is cyclic for all i.
Then if L;/K; are G Galois extensions, there is a G Galois extension L/K such that
L@ K; = L.

This result will play the same role in the proof of the theorem below that the
Grunwald-Wang theorem [7, Chap.10] plays in the proof of classical result which
asserts that any finite-dimensional central simple algebra over a global field is cyclic.

Theorem 1. Any central simple algebra A of finite dimension over a pseudoglobal
field K 1s cyclic and ind A = exp A.

Proof. The proof we give is a slight modification of the proof for the classical
case of algebras over global fields [3, p. 441-443]. Let vy, ..., v, be all the valuations
of the pseudoglobal field K at which the algebra A has nontrivial local invariants.
Set n; = ind A,,, where A,, = A ®x K,,. Let m be the smallest common multip¥
of ny,...,n,. By [3, Proposition 13.4] n;|n, where n = deg A = [A : K]% for all
i,1 € i < r. Thus m|n. Now we use the Saltman theorem instead of the Grunwald-
Wang theorem. By Saltman’s theorem there are the cyclic extensions L and M
of field K, of degrees m and n respectively, such that L/K and L;/K,, are cyclic
extensions of degree m, and M/K, M;/K,, are cyclic extensions of degree n. Notice
that one can take L; and M; to be the unramified extensions of K, of degrees m
and n respectively. All the number n; divide m and n. It is easy to show that for
the algebras A,, over general local fields K,,, we have, just as in the case of algebras
over local fields, that n; are the orders of local invariants of algebras A,,. Therefore
it follows from Proposition 5 a) that A splits over the fields L and M. Then it follows
from Proposition 5 b) that the field M is isomorphic to a strongly maximal subfield
of A, thus the algebra A is cyclic.

It remains to prove that ind A = exp A. Since exp A|ind A for an algebra over
any field (3], it is enough to prove that ind A < exp A. Since the field L splits A,
by [ 3, Proposition 13, p. 301] ind A < m. But for the exponent e of A we have
e - ifA] = i([A]°) = 0, where i is the homomorphism from the exact sequence (1). It
follows that e -ig, = 0, where a;( is the local invariant of A for v € V. Therefore
nile,1 € i < r, hence mle. Finally, ind A < m < e = exp 4, and this completes the
proof.

Let A be a central simple algebra of finite dimension over a field K. Let L be a
maximal subfield of D. 1t is known [6] that there is an isomorphism ¢ : A @k L =~
M, (L), where n = [L : K]. The composition map Nreq : A & K

@1 — ¢(z®1) — det(4(z ® 1)).

is called the reduced norm. It turns out that the reduced norm does not depend
cither on a choice of maximal subfield L, or on a choice of a homomorphism ¢, and
its image is contained in K.
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We shall prove that the reduced norm homomorphism is surjective for the algebras
over pseudoglobal fields. For this purpose we will need the following simple lemma.

Lemma 1. Any pseudoglobal field is a Cy-field.

Proof. Recall that a field K is called Cj-field, if any homogeneous polynomial of
degree d on n > d' variables has a nontrivial zero in K". Every condition C;, in
particular Cy, can be formulated as a sentence of the first order logic. Therefore, as
the pseudofinite fields are elementarily equivalent to ultraproducts of finite fields, the
pseudofinite constant field of K is a C-field.

S. Lang [10] and M. Nagata [11] proved that the property of a field to be a C;
- field is preserved under algebraic extensions. Besides, if k is a Cj-field, and K
is an extension of k of transcendence degree n, then K is a Cjy, - field. Hence, a
pseudoglobal field is a Ca-field.

Corollary. Any quadratic form on 2 5 variables defined over a pseudoglobal field K,
has a nontrivial zero over K.

Proposition 14. Let A be a central simple algebra of finite dimension over a pseu-
doglobal field K. Then

1) The reduced norm homomorphism Nieg : A — K 1s surjective.

2) The reduced Whitehad group SK1A = SL(A)/[A*, A*] of A is trivial. Here
SL1(A) = {a € A|Needa(a) = 1}, [A™, A”] 1s the commutant of multiplicative group A*
of algebra A.

Proof. 1) The algebra A is a matrix algebra over a skew field D. Clearly, it suffices
to prove that Nyeq : D — K is surjective. Let [D : K] = n?. The map Nreq is given
by a homogeneous polynomial v(z) of degree n on n? variables, and besides v(z) = 0
if and only if # = 0. We need to prove that the equation v(Z) = a has a nontrivial
solution over K for any a € K*. But, using that K is a C; - field by Lemma 1,
this follows from the fact that the form v(Z) = azl, ., is of degree n and has n® + 1
variables.

2) The above arguments show that a pseudoglobal field is a Cj - field (a field K is
called C} - field if for any algebraic extension K'/K, and for any finite dimensional
skew field D with center K’, the reduced norm homomorphism Nyeg : D — K’ is
surjective). V. I. Yanchevskii [12] proved that, if K is a C; - field, then SK,(4) =0
for any finite dimensional central simple K-algebra A. This completes the proof of
Proposition 14.
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In the paper we consider and comment some open problems in topological algebra
posed by participants of the conference dedicated to the 20th anniversary of the Chair
of Algebra and Topology of Lviv National University, that was held in September, 2001.

Key words: topological group, paratopological group, topological semigroup.

This is the list of open problems in topological algebra posed on the conference
dedicated to the 20th anniversary of the Chair of Algebra and Topology of Lviv
National University, that was held in September, 2001.

Problem 1 (Choban). Is every topological group a quotient group of a zero-dimen-
sional topological group of the same weight? When an almost metrizable topological
group is a quotient of a zero-dimensional group of the same weight?

A space X is zero-dimensional if dim X = 0. A topological group is almost metriz-
able if contains a compact subset of countable character. Let us make some comments
to this problem. If a topological group G is a quotient of an almost metrizable group
H with ind H = 0, then G contains a zero-dimensional compact subgroup of countable
character in G.

If H is a zero-dimensional subgroup of countable character in a group G and
zh = hz for every ¢ € G and h € H, then G is a quotient group of some almost
metrizable zero-dimensional group of the same weight. In particular the answer to
the first part of Problem 1 is positive for metrizable groups (see [10], [8]) and for
almost metrizable abelian groups. A. V. Arhangel’skii proved that every topological
group is a quotient of a zero-dimensional o-discrete group. For universal algebras this
fact was proved in [9].

© Banakh Taras, Choban Mitrofan, Guran Igor et al., 2003
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Problem 2 (Choban). Under which conditions is the free universal algebra of an
uncountable signature over a metrizable space X paracompact? In particular, is the
free topological linear space L(X) of X over the discrete field of real numbers para-
compact?

A semigroup S with the identity e endowed with a topology is called a left (resp.
right) bounded if for every neighborhood U of e there is a finite subset F' of S such
that S = FU (resp. S = UF); S is called bounded if S is both left and right bounded.
Replacing the “finite subset F” by “countable subset F” we get the definition of a
(left, right) w-bounded semigroup. ‘

For a topological space X let S(X) C XX be the semigroup of all continuous
selfmappings of X endowed with the topology of pointwise convergence (i.e., the
topology inherited from the Tychonov product X X). A topological space X is called
homogeneous if for any points z,,z2 € X there is a homemorphism h of X with
h(.’b‘l) =ZIs.

Problem 3 (Protasov). Is the semigroup S(X) left bounded for every zero-dimen-
sional compact homogeneous space?

The answer is affirmative provided X has a base of the topology consisting of
pairwise homeomorphic clopen subsets, see [22].

Problem 4 (Protasov). Is the semigroup S(X) right bounded for any zero-dimen-
sional homogeneous space X ¢

The answer is affirmative provided X has a base of the topology consisting of
clopen subsets homeomorphic to X, see {22].

Let X be a topological space. A subgroup H of S(X) is called distal if for any
distinct points z3,z2 € X and any point z € X there is a neighborhood U of z such
that {h(z,), h(z2)} ¢ U for all h € H. 1t is proven in [22, Theorem 4] that a left
bounded subgroup H C S(X) is distal provided H acts transitively on X.

Problem 5 (Protasov). Let X be a compact space and H be a distal subgroup of
S(X) acting transitively on X. Is H left bounded?

Under a left-topological group we understand a pair (G, 7) consisting of a group G
and a topology T invariant with respect to the left shifts I : z —> gz. If, in addition
7 is invariant with respect to the right shifts, then (G, 7) is called a semitopological
group. A semitopological group G with continuous inverse mapping z ~ z~ ! is called
a quasitopological group. If the group operation of G is continuous with respect to
the topology 7, then (G, ) is a paratopological group. If, additionally, the operation
of taking the inverse is continuous, then (G, 7) is a topological group.

It is well known that o-compact topological groups have countable cellularity [29]
while compact topological groups support a strictly positive probability measure (i.e.,
a Borel probability measure u such that p(U) > 0 for any nonempty open subset U
of the group). Recently T. Banakh and O. Ravsky [4] (see also [6]) proved that any
bounded paratopological group G has countable cellularity (moreover, each cardinal
of uncountable cofinality is a precaliber of G). On the other hand, according to [23]
for every infinite cardinal. 7 there is a left bounded left topological group of cellularity
T
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Problem 6 (Protasov). Let G be a bounded semitopological (quasitopological)
group. Has G countable cellularity?

The answer to this problem is positive for bounded first countable left topological
groups. This follows from an easy observation that a first countable left topological
group G has countable cellularity provided G is left w-narrow in the sense that for
each neighborhood U C G of the unit and each uncountable subset F' C G there
are two distinct elements z,y € F with zU NyU # 0. It is easy to see that a left
topological group is left w-narrow provided it is right w-bounded. Therefore each
right w-bounded first countable left topological group has countable cellularity.

Problem 6 is related to another

Problem 7 (Protasov). Does every zero-dimensional compact homogeneous space
admit a structure of a left topological group?

According to [25], each homogeneous topological (71-)space X is the quotient space
G/H of the homeomorphism group G of X endowed with a suitable left invariant
topology by a (closed discrete) subgroup H of G. For countable spaces there is a much
stronger result proved recently by E. Zelenyuk: for each countable group G and each
regular homogeneous countable topological space X there is a left topological group #
homeomorphic to X and algebraically isomorphic to G. Thus each countable regular
space is homeomorphic to a semitopological group. This Zelenyuk’s result is specific
for countable spaces and cannot be generalized onto zero-dimensional homogeneous
spaces: there are examples of zero-dimensional homogeneous spaces homeomorphic
to no semitopological group. Many such examples can be constructed with help of
a recent result [18] implying that each Tychonov almost Cech-complete semitopolog-
ical group is a Cech-complete topological group. A Tychonov space X is defined to
be almost Cech-complete if X contains a dense Cech-complete subspace. Examples
of compact left topological groups which are not topological groups (see [19]) show
that the mentioned result of [18] cannot be generalized onto left topological groups.
Nonetheless we do not know the answer to

Problem 8 (Banakh). Is every almost Cech complete left topological group Cech
complete?

Let us note that each almost Cech complete left topological group G is non-
ezpandable in the sense that G coincides with any Tychonov left topological group G
containing G as a dense subgroup. The non-expandable left topological groups can
be thought as “complete” in some sense.

Problem 9 (Banakh). Investigate the class of non-expandable left topological
groups. In particular, is every metrizable non-expandable left topological group Cech-
complete?

According to a remarkable theorem of [14], the countable power X“ of a zero-
dimensional metrizable space X is homogeneous provided X is meager or almost
Cech-complete. This theorem in combination with [18] allows us to construct simple
examples of homogeneous almost Cech complete metrizable spaces which are not
Cech-complete and thus fail to support the structure of a semitopological group. On
the other hand, by the technique of [13] and [15] it can be shown that the countable
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power X*“ of any meager separable metrizable space X is homeomorphic to a Boolean
topological group.

There are also simple examples of homogeneous compact first countable spaces
homeomorphic to no semitopological groups. Such spaces can be simply constructed
with help of the Motorov Theorem asserting that the countable power K* of each
first-countable zero-dimensional compact space K is homogeneous, see [2] and [12].
Observe that such a power K“ admits the structure of a semitopological group if
and only if the compactum K is metrizable (in this case K“ is homeomorphic to the
Cantor set). .

In constrast, the structure of a left-topological group.does not impose so strict
restrictions on the topological structure of homogeneous compacta. For example,
the Aleksandrov “two-arrows” space T' is a non-metrizable zero-dimensional first-
countable compactum carrying the structure of a left-topological group (algebraically
isomorphic to the semi-direct product S* xZ; of the circle and Z3 = {0, 1}). It follows
that T% carries a structure of a left-topological group.

Problem 10 (Banakh). Does the countable power K“ of a compact first-countable
zero-dimensional space K carry a structure of a left topological group?

Note that the affirmative answer to Problem 6 would follow from the affirmative
answer of

Problem 11 (Protasov). Does every compact left topological group G support a
strictly positive probability Borel measure?

There exists a compact left-topological group admitting no invariant probability
Borel measure, see [19].

Problem 12 (Protasov). Is every topological group algebraically generated by a
nowhere dense subset?

Let us mention that each countable topological group is algebraically generated by
some closed discrete subset (see reference in [24]) while every left topological group
is algebraically generated by some subset with empty interior [24].

It is known that each regular countably compact paratopological group is a bound-
ed topological group, see [21]. 1. Guran [17] asked if any Hausdorff countably com-
pact paratopological group is a topological group. O. Ravsky and E. Reznichenko
[26] (see also [27]) observed that this question is equivalent to the problem of the
w-boundedness of any Hausdorff countably compact paratopological group. In the
same paper [26] an example of a Hausdorff countably compact paratopological group
which is not a topological group was constructed under Martin Axiom.

Problem 13 (Guran). Is there a ZFC-ezample of a Hausdorff countably compact
paratopological group which 1s not a topological group?

Problem 14 (Guran). Is a paratopological group G right w-bounded if it is left
w-bounded?

The answer to the last question is positive provided G is saturated (in the sense
that the inverse U ™! of any neighborhood U C G of the unit has non-empty interior
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in G) or quasi-balanced (in the sense that for each neighborhood U C G of the unit
there is a countable family U of neighborhoods of the unit such that for any ¢ € G
there are a neighborhood U € U and an element b € G with Wb C alU), see [4] and
5].

A subset A of a topological group G is called o-bounded if for any sequence (Upn )new
of neighborhoods of the origin of G there is a sequence (Fp)new of finite subsets of
G such that A C [J,¢, FaUn. It is clear that each o-compact topological group is
o-bounded while each o-bounded group is w-bounded. Next, given a subset A of a
topological group G, consider the following game OF(A) (abbreviated from Open-
Finite). Two players, I and II, choose at every step k € w a neighborhood U,, C G of
the origin, and a finite subset F, of G, respectively. At the end of the game, player
I1 is declared the winmner if A C Une” F,U,. It is easy to see that for a o-compact
group G player II has a winning strategy in the game OF(G). On the other hand, if a
topological group G is not o-bounded, then player I has a winning strategy in OF(G).

Problem 15 (Banakh). Is there a (metrizable) o-bounded topological group G such
that player I has a winning strategy in the game OF(G)?

Such a group, if exists, cannot be analytic and abelian (more generally, cannot
be an analytic SIN-group). We remind that a topological space X is analytic if it is
a metrizable continuous image of a separable complete metric space. On the other
hand, the group Z* contains a dense o-bounded Gs-subset A such that the first player
has a winning strategy in the game OF(A), see [7].

Problem 16 (Banakh). Let n be a positive integer. Is there a compact subset K of
the real line R such that the difference K — K = {x —y : z,y € K'} 15 a neighborhood
of zero in R but the sum K + -+ K is nowhere dense in R?

Nt

n

For n = 2 the answer is affirmative: By computer calculations, S. Ravsky has found
that the compact subset -

. o8 In .
K= {nzﬂ 2, €{0,1,2,10,13,16,17, 18}}
of the closed interval [0, 1] has the following properties K — K D (—1,1) but K+ K C
(V% & 2, €{0,...,18}\ {6} } and thus is nowhere dense in R.

Added in proofs. Recently T. Banakh and O. Hryniv 3] have answered Problems
3, 4 and 7 in negative. A suitable counterexample is supplied by the van Douwen
homogeneous compactum = constructed in [11] (see also [20]). The space has a very
simple description: = = (Ax {-1,1})u([0, 1]\ A) x {0} for a suitable subset A C (0, 1)
and = is endowed with the interval topology generated by the natural lexicographic
order. The space = has many surprising properties, in particular: 1) Z is a first-
countable linearly ordered zero-dimensional homogeneous compactum admitting a
continuous map 7 : E — [0, 1] such that |v~1(z)| < 2 for each z € [0, 1]; 2) = possesses
a unique Borel probability measure p that projects onto the Lebesgue measure by
the map m; 3) two closed-and-open subsets of = are homeomorphic if and only if
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their g-measures coincide; 4) each homeomorphism of = is measure preserving and
each continuous self-mapping of = does not increase the measure; 5) E contains a
countable dense subset @ such that Q N A(Q) # @ for any homeomorphism of = 6)
= is homeomorphic to no left-topological group; 7) the group of homeomorphisms
H(Z) of = is neither left nor right-bounded in the semigroup C(Z) of continuous
self-mappings of =.
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ON CLOSED EMBEDDINGS OF
FREE TOPOLOGICAL ALGEBRAS

Taras BANAKH, Olena HRYNIV
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

Let K be a complete quasivariety of completely regular universal topological alge-
bras of continuous signature £ (which means that K is closed under taking subalgebras,
Cartesian products, and includes all completely regular topological £-algebras alge-
braically isomorphic to_ members of K). For a topological space X by F(X) we denote
the free universal £-algebra over X in the class K. Using some extension properties of
the Hartman-Mycielski construction we prove that for a closed subspace X of a metriz-
able (more generally, stratifiable) space ¥ the induced homomorphism F(X) —+ F(Y)
between the respective free universal algebras is a closed topological embedding. This
generalizes one result of V.UspenskiY [11] concerning embeddings of free topological
groups.

Key words: universal topological algebra, free universal algebra, closed embedding,
stratifiable space, metrizable space, Hartman-Mycielski construction

One of important recent achievements in the theory of free topological groups is
a charming theorem by O. Sipacheva [9] asserting that the free topological group
F(X) of a subspace X of a Tychonov space Y is a topological subgroup of F(Y)
if and only if any continuous pseudometric on X can be extended to a continuous
pseudometric on Y, see [9]. The “only if” part of this theorem was proved earlier by
V. Pestov [8] while the “if” part was proved by V. V. Uspenskil [11] for the partial
case of metrizable (or more generally, stratifiable) Y. To prove their theorems both
Uspenskif and Sipacheva used a rather cumbersome technique of pseudonorms on free
topological groups which makes their method inapplicable for studying some other
free objects.

In this paper, using a categorial technique based on extension properties of the
Hartman-Mycielski construction we shall generalize the Uspenskil theorem and prove
some general results concerning embeddings of free universal algebras. It should
be mentioned that the Hartman-Mycielski construction has been exploited in 2] for
proving certain results concerning embeddings of free topological inverse semigroups.

Now we remind some notions of the topological theory of universal algebras devel-
oped by M. M. Choban and his collaborators, see [5]. Under a continuous signature we
shall understand a sequence £ = (En)new of topological spaces. A universal topologi-
cal algebra of continuous signature £ or briefly a topological £-algebrais a topological
space X endowed with a sequence of continuous maps (e, : En X X" — X |
called algebraic operations of X. A subset A C X is called a subalgebra of X if

© Banakh Taras, Hryniv Olena, 2003
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en(En x A™) C A for all n € w. Under a homomorphism between topological £-
algebras (X, (eX)new) and (Y, (€Y )new) we understand a map h: X — Y such that

en (¢,h(21),..., h(zn)) = h(eg (¢, 21, ..., 24))

for any n € w, ¢ € E,, and points z1,...,z, € X. Two topological £-algebras X, Y
are (algebraically) isomorphic if there is a bijective homomorphism h : X — Y. If, in
addition, h 1s a homeomorphism, then X and Y are topologically isomorphic.

Under a free universal algebra of a topological space X in a class K of topological £-
algebras we understand a pair (F(X), ix) consisting of a topoiogical E-algebra F(X) €
K and a continuous mapix : X — F(X) such that for any continuousmap f : X — K
into a topological £-algebra K € K there is a unique continuous homomorphism
h : F(X) — K such that f = hoix. It follows that for any continuous map
f : X = Y between topological spaces there is a unique continuous homomorphism
F(f) : F(X) = F(Y) such that F(f) oix = iy o f. Our aim in the paper is
to find conditions on f guaranteeing that the homomorphism F(f) is a topological
embedding.

According to [5], a free universal algebra (F(X),ix) of a topological space X exists
(and is unique up to a topological isomorphism) provided K is a quasivariety, which
means that the class K is closed under taking subalgebras and arbitrary Cartesian
products. A quasivariety K of topological £-algebras is called a complete quasivar:-
ety if any completely regular topological £-algebra X, algebraically isomorphic to a
topological algebra Y € K, belongs to the class K.

Finally we remind that a regular topological space X is called stratifiable if there
exists a function G which assigns to each n € w and a closed subset H C X, an
open set G(n, H) containing H so that H = (., G(n, H) and G(n,K) D G(n, H)
for every closed subset K O H and n € w. It is known that the class of stratifiable
spaces includes all metrizable spaces and is closed with respect to many countable
operations over topological spaces, see (3], [6].

Now we are able to state one of our main results.

Theorem 1. Let K be a complete quasivariety of completely regular topological £ -
algebras of continuous signature £. For any closed topological embedding e : X — Y
between stratifiable spaces the induced homomorphism F(e) : F(X) — F(Y) between
the corresponding free algebras is a closed topological embedding.

In fact, Theorem 1 follows from a more general result involving the construction
of Hartman and Mycielski. This construction appeared in [7] and was often exploited
in topological algebra, see [4]. For a topological space X let HM(X) be the set of all
functions f : [0; 1) — X for which there exists a sequence 0 =ap < a1 <---<a, =1
such that f is constant on each interval [a;_1,a;), 1 £ 7 € n. A neighborhood sub-
base of the Hartman-Mycielski topology of HM(X) at an f € HM(X) consists of
sets Nia, b, V, ), where
1) 0 €a < b <1, f is constant on [a;b), V is a neighbourhood of f(a) in X and

e>U;

2) g € N{a,b,V,e) means that [{t € [a;b) : g(t) € V}| < €, where || denotes the

Lebesgue measure on [0, 1).
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If X is a Hausdorff (Tychonov) space, then so is the space H M(X), see [7], [4]. The
construction HM is functorial in the sense that for any continuous mapp: X —- Y
between topological spaces the map HM (p) : HM(X) — HM(Y), HM (p) : f = pof,
is continuous, see (7], [4], [10].

The space X can be identified with a subspace of HM (X) via the embedding
hmy : X — HM(X) assigning to each point z the constant function hmx (z) : t = z.
This embedding hmyx : X — HM(X) is closed if X is Hausdorff. It is easy to see
that for any continuous map f : X — Y we get a commutative diagram

X --—"—-+ Y
*‘lmxl J'hmy
HEM(X) ZM9D gy,

QOur interest in the Hartman-Mycielski construction is stipulated by the following
important extension result proven in [1].

Proposition 1. For a closed subspace X of a stratifiable space Y there is a continuous
map r 1 Y = HM(X) extending the embedding hmx : X C HM(X).

It will be convenient to call a subspace X of a space Y an H M -valued retract of
Y if there is a continuous map r : Y — HM(X) extending the canonical embedding
hmyx : X C HM(X). In these terms, Proposition 1 asserts that each closed subspace
of a stratifiable space Y is an HM-valued retract of Y.

As a set, the space HM(X) can be thought of as a subset of the Cartesian power
X[01) Moreover, if (X, (én)new) is a topological £-algebra then HM (X) is a subal-
gebra of X101 Let {e#™ : E, x HM(X)" = HM(X)}new denote the induced alge-
braic operations on HM (X). That is, Mo, fi i Fal(t) = talc; filt),. .o Juli))
forn €w, (¢, f1,.--,fn) € En x HM(X)", and t € [0,1). It is easy to verify that
the continuity of the operation e, implies the continuity of the operation eHM with
respect to the Hartman-Mycielski topology on HM (X)). Thus we get

Proposition 2. If (X, (en)new) 15 a topological E-algebra, then (H M (X), (eE™ Vnew)
is a topological &-algebra too. Moreover the embedding hmx : X — HM(X) is a
homomorphism of topological €-algebras.

Since HM(K) is algebraically isomorphic to a subalgebra of X10.1) we conclude
that for each completely regular topological £-algebra X belonging to a complete
quasivariety K of topological £-algebras the £-algebra HM(X) also belongs to the
quasivariety K. Now we see that Theorem 1 follows from Proposition 1 and

Theorem 2. Let K be a quasivariety of (Hausdorff) topological €-algebras of contin-
uous signature £. Then for a subspace X of a topological space Y the homomorphism
F(e) : F(X) — F(Y) induced by the natural inclusion e : X =Y is a (closed) topo-
logical embedding provided X is an H M -valued retract of Y and HM(F(X)) € K.

Proof. Suppose that HM(F(X)) € K and X is a HM-valued retract of Y. The
latter means that there is a continuous map r : Y — HM(X) such that hmx =roe
where Amx : X = HM(X) and e : X = Y are natural embeddings. Applying to the
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maps hmy, e and r the functor F of the free universal £-algebra in the quasivariety
K, we get the equality F(hmx) = F(r) o F(e).

Applying the functor HM to the canonical map ix : X — F(X) of X into its
free universal algebra, we get a continuous map HM(ix) : HM(X) = HM(F(X)).
Taking into account that the £-algebra HM(F(X)) belongs to the quasivariety K,
by the definition of the free algebra (F(HM(X)),igm(x)), we can find a unique
continuous homomorphism h : F(HM (X)) - HM(F(X)) such that hoigpy(x) =
HM(ix). Let us show that h o F(hmx) = hmp(x). Since the maps ho F(hmx) and
hmp(x) are homomorphisms from the free algebra F(X) of X, to prove the equality
ho F(hmx) = hmp(x) it suffices to verify that ho F(hmk)oix = hmp(x)oix.

By the definition of the homomorphism F(hmx ), we get the commutative diagram

X s F(X)
hme, lFUm‘x}

CHM(X) MO, p(HM(X))
which implies that ho F(hmx)oix = hoigm(x)ohmx = HM{(ix) o hmx by the
choice of the homomorphism A.
On the other hand, by the naturality of the transformations {hmz}, we get the
commutative diagram

X 2, PX)

hme, J'-“lmp(.!c)

HM(X) 2MEX) g M(F(X))

which implies that HM (ix)ohmx = hmp(xyoix. Thus hoF(hmx)oix = hmp(x)o
ix which just yields hmp(x) = ho F(hmx) = ho F(r) o F(e). Observe that the map
hmp(x) is an embedding. Moreover, it is closed if F(X) is Hausdorff (which happens
if the quasivariety K consists of Hausdorff £-algebras). Now the following elementary
lemma implies that F(e) is a (closed) embedding. O

Lemma. Let f : X =Y, g:Y — Z be continuous maps. Ifgof:X = Z isa
(closed) topological embedding, then so is the map f.
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GENERATING PROPERTIES OF INVERTIBLE POLYNOMIAL
MAPS IN THREE VARIABLES, WHICH HAVE A
SMALL COMPOSITIONAL-TRIANGULAR LENGTH

Yuriy BODNARCHUK ,

University " Kiev-Mohyla Academy”, 1 Skovoroda Str. 040070 Kyiv, Ukraine

It is shown that each k-triangular invertible map (choosing in advance) for k =
1, 2,3 with linear maps generate the group of tame polynomial automorphisms in three
variables.

Key words: invertible polynomial map, affine space, affine group, infinitely dimen-
sional algebraic group.

Invertible polynomial maps of an affine space A" over a field K form a group GA,
(see [1],[2]), which sometimes is called the affine Cremona group. Elements of GA,
can be written down as tuples of polynomials '

(fi(z1,- . 2n), folz1, - Zn)s oo fu(Z0s - 20)), (1)

fi € Klz)], with composition of tuples as group operation and X = (z1,...,Zn)
as the unit of GA,. It is useful to introduce vectors of the standard basis € =
(0,...,0,1,0,...,0),i = 1,2,...,n and represent the elements (1) in the form

9= filar,...,zn)é (2)
i=1

For such a polynomial map g € GA, let deg g = max; deg f; . It is evident that maps
with degg < 1 form an isomorphic copy of the affine group in GA,. In particular,
the elements ¢; = X + &; form a basis of A} as a vector space over K . Everywhere
below we will identify AGL, with the image of this standard enclosure. In this sense
we shall also understand ‘the matrix and permutational notations. For instance, the
cycle (1,2, 3) in the dimension 3 means the transformation (23, z3, z1) in the form (1)
and A;j = X + z;€ € GLy, in the form (2). It is easy to check that tuples (1) of the
kind

(14 hi,z2+ ha(z1),. .., zi + hi(21, ..., Tiz1), .- Zn +ha(Z1,- .. 20-1))  (3)
or .
X+ Zhi(l‘h oy Ti-1)€,
i=1

@© Bodnarchuk Yuriy, 2003
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in the form (2), are invertible polynomial maps for arbitrary polynomials k; and
make up the subgroup U, of the unitriangular transformations. U, can be considered
as iterated algebraic wreath product of K*. There is a semidirect decomposition
Un = Un-1F,, where U,y (F,) consist of the elements of form (3) with h, =
0 (hs=0,i=1,...,n—1). For n = 3 we have Uz = U F;. There is a partial order <
on U,, which is the extension of the inverse lexicographical order of monomials. We
will say that an element u; has height less than us, for u;,u; € Uy, if u; < us.

The normalizer B, = Nga,(Un) = Tn - Uy, is a subgroup of triangular automor-
phisms whose elements have the form

(ayzy+hy, agzatha(zy), ..., cizithi(z1,.. ., Tic1),...CnZat+hn(z1, ... Tn-1)), (4)

where T), is an algebraic torus, a; € K"

The subgroup GA? is a stabilizer of zero (f;(0) = 0) and contains a descended chain
of the normal subgroups GAY', m = {], 1,2,3,..., whose elements have the form (z; +
PP . ea¥ P 40 o0 + H™ 4 ), where H7*t! are homogeneous
forrns of degree m+1 and the dots mean items of higher degrees Here is a simplest
example of the element from GA™ : o™ = (z;,z3,...,2n + z7't!). There is a
series of natural epimorphisms ¢x : GA? — GAY/GAE, moreover the corresponding
quotient-group is a finite-dimensional algebraic groups. In particular, we have the
semidirect decomposition , GA? = GL, - GAL. Let us recall next definitions from [3]

Definition 1. An elementary polynomial map is defined as a transformation of
kind

By, Bay ey ity 8] P O(B1y vo vy Bioidiy By s B dy s ves B

Definition 2. A polynomial map, which is a finite composition of elementary or
linear maps is called a tame map.

Tame automorphisms form group which can be defined as TGA, = (AGLy, By).
Indeed, each elementary polynomial map is conjugate by a transposition (i,n)
with an unitriangular one. On the other hand, triangular elements of kind
(z1,22,...,Ti-1,Ti+a(Ty,...,&i-1),Tit1,- .., Tn) are elementary maps and generate
the group Un.

One of the most difficult questions about affine Cremona groups is (see {2]): i
TGA, a proper subgroup of GA,, (the answer is negative for n = 2)7

Theorem 1. ( [4] ). GA; = By * AGL3, where * stands for the amalgamated product
with the intersection By N AG Ly, consisting of linear triangular maps (4).

Corollary 1. TGA; = GAz.

Corollary 2. Let o™ = (z1,z,+ 27t € GA(zm) NU,. Then the groups Qum =
< AGLy, (™) > form an ascending chain AGLy = Qo < Q1 < ...Qm < @m41,- ..

Proof. 1t follows from a uniqueness of element’s decomposition in amalgamated
products. Hence, the element o*) k > m can not belong to Q,,. On the other hand,
given element o(¥)| one can calculate commutators with translations from A} and
gets all elements (™) m < k. Thus Qm < Qk.

In particular, this means that in the dimension 2 the affine group is not maximal.
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In the dimension more then 2 we have a more complicated situation. The question
about the coincidence TG A,, with GA,, is open even in the dimension 3.
Conjecture (Nagata {2]) The automorphism

(21 — 2z3(23 4 z321) — z3(z3 + 2321)%, 2 + z3(23 + z321), Z3)
1s wild.

On the other hand, as follows from [5], the affine group is a maximal closed algebraic
subgroup of GA, as an co-dimensional group, correspondent definition was introduced
in [1]. Comparing results with Nagata’s conjecture, it is natural to pose a question:
is does AGL;, a maximal subgroup of TGA,? ‘

As was proved in [6], one can replace the whole subgroup Bz in the equality
TGAsz = (AG L3, B3) by any its nonlinear element. More precise,

Theorem 2. ([6]) Lei t € B3 be an arbitrary nonlinear triangular map. Then
TGA3 = (t, AGL3).

The aim of this paper is to show that bitriangular and three-triangular elements
g € TG A3 have similar property TGA3z =< AGL3,9 > .

Definition 3. A map g € GA,, is called k-triangular if it can be presented in the
form

g= Ay t1-Ag-ta, - Ak - tr - Akga, (5)

where A; € AGL,,t; E B,,. The smallest number k satisfying (5) is called the
triangular-compositional length of q.

The term bitriangular map means that triangular-compositional length of the map
equals 2.

Theorem 3. Let g be an arbitrary bitriangular transformation. Then
TGA:; == (q, AGL;;).

Let G = (g, AGL3). Without lost of generality, we may assume that ¢ = t* .
. t,t' € UsNGAY, A € GL3. Let A = B;WB; be a Brua decomposition, where
B,,B; € GL3N Uz and W is a permutational matrix. Then we have the bitriangular
clement ¢B7' =tV -t; € G, where t; =81, = (t)B3". Let us preserve the notation
q for this new element of G

§= t:&' 19, (6)

and represent the triangular elements 1, in the the form
ty = X +a;(21)€ + az(z1,22)€3, t2 = X +bi(z1)é2 + ba(zy, 22)é3 € GALNU,.

Without lost of generality, one can suppose that i;,f; € GAY and polynomials
a1, az, by, by have no linear parts. The idea of the proof is simple - to find an affine
map a which permutable with ¢ (or t}¥), calculate a commutator [a,¢~!] ( or [a,q])
and get a triangular element from G. In particular, one can use the element a = c3
from the center of Us to get an 1-triangular element t7"est¥ and apply Theorem 2.

Unfortunately, for some kind of triangular elements ¢,,1; the correspondent com-
mutators will be linear triangular elements and direct application of Theorem 2 is
impossible. The situations, when it can be happened, is described in the next propo-
sition.



GENERATING PROPERTIES OF INVERTIBLE POLYNOMIAL MAPS .......... 29

Proposition 1. If L = {l(z,,z3) = az; + Bzs + v} is a set of linear polynomials,
then ,

19 Ah = h(z1,z2 +a(z1) + 1) = h(z1, 22 + a(z1)) € L for some polynomial a(z),
dega > 1 iff polynomial ki has the form h = hgaz3 —2hgza(z1)z2+h11z12247(21) +1,
where l € L.

- 29 Ah = h(z1 4+ 1,22 — az?) — h(z1,22 — az?) € L iff h = r(z3) + huizi22 +
%hnﬂ:x? - hzot% + 1.

3°%. Ah= h($1+1,32—ﬂ(221 +1))—h(:€1,£2) €Liffh= f(:tg—ﬁ:t%)ﬂ'huzl(:cg—

Bz?) — Lhiyaz? + hooz? + 1, where f = f(x2) is an arbitrary polynomial.

Proof. 1°. For h = Y.t ri(z1)z}, we have Ah = mr(z1)(23 ") + ..., where
dots mean items of lower degree than z5. From this, it follows, that if Ah € L then
degr; + m — 1 < 1. Thus, we have the form of h = r23 + ri(21)z2 + ro(21), where
ry € K,degr; < 1. For such a form of h we have Ah = 2ry(z2 + a(z1)) + ri(z1) + 2.
Since dega > 1, this polynomial can be linear when 2r;a(z,) + r1(z,) € L. Hence we
get the form of h, pointed in 1°.

In the case 2° select a highest monomial (in the sense < ) containing z; : h =
flza)+a5zP +... (k> 0). Then weget Ah =2y 'zb+- - €L 9 k+1<2.1fm=0
then h = f(z2) + g(z1), degg < 2. If f #0, then h = hy 2122 + g1(21) + f(22) and
Ah = hy1z5 — az? + g1 (21 +t) — g1(z1). This polynomial can be linear if deg g; = 3
and its highest item have the form %hua:r:?. In that way this case is exhausted. The
case 3% can be proved by analogy.

Now we are ready to prove Theorem 3.

Proof. Let us analyze five cases corresponding to the forms of permutation matrix
W in the formula (6).

Case 1. W = (1,2) is a transposition. In this case we get
tV = X + a1(z1)€1 + az(z1,22)€3 and

g= X +ay(zz +bi(z1))€; + bi(z1)é2 + (b2(z1, 22) + az(z2 + b(z1),z1)E3.  (7)

Consider the linear transformation Ags = X + 2263 € GL,, and obtain a map ¢#3? -
g~! = X — b1(z; — a1(x3))és. This element can be linear only if b;(z1) = 0. If this
happens then (6) implies that the element ¢ is not bitriangular.

Case 2. W = (2,3).

Remark. A polynomial a; (b2) can not be independent of z3, because, in this
case t¥ (t¥) and then ¢" is triangular.

Let us calculate the commutator with the translation ¢z, which is a triangular map

g71¢% = X + (ba(z1, x2 + 1) — ba(21, 22))é5.
It will be linear iff b = b[jgx% + b(z1). In this situation let us consider the element
¢° ¢ = X + (az(z1, 23 — ay(z1 + 1)) — aa(zy, 23 — ay(21)))és.

Accordance to Proposition 1 it will be linear iff az = aga23+2a02a11(z1)z2+an1 2122+
a(z,). Let us use A3y = X + z,€3 € U3 N GL3 and calculate the double commutator
r = [g,c3),r1 = [As1,77']. Next element will be obtained

r1 = X + 2ag22,8 — 2(2bo2a0221 22 + (bo2aoz — b11)aoaz3)Es.
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This element can be linear in the cases
[ 2.1] boz = b11 = 0;
[ 22] gz = U,

In both cases the element r will be triangular, with z3 + (bj1a11 + bo2a?,)z? —
2bgaa112122 as a third coordinate and a linear second coordinate. In the case 2.1
the polynomial b = by(z;) does not depend on the variable z;. As was pointed in
the remark at the beginning of this case, it contradicts to the assumption that ¢ is
bitriangular element. In the case 2.2, if 2.1 is not hold, then the element r is linear
when a;; = 0. The equalities ag; = a;; = 0 imply that as does not depend on z3,
which (by the remark) leads to a contradiction also. '

Case 3. W = (1, 3). This is the hardest case in which we have

q = X+as(z1+ba(zy, 22), 22+ba(z1)) €1 +(b1(z1 )+ a1 (z3+b2(21, 22))) €2+ b2 (21, z2)€3.

Let us calculate the commutator

q“-‘q'l =X+ [aj (1?1 + ]) - al(xl))é'g -+ ({12(231 +1,20— (1(171)) - 02(:5] , L9 — a(rl)))Eg
Clearly that this triangular element can be linear only if a)(z1) = az} and ( by
Proposition 1) ag(z1, z2) = a(z2) + a112122 + a11023 + azezi.
One the other hand, we have

q"clq_'l — X—i—(b; (.rl)—b,1 (3,‘1+1))é.2+(bg(3:1, 332)-—52 (231-{—1, £2+b($])—b(:€1 +1)])€3,

which implies b; = Bz2 and (by p. 3° of Proposition 1) by(z1,z2) = b(z2 + Bz}) +
biizy(zs + Bz}) — §b11Bad + baozi

Let us consider the

Case 3.1 when a = 8 = 0. In this situation we can use the linear element A3; =
X + z,€3 again and get the element

r=q" . g7 = X +[(a11 + az0)z3 + 2a20z2x3)é).

Clearly, that #{1®) is a triangular element and it will be linear if a;; = a3 = 0 only. If
we replace the element ¢ with ¢~" then the similar procedure leads to the conclusion
byy = byg = 0. So, the situation when t; = X+a(z)é3,t2 = X+b(z1)é3, dega,degb >
1 and ¢ = X +a(z,)€] +b(z2)é3 should be considered. In this way we get the nonlinear
triangular element ¢(*?) = X + a(z,)€3 + b(z1)és.

Case 3.2, in which a # 0,3 = 0. Let us put @; = X —b,,z,€3 € GL3 and calculate
the element r = ¢°2- Q, - ¢~ ! € G. The element A;3 = X + z3¢é) belongs to the center
of Us¥ N GA$ and so, one can get the element

r=r4 .7 = X 4 (b(zg — azd) — b(z2 + 1 — azd))é).

Thus we can get the tria.ﬁgular element r}¥ moreover, since a # 0, and dega # 1 it
can be linear only if b = 0, i.e. r; = X. In this situation the element r has form

r=tV 4TW = X 4 (a(z2 + 1 — azl) — a(z2 — azd) + a1172)é).

Similarly we can get a = 0. Let us use the element Q; = X — 2byozi1€3 € AGL3
permutable with ¢;,¢, and get the element

r3=¢"Q2q9"" €G.
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The calculation of the commutator with a linear element A,3, which was used above
leads to t.he equality rq4 = 'rg‘”r = X + (bnyaz3 — by;z2 — bag)€i. The triangular
element r4 can be linear if ;3 = 0. If this holds, then the element of torus r =
(z1,sz2, z3) is permutable with t; for any s € K*. Therefore one can get the triangular
element (¢"¢~ )W =#]t7}, 2. Since o # 0
this element is nonlinear for s # 1. This completes the analysis of case 3.2 .

Case 3.3. a = 0,8 # 0. Replacing ¢ with ¢~% it can be reduced to the previous
case.

Case 3.4. a, 3 # 0. This item is central in the case 3. Put

Gs=X ~ sbao + ago

z9€1 € GL3

where s is a parameter. It is convenient to introduce the element ¢; = Qat}¥¢5. The
reason will be explained bellow. It is easy to see that monomial structures of the
elements t;' and ¢, are similar. Taking this in account, we could choose an element
of the torus T = (Az;, pzo, vz3) in such a manner that the element r5 = 5 (Qat} )7
has the form

X + f(z2)é1. (8)

If we succeed in this then, without special difficulties we could derive a triangular
nonlinear element from G. For first coordinates of the elements (Qst}' )7 and tz'w
let us equate coefficients: of their monomials z3, 23, z223. In this way we get three
equations with unknown A, p, v

ayqpv ajiav? v2sh
1;# 11/\ . ,\20 - (9)

It is evident that the solution A, u, v € K* exists if either both ay, byy equal to zero
or both not. Now let us remark that the element @5 was introduced to avoid the
same problem with the coefficients ags, boa.

In the Case 3.4.1 a1y, b;1 # 0 we have the solution (9)

= —511;

2 @2
% b2,8%s° #___bflﬁs?_ e b118s
aflaz . a?la ' ano

After the substitution of these values in t} (Q3t}" )7 we get an element of the necessary
form (8), where

2 2 2
flz2) =577 (M) ‘ (—b_u@) +b(z2) + (bao + azos™) 22
1

Smce A31 is permutable with the unitriangular elements t;,15, for the element 9=
q1 (91) = t;rtT we get a triangular element g4%1g~1 = tyri* -1, where 1; =

(A31)"t; € Us. Direct calculations lead to the following formula
gt~ = X+

- (a110)2 : (__ b?,Bs*(z2 — m:'f’)) &
buﬁ a’flcx
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z3 — az?

B

Let us analyze conditions under which it will be linear. If a, by are coefficients at k-
degrees of polynomials a, b then the coefficient of a monomial 2§, k > 2 is a polynomial

from s . .
ano b%ﬂe 2k-3
by
'(buﬁ) (‘3‘%1“r R Ml

It can be equal to zero if ax = bx = 0. Hence, the element gAg~1 is linear iff a =
b=0,a3 = byo =0, i.e. t¥(Q3t})T = X. In this situation we can put s = 1 in the
polynomial f» and suppose that v is a parameter. Then we have a triangular element
t =1, t¥ t¥TtT = 1t whose second coordinate is equal to

2
z, — (V* (GA) - 1)azi.
b1t

Since a,a;; # 0, one can choose a value of v in such a manner that ¢ is a nonlinear
element.

Ca.se 3.4.2. ay; = O,bll # 0.

Let us put ¢ = ¢~°2¢ and use As; again. Since Az; is permutable with ¢, it 1s easy
to calculate

b(zs — az?) + (bao + azes™!) )és (10)

Aj
gog =t (V)T Tt th = X 4 (ale2 + B2]) - alez + B2 +1))s.

Since 3 # 0, it follows that this triangular element can be linear only if a = 0. In this
situation the element t¥ = (z; + axoz3, 22 + @z, z3) is permutable with c3, hence,

q_czq i t;cztg : X + (5(32 + ﬁ.rf) - 5(2‘2 + ﬁzf + 1) - 61131)63.

This element can be linear if b = 0.

In this case it is easy to verify that the linear transformation
Qa = (z1,(1 — 22)zy + cz;,z3) is permutable with tW for each value ¢ # e
hence, one can get the element q~1¢9+. It turned out, that its second coordinate
Ts + ag;‘ijg:—cxf is a nonlinear polynomial if agq # 0. In the opposite case ay = 0 is
the third coordinate of this element z3 + b;z2c is a nonlinear polynomial.
Case 3.4.3. ay; # 0,b;; = 0 can be reduced to the previous one replacing ¢ by

"

Case 3.4.4. ay; = by; = 0. In this case we use A = v%s, u = av?/8 and parameter
v as a solution of equations (9) and get the element

a( au’(r;—az’ ) b
B Sbag + azo &
e +b(zy — azd) + ————1z, | €

rs =t (Qatl )T = X + e % |8y

One can repeat the argument done after the formula (10) and conclude that r5 can
be linear only if @ = b = 0 and az = bo = 0. But under these conditions the element
q is triangular and we get a contradiction.

Case 4. W = (1,2, 3). Our standard procedure leads to equalities :

('r}‘“t;'_l)w2 = X + (az(z1,z2 + a1(z1) + 1) — az(z1, 22 + a1(z1), )) €3,
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q""q_l = X+(bi(x141)=by ('—'-‘1))52'?'(52(31+1;172)“b2(1'1= z2+b1(z14+1)+b1(21)))és

and the next conditions on the polynomials a1, as, b;, b, under which the obtained
triangular elements are linear. by(z;) = Bz2, and (by Proposition 1)

as = O‘,Qgr% + 2ag2a; (1:1)3:2 +an1z120 + T(xl)

1
by = f(za + B22) + biizi (22 + B22) + 561153? + booz?,

where r(z1), f(z1) are polynomials.
At the same time, together with the element g = t}'t, the group G contains the
- 2
element q; = ¢~% b= -t;w t7!, for which one can to calculate the commutator

g2 = ¢7'qf* and check that it is not triangular. But the element

Aay

g3 = ¢5%¢; " = X — b1 216 — b11(2a02z122 + (a11 — ag2)zi)és € G

is triangular. Thus we have the alternative cases 4.1 and 4.2
Case 4.1. by; # 0, a02 = a;; = 0, where we have

- - 2 -
g = X +r(zo+Pz2)e, + Bzlés + [f(za + Bzi) + buziza + gbuﬁib‘?-i'ﬂl(m'z + Bz?))és.

One can get a triangular element g~ ¢4 = X — r(z2 + Bz%)€s, which can be linear
under condition r = 0. This yields a contradiction that ¢ is triangular.

Case 4.2. by, = 0 Direct calculation of a commutator leads to the triangular
element

ql-lqi’ =X - 262(}(231 + 1)5’2 - (4{102529312:2 + ...)€s,

which could be linear if agzbso = 0. Here dots mean items of the lower height.

Case 4.2.1. byg = 0. The element g~ g4 = X + f(2z123+ z3) is 1-triangular and
can be linear only if § = 0.

Case 4.2.2. ago = 0. In this case one can use Ay; = X + z1€3 and calculate the
double commutator g = qf"qi‘l, g1 = gA421¢~1, which conjugate by the transposition
(2,3) with a triangular element of the form X — (8%z3t 4 ...)&. Just as in the the
previous case the case 3 = 0 should be treated. But in both cases the equality =0
gives contradiction: g isn’t bitriangular.

Case 5. W = (1,3,2). The group G contains the element g together with g1 =
W =% 471 Since W' = (1,2,3) this case is reduced to the previous one
and this completes the proof of the theorem.

The previous proof was based on calculations with commutators [q,¢],c € AT,
which have the compositional-triangular length less then the element g¢. For 3-
triangular maps, as a rule, we will get 3-triangular elements also. But the height
of the intermediate triangular element of the new elements will decrease. The proof
of the next theorem is based on this simple remark.

Theorem 4. Let g be a 3-triangular element of GAz. Then
TGAa = (AGL3, q}.
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=

Proof. If G = (AGLa,q), then without loss of generality one can suppose that g
has a form g = t{'¢,15*. The Brua decomposition leads to the equality

q:—.B{l-flwl-Bl-tg-Bgl-igws-Bs

and we get an element

le

Bl'q-Bng.’ $ W

1y -ty €G,
where t} = By -t - By} ty = By - t3- By 'ty = By - t2- By *. Bellow we will preserve
notations and suppose that the group G contains a map of the form

g=H" < ds™8, (11)

Case 1. Wy = Ws = (1,2).
Put Ass = X + 2283. Since it is permutable with ;%) i = 1,2, we get a triangular
element

qAaz ) q"l =X - 61(31 —Qa (1?2))63;

which could be linear only if b; = 0. But in this situation g is a bitriangular element,

because the element ;
(1,2
t1(1’2} 2 tg o= (tl # fgl’z))

is 1-triangular. This contradiction completes analysis of this case.
Case 2. W), = W3 = (2,3).
Since ¢p = X + €5 i1s permutable with t;"' i=1,2 we get the element

Al e Ul T el T

If a5 is independent of 9, then #;"1 is triangular and ¢ isn’t 3-triangular, hence, a;
depends on z3.

Therefore one can proceed to calculate commutators ¢;41 = gi2q~! = ;4 r; .
;™1 till i; will be of the form

Case2.1. =X+ aa:"féb, k>0;

Case22. 1, =X+ (ﬁ:ﬂg + ‘){)é'a.

W

In the case 2.1 we get a 1-triangular element ¢; = (tlnwltfl) , where T,-W‘
X +2%¢&, is a triangular element and hence the element ¢; is a nonlinear 1— triangular
element.

In the case 2.2, 7; is a linear element and hence the element g; is bitriangular.

Case 3. W = (1, 3). Consider the case when t; doesn’t depend on z,, i.e. t; =
X + bo(z2)é3. Then the commutator g4 .q7t = X —ba(z2 — ai(z3))€é) is a nonlinear
1-triangular element. In a similar way let us consider the case when ¢; doesn’t depend
on ry, i.e. tg = X + as(z2)€3. Remark that in this case by # 0. Indeed, if b, = 0,
then ¢!*¢; is 1-triangular and g is not 3-triangular. Therefore the element el
X + (as(z2 — by (21 — az(z2))) — az2(z2))€3 is a nonlinear triangular one.

Let us consider the general case and calculate the commutator

a=¢" ¢ =" 0 7 6" €6,
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where
15 -tg*l = X—-I-(b; (3:1 +1)—bl($1)]€2+(52($1+1, :!:2—51(21))—-bz(x;,mz-—bl(xﬂ))g&

Let us put gip1 = ¢;* -qi ' =1, .7y (tl'wl) € G. One can proceed the process
till the deg,, 7 = 1 (the case when deg, t = 0, was considered above). Thus we
will stop a process when the element 7; = X + (az, + 8)&2 + (z17(z2) + ro(22))€3 will
be obtained. If degr < 0, then one can pick out the linear part

=L -1/ = (X + (azy + B)é2 + (121 + B1)€3) - (X + ro(z2)é3)

and to join it to t;"¥*. It could be done by replacing ¢;4+; with L™! - gi41 € G. In this
way we get the element ;4; = t;" Lr/t;~W. It is easy to check that the map

—c -1 _ 3 W.L ,—-W
Giy1%i41 = U “H

is a nonlinear bitriangular one. If degr > 0 then the element
7 = X + (azy + B)€2 + (2171 + 10)€3

is linear and g;4, is a bitriangular or 1-triangular. It is easy to check that the last
case can be realized only if az = az(z1),r1 = 0. Then it can be linear if a; = 0, but
it yields the contradiction that ¢ is 1-triangular map.

In the case when degr > 0 one can proceed the process of the calculations 7; until
an element of the kind 7; = X + (a4 3)€3 appears. Similarly to the case of degr < 1
one can get a nonlinear bitriangular element.

The case when Wi = W, = (1,2,3) can be investigated by the previous procedure
of an iterated commutators with ¢;.

In the case W, = Wy = (1,3,2) we can calculate commutators q; = ¢ il —
4 .y [tl_wl) ¢ G, where 7, has the form X + r(z),z2)€3. If degr > 1, then
one can consider the element 951’2) = t§1,3)ﬁt1—(1.3) € G and reduce this case to the
previous one. Let us investigate the situations, when degm < 1. lf degm =1, then
we have the map ¢; which is bitriangular unless the case when a,, az doesn’t depend
on z;. But the last case is impossible because it contradicts to the suggestion that g is
3-triangular. We can obtain the element ¢; with degy = 0, when b, doesn’t depend
on zo. In this case the element ¢(23) = t{12,1.247 (1) ¢ G have the form of the
case 1. .

If ¢ has the form (11), where Wy # W; one can choose the linear element A;;,
permutable with ¢, or £,"¥2 but not permutable with ¢;. Then the map gl - g1
or g~1 - ¢ will be 3-triangular and has the form (11) with Wy = W.
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PSEUDOCOMPACTENESS OF THE SPACES
OF ALMOST CONTINUOUS MAPPINGS

Bogdan BOKALO
Ivan Franko National Unwersity of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

Given two Hausdorff spaces we study properties of the function space ACp(X,Y) C
Y X consisting of all almost continuous mappings f : X = Y (the almost continuity of f
means that any nonempty subspace A C X contains a point of continuity of the mapping
flA: A = Y). We prove that for infinite Hausdorff spaces X,Y the space ACp(X,Y)
is pseudocompact iff ACp(X,Y) is o-pseudocompact iff Y is pseudocompact and X
each countable subspace of X is scattered.
" Key words: almost continuous mappings, topology of pointwise convergence, pseu-
docompact space, scattered space.

In the paper we detect pseudocompact spaces AC,(X,Y) C Y* consisting of all
almost continuous mappings f : X — Y. We remind that a mapping f : X = Y
between topological spaces is called almost continuous if every non-empty subspace
A C X of X contains a continuity point of the map fl[A: A =Y. By AC,(X,Y) C
YX we denote the space of all almost continuous functions f : X — Y, endowed with
the topology of point-wise convergence, see [1].

Observe that AC,(X,Y) = Y X for any scattered space X. We recall that a topo-
logical space X is scattered if each subspace of X has an isolated point (equivalently,
the identity map of X into X endowed with the discrete topology is almost contin-
uous). We define a space X to be w-scattered if each countable subspace of X is
scattered. We shall prove that for an w-scattered space X the subset AC,(X,Y) of
Y X still is very massive.

Given a function f € YX let Z(f) = {g e Y* : |[{z € X : f(z) # g9(z)}] < Ro}.
We call a subset F C YX an w-tail set in YX if £(f) C F for any f € F. Observe
that each non-empty w-tail subset F C YX is Gs-dense in the sense that GNF # 0
for each non-empty Gs-subset G of YX.

We shall say that a subspace Y of a space X is C-embedded into X if each contin-
uous function f : Y — R can be continuously extended over all X.

Proposition. For a Hausdorff topological space X and an infinite Hausdorff space
Y the following conditions are equivalent:

1) X is w-scattered;

2) ACp(X,Y) is an w-tail subset of YX;

3) AC,(X,Y) is Gs-dense in YX. .
Moreover, if any finite power of Y is reqular and Lindelof, then the conditions (1)-(3)
are equivalent to:

© Bokalo Bogdan, 2003
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4) ACp(X,Y) is C-embedded into Y X.

Proof. (1) = (2) Assume that X is w-scattered, f : X — Y is an almost
continuous function and g : X — Y is a function such that the set Z = {z € X :
f(z) # g(z)} is at most countable. We have to prove that g is almost continuous.
Take any subset A C X. We consider two cases:

a) AN Z is not dense in A. Then we can find a continuity point a € A\ Z of
the function f|A \ Z which also is a continuity point of the function g|A.

b) AN Z is dense in A. The space AN Z, being a tountable subspace of the
w-scattered space X, is scattered. Consequently, A N Z contains an isolated point z
which by the density of AN Z in A is also isolated in A. Then z is a continuity point
of the function g|A. '

The implication (2) = (3) is trivial.

(3) = (1) Assume that AC,(X,Y) is Gs-dense in Y* but X contains a count-
able non-scattered subspace A = {a, }newn. Without loss of generality we can assume
that A has no isolated points. The space Y, being infinite and Hausdorff, contains a
countable collection {Uy, },e. of non-empty pair-wise disjoint open subsets. Observe
that the Gs-subset G = {f € YX : f(an) € U, for all n € w} of YX misses the set
ACL{X,Y) since G consists of functions everywhere discontinuous on A.

(2) = (4) This implication follows from [2, 3.12.23(a)] asserting that for any
Hausdorff space Y with Lindelof finite powers Y” and any f € Y* the E-product
Y(f) is C-embedded into Y X.

The implication (4) = (3) follows from the well-known fact asserting that each
C-embedded subspace of a Tychonov space 1s Gs-dense. L[]

Next we find conditions on infinite Hausdorff spaces X,Y under which the
space AC,(X,Y) is (o-)pseudocompact. We remind that a Hausdorff space X is
pseudocompact if each locally finite collection of open subsets of X is finite. For
Tychonov spaces this is equivalent to saying that each continuous real-valued function
on X is bounded. A Hausdorft space X is defined to be o-pseudocompact if X is
the countable union of pseudocompact subspaces. It is easy to see that each dense
pseudocompact subspace of a Hausdorff space X is Gs-dense in X.

Theorem. For infinite Hausdorff spaces X andY the following conditions are equiv-
alent:

1) AC,(X,Y) s pseudocompact,

2) ACy(X,Y) is o-pseudocompact;

3) X 1s w-scattered and Y 1s pseudocompact.

Proof. The implication (1) = (2) is trivial.

(3) = (1) Suppose X is w-scattered and Y* is pseudocompact. To show
that the space AC,(X,Y') is pseudocompact, assume that {Up }new is a locally finite
collection of non-empty open subsets of ACp(X,Y). Without loss of generality, we
can assume that for each set U, there are a finite subset C, C X and an open set
W, C Y%» such that U, = wEi(Wn). The countable subspace C' = |J,¢, Cn of
the w-scattered space X is scattered. Consequently, the restriction operator m¢ :
AC,(X,Y) = YC, nc : f o f|C, is surjective. This implies that {mc(Up)}new is
a locally finite collection of open sets in mc(AC,(X,Y)) = Y€ which is not possible
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because of the pseudocompactness of the space Y*. This contradiction shows that
the space AC,(X,Y) is pseudocompact.

(2) = (3) Suppose that the space AC,(X,Y) is o-pseudocompact. First we
show that the space Y“ is pseudocompact.

The space X, being infinite and Hausdorff, contains a countable discrete sub-
space Z. Observe that the restriction operator 7z : ACH(X,Y) 2 Y? 7z : f = f|Z,
is surjective which implies that the space Y* is o-pseudocompact. Using the fact that
the spaces Y* and (Y“)“ are homeomorphic by the standard diagonal procedure it
can be shown that the space Y“ is pseudocompact.

Next we show that the space X is w-scattered. Assume conversely that
the space X contains a countable non-scattered subspace Z. Write AC,(X,Y) =
Unew Bn, where By, is pseudocompact for every n € w.

Put Fy = @ and Cy = Z. By induction we shall construct countable sequences
of function (fn)nex € YX, finite subsets (Fp)new of Y and closed non-scattered
subspaces (Cp)new Of Y such that

(a-) Fn+l C Ca; Cﬂ+1 CCn \ Fn+l}

(b) g ¢ mc, (Bn) for each function g € Y with g|Fpy) = fag1|Fnya-

Assume that a non-scattered closed subspace C, has been constructed. First
we show that the projection m¢, (B,) is not dense in Y°». Assuming the converse
we will get that the space AC,(Cn,Y) is pseudocompact since it contains a dense
pseudocompact space mc, (B, ). The pseudocompactness of AC,(C,,Y) implies that
it is Gg-dense in YS~. Applying the implication (3) = (1) we conclude that the space
C,, is w-scattered which contradicts to the choice of Cj,.

Hence mc, (Byn) is not dense in YC» and there are a function f,41 € Y¥
and a finite subset F,4i C C, such that g ¢ mc, (Bn) for each g € Y°» with
g|Fny1r = fas1|Fns1. Finally take any non-scattered closed subspace Cny1 C Ch,
disjoint with F,,4+;. This completes the inductive step.

It follows that the subspace F' = | J,, ¢, Fn of X is scattered. Fix any point yo €
Y and observe that the function f : X — Y defined by f|X\F = yo and f|Fy = fo|Fn
for all n is almost continuous. On the other hand, by (b) f & (J,¢., Bn = ACp(X,Y)
which is a contradiction. O

1. Bokalo B. M., Malanyuk O. P. Some properties of topological spaces of almost
continuous mappings // Matem. Studii. - 2000. - Vol. 14. - N* 2. - P. 197-201.

2. Engelking R. General Topology. ~ Warszawa, 1977.
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INCEBIOKOMITAKTHICTDb ITPOCTOPIB
MAM>KE HENIEPEPBHUX BIJOBPAXXEHb

B. Bokano

Jvsiscbruti Hayionaaprutl ynieepcumem iment leana Ppanxa,
6ya. Yrisepcumemcevxa, 1 79000 Jlveis, Yxpaina

Jlaa 3agaHuX ABOX TomojorivHmxX npoctopiB X i Y BHBYaOTH BJAaCTHBOCTI
npoctopy ACp(X,Y) Maiixe HemepepBHUX Bifo6paxeHb 3 npoctopy X y mpocTip
Y B Tononorii nmoro4kosoi 36ixuocTi (Bigo6paxenna f : X — Y HasuBaeThca
MaiKe HellepepBHUM, AKIIO B KOXHOMY HEMOPOXHBOMY mignmpocTtopi A C X icHye
ToYKa HenepepBHOCTI Bifo6paxenssa fla : A = Y). [loeseno, mo A1a HecKiHde-
HENX raycaopdosux npoctopiB X 1 Y Taki ymosu expiBanenThi: 1) AC,(X,Y) -
ncesgokoMmakTHu; 2) ACp(X,Y) € o-nceBAoKOMITaKTHUI; 3) KOXHAN 3/1i4eHHMM
nmignpoctip npocropy X € pospigxerum i Y* — nceBJOKOMIaKTHUM.

Kawouoei caosa: Malxe HenepepBHe Bifo6paXXeHHS, TONOJOriA MOTOYKOBOI
361KHOCT], MCeBIOKOMNAKTHUH MPOCTIp, PO3PiAXKeHHN NPOCTIP.
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GENERALIZED NILPOTENT GROUPS
WITH THE WEAK m-MINIMAL
AND THE WEAK n-MAXIMAL CONDITIONS

Mykola CHERNIKOV, Mykola KHMELNITSKIY

Institute of Mathematics National Academy of Sciences of Ukraine,
3 Tereshchenkivska Str. 01601 Kyiv-4, Ukraine

Locally nilpotent and generalized radical groups with the weak m-minimal and the
weak m-maximal conditions are investigated.

Key words: weak m-minimal condition, weak w-maximal condition, soluble minimax
group, locally nilpotent group, locally finite group, Chernikov group.

Below 7 is some set of primes. Recall that a group G satisfies the m-minimal
condition or, briefly, the condition w-min if G has no infinite chains G, D G2 D
... G; O Gip1 D ... of subgroups such that for each i the difference G; \ Gi.
contains a r-element (S.N. Chernikov, 1958). Recall that a group G satisfies the weak
r-minimal (resp., the weak m-mazimal) condition or, briefly, the 7-min-co (resp., m-
max-00) condition if it has no infinite chains G; D G2 D ... D Gi D Gig1 D ...
(resp., G1 C G3 C ... C G;i C Giy1 C ...) of subgroups such that for each i the
index |G; : Giy1| (resp., |Gis1 @ Gil) is infinite and the difference G; \ Gi1 (resp.,
Gi+1 \ Gi) contains some m-element (N.S. Chernikov, see [1]).

The main results of the present paper are as follows.

Theorem 1 [1]. For a locally nilpotent group G the following assertions are equiv-
alent:

1. G satisfies the w-min condition.

2. G satisfies the m-min-oo condition.

3. The Sylow m-subgroup P of G ts Chernikov.

Theorem 2 [2]. Let G be a locally nilpotent group and P is the Sylow -subgroups
of G. The group G satisfies the m-max-co condition iff P is finite or G 1s a soluble
MinImaz group.

Theorem 3 [3]. Let a group G have an infinite normal m-subgroup and possess an
ascending series with locally nilpotent and locally finite factors. Then G satisfies the
r-max-0o condition iff itis almost soluble minimaz.

© Chernikov Mykola, Khmelnitskiy Mykola, 2003
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Lemma 1. Let a group G satisfy the w-min-oc or the m-max-co condition. Then
in arbitrary direct decomposition of G the number of multipliers with nontrivial -
elements 1s finite.

Proof is analogous to the proof of Lemma from [4].

Proposition 1. Let a locally finite m-group G satisfy the m-min-co or the m-max-0o0
condition. Then G 1s Chernikov.

Proof. Let G # 1, A be a nontrivial abelian p-subgroup of G and B be the
subgroup of all its elements of the orders < p. By the First Prufer’s theorem A is
a direct product of subgroups of order p. Therefore Lemma 1 implies |B} < oo and
by Lemma 1.10 of [5], A is Chernikov. Further, any abelian subgroup K # 1 of G is
a direct product of its nonidentity Sylow p-subgroups. By Lemma 1 the number of
direct multipliers is finite. Consequently K is Chernikov. Then by results from [6, 7],
G is Chernikov.

Note that according to Lemma 1.2 of [8], an abelian group G satisfies the min-co
condition (i.e. the weak minimal condition for subgroups) or the max-co condition
(i.e. the weak maximal condition for subgroups) iff G is minimax (i.e. G has a
finite series such that each its factor satisfies the minimal or maximal condition for
subgroups).

Proposition 2. Let a group G satisfy the m-max-oo condition and has some
infinite normal locally finite m-subgroup H. Then G satisfies the max —oo condition
for abelian subgroups (or, equivalently, all abelian subgroups of G are minimaz).

Proof. In view of Proposition 1, H is Chernikov. Let K < H, |H : K| <
and K is a direct product of quasicyclic subgroups; K; is the subgroups of K which
consists of all its elements with orders € i, 1 € N. Then K > G, and |K;| < oo,
Kiz1 2 Ki> G and K = |J K;. Let some abelian subgroup A C G is not minimax.

iEN

Since ANK is Chernikov, itEis easy to see that there exists some nonminimax subgroup
L C A such that LN K = 1. By Lemma 1.2 of [8] there is some ascending chain
Li C Ly C ... C L, of subgroups of L such that each index |L;4; : L;| is infinite.
Then for the chain K;L; C KoLy C ... C KL, of subgroups in G every index
|Kiy1Liy1 @ KiL;| is infinite and, also, the set of all differences Kiy1Lit1 \ KiLi
possessing 7-elements is infinite. Thus G does not satisfy the m-max condition, a
contradiction.

Proposition 3. Let a group G with minimaz abelian subgroups has an ascending
series with locally nilpotent factors and locally finite factors. Then G is minimar and
almost soluble.

Proof. Let H be a subgroup of G generated by all its normal radical (in the
sense of B. I. Plotkin) subgroups. It is easy to see that H is radical. Obviously,
G/H has the same series as G has, and, also, the locally nilpotent radical of G/H is
identity. Let L/H be the locally finite radical of G/H, and A/H be arbitrary abelian
subgroup of G/H. Then A is radical. Therefore in view of Theorem 4.2 of [8], A is
minimax. Consequently, A/H is minimax too. Since A/H is periodic, it follows that
A/H is Chernikov. Then by results from [6,7) L/H is Chernikov. Let R < L/H,
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|[L/H : R| < oo and R 1s a direct product of quasicyclic subgroups or R = 1. Then
R is contained in the locally nilpotent radical of G/H. Consequently, R = 1 and
|L/H| < o0.

Thus, if G/L = 1, we have |G : H| < 0.

Let G/L # 1. According to Theorem 1.2 from [9, Chapter V, §5] the locally fi-
nite radical of arbitrary group X contains all ascendant locally finite subgroups of
X. Therefore G/L has no nonidentity ascendant locally finite subgroups. Then G/L
has some nontrivial ascendant locally nilpotent subgroup. Therefore by the same
theorem from [10] the locally nilpotent radical S/L of the group G/L is nontrivial.
Further, obviously, Cs;g{L/H) > G/H and Cs/g(L/H) is locally nilpotent. There-
fore Csyg(L/H) = 1. Since |L/H| < o it follows that |S/H : Cs/g(L/H)| < c0. So
|S/H| < o0o. Then S/H = L/H, a contradiction.

Thus G/L =1 and |G : H| < 0o. In view of Theorem 4.2 from (8], H is minimax
and soluble. Consequently, G is minimax and almost soluble. Proposition is proven.

Proof of Theorem 1. Obviously, the assertion 1 is as a consequence of the assertion
2. Suppose the assertion 2 holds and P # 1. Since group G is locally nilpotent, P is a
direct product of nontrivial Sylow p-subgroups by some primes p € . By Proposition
1 these Sylow p-subgroups are Chernikov, and by Lemma 1 their number is finite.
Consequently P is Chernikov. Let the assertion 3 hold. Then by Lemma 1 of [10] G
satisfies the m-min.

Proof of Theorem 2. Necessity. Let G satisfy the m-max-oo condition and P is
infinite. Then by Proposition 2 and Theorem 4.2 of [8], G is soluble minimax.

Sufficiency. Let G be soluble minimax. Then by Lemmas 1.1 and 1.2 from (8], G
satisfies the max-oo condition. Further, let |P| < co. Then the set of all m-elements
of G is finite and, obviously, G satisfies the 7-max-oc.

Proof of Theorem 3. Let G satisfy the m-max-co. Then by Propositions 2 and 3,
G is minimax and almost soluble.

Let G be minimax and almost soluble. Then by Lemmas 1.1, 1.2 of [8], G satisfies
the max-o0.
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IDEALS OF GORENSTEIN TILED ORDERS
WHOSE FACTOR RINGS ARE QUASI-FROBENIUS

Janna CHERNOUSOVA, Viktor ZHURAVLEV

Kyiv Taras Shevchenko National University,
64 Volodymyrska Str. 01033 Kyiv, Ukraine

The Gorenstein tiled orders whose the exponent matrices are the Cayley tables of
finite groups are studied. The ideals of orders such that the factor rings modulo these
ideals being quasi-Frobenius, are described.

Key words: Gorenstein tiled order, exponent matrix, adjacency matrix, quasi-
Frobenius ring.

1. Preliminaries. The following result giving a constructive description of one
class of semidistributive rings was proved in [5]:

1.1. Theorem. A right Noetherian semiperfect semiprime and semidistributive ring
is isomorphic to a finite direct product of the full matriz rings My, (Dk) over skew
fields Dy, and rings of the form:

@) xe1z2) .. %0
- T ) o R , (1)
-R-ino w“n?@ oo O

where n > 1 and O is a discrete valuation ring with a prime element m, o;j are
integers, moreover, a;j + ajk = ok for all 4,5,k and a;; = 0 for all i.

Conversely, all such rings are Noetherian semiperfect semiprime and semidistribu-
tive ones.

Any ring of form (1) is called a semimaximal order (a tiled order). It is a prime
two-sided Noetherian semiperfect ring.

We shall use the following notation: A = {O,€(A)}, where £(A) = (ai;) is the
exponent matrix of a ring A. If a tiled order is reduced then ai; + aji > 0 for
§.7 2= Ly o o1

Every tiled order A can be embedded in a simple Artinian ring @ = Z?,j:l %),
where D is the division ring of fractions of a ring O. Here Q is both the left and right
classical quotient ring of the ring A. Let I be a two-sided ideal of a tiled order A.

i)
Obviously, I = Y. e;;m(, where e;; are the matrix units. Denote by £(1) = (8i;)

ij=1

© Chernousova Janna, Zhuravlev Viktor, 2003
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the exponent matrix of an ideal /. Let I and J be two-sided ideals of the ring
f\, 8(” = (Bij) and 5(‘}) = (‘7,'3‘). We have g(f.f) = (J{j), where 6,‘3' = n‘iin(ﬁ;k ‘f“')’kj)-
If R is the Jacobson radical of a reduced tiled order A then £(R) = (f;;), where
Bij =ajjfori#jand B =1fori=1,... ,n. Let Q(A) be the quiver of a reduced
tiled order A [6] and [Q(A)] the adjacency matrix of the quiver Q(A). Evidently,
[Q(A)] is a (0, 1)-matrix and [Q(A)] = £(R?) — E(R).

1.2 Definition. A tiled order A will be called a Gorenstein tiled order if A is a
bijective A-lattice, i.e. A* is a projective left A-lattice (see {7]).

Further the Gorenstein tiled order will be often called the Gorenstein order.

1.3. Lemma. [1, Lemma 3.2] The following conditions for a tiled order A =
{O, E(A) = (apq)} are equivalent:

a) there exists a bijective A-lattice;

b) there exist indices i, j such that ok + akj = ayj Jork = 1. M

1.4. Theorem. [2] The following conditions for a reduced tiled order

A = {0, E(A) = (apq)} are equivalent:

a) A is a Gorenstein order;

b) there exists a permutation o = {i — o(i)} such that aix + aks(i) = @io(i) for
7 P E T S . X

Proof follows immediately from Lemma 1.3.
Below the permutation o will be called a Kirichenko permutation.

1.5. Theorem. [{] Let As be Noetherian.
a) The following conditions are equivalent:
1) Aa 18 injective;
2) Ap 18 cogenerating,
3) aA is injective;
4) aA 1s cogenerating;
5)VM C Ay [rl(M) = M]AVN C 4A[Ir(N) = N1].
b) If the conditions from (p) hold then A is a two-sided Artinian ring.

(By (M) and r(N) the annihilators of modules M and N are denoted, i.e. /(M) =
{ae A|aM =0}, r(N)={b€ A| Nb=0}).

1.6 Definition. [4] A ring is called quasi-Frobenius (a QF-ring) if the conditions
from the previous theorem are satisfied.

1.7 Theorem. [2] Let A = {O,E(A)} be a prime reduced Gorenstein tiled order with
the Jacobson radical R and J be a two-sided ideal A such that AD R2D J D R" (n 2
2). The factor ring A/J 1is quasi-Frobenius (QF) if and only if there exists p € R?
such that J = pA = Ap.

2. Finite groups and Gorenstein orders. Put Go = {0}. Denote by I'q a
Gorenstein tiled order with the exponent matrix £(I'g) = (0).
The matrix £(T'1) = ? {1)) is the Cayley table of a cyclic group (2) and also the
exponent matrix of the Gorenstein tiled order I'; with the Kirichenko permutation
o= (12).
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2 mam
Denote by U, = | © -, | the square matrix of order n.

 ER
Clearly, the Cayley table of the Klein Viergruppe (2) x (2) can be written in the

form
B £(Ty) £(Ty) + 2U.
&ila)= (s(rl);m gl(rl) 2)'

Let us consider the matrix

_ S(Fk.q) E(I‘k_l) + 2k"1U2k-1
£(Tw) = (S(Fkﬁl) G 2k_lU2n—a E(Tk-1) ’ (2)
2.1. Proposition. £(Tk) is the ezponent matriz of a tiled order.
Evidently, ' .
. w2 —lrk—l)
g == o " 3
: (ﬂ'z* | Fe-1 &

Induction on k easily yields that T\ is a tiled order.

Let G = H x (g) be a finite Abelian group, H = {h1,...,ha}, g2 = e. We shall
consider the Cayley table of the group H as the matrix K(H) = (h;;) with the entries
in H, where h;; = h;h;. The following proposition is obvious.

2.2. Proposition. The Cayley table of the group G 1s of the form

o [ K(H)  gK(H)
K(G) = (gK(H) QK(H) )

2.3. Proposition. £(T'x) is the Cayley table of a group Gy of order 2",

The proof is based on induction on k. The basis of induction have been already
considered. If £(Tk_1) is the Cayley table of a group of order 2¥~! then by 2.2.
Proposition £(T'k) is the Cayley table of a group Gx of order 2.

2.4. Proposition. A tiled order Ty is Gorenstein with the Kirichenko permutation
¥ 2 5 . B=1 P
EE E -y -8 e B LJ°
Let us prove by induction on k that the tiled order I'x is Gorenstein. For k =
1 this is obvious. Let the tiled order I'x be Gorenstein with the exponent matrix
£(Tx) = (¥) (4,5 = 1,2,...,2¥) and the Kirichenko permutation o = o%, where
ok(i) =25+ 1 —i. Then of; +of, = of, forallij=12,. .. ,2%_ Since
a;;*_&‘.’j = ai.";,‘lﬂ =af; + 2, “;f-}l-i,zk-u = afj“ =af; forall 4,j =1,2,... PR
(4)

we have (af; +2%) + ok, o) = of; + (2 + af,, ;) = af. ) + 2%, Thus, taking into

account (4) we obtain that

k41 k41 k41 k41 k41 k41
05 O ko) T Xi2khon(i) % 2r4i T Qakgiokpon(i) T %2440 ()’
ak-}-.‘i k+1 k41 k+1 k+1 k41

ke piokei T ok pion(i) = okpioni)  Portii T Fow(i) = X2%+i,on(i)
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i,j = 1,2,...,2%. Putting ox41(i) = 2F + ox(i), ok41(2% + 1) = ox(i), we have

k+1 i ;‘:’L(p) = a;::“ *) for all p,g = 1,2,...,2%*1 ie. the tiled order I'xy; is

Gorenstem with the Kirichenko permutation o = o441, where oy 4 (i) = 25+ 4+ 1 — 4,

2.5. Theorem. The Cayley table of a finite group G is the exponent matriz of a
reduced Gorenstein tiled order if and only if G = Gk = (2) x ... x (2).

Proof. The Cayley table of an Abelian 2-group G has form (2) and is the exponent
matrix of a tiled order T'x.

Conversely, let G be a finite group and its Cayley table, be the exponent matrix of
a reduced Gorenstein tiled order. Then for any ¢ € G we obtain g2 = e and G is an
elementary Abelian 2-group. The theorem is proved.

Let us calculate the adjacency matrix of the quiver Q(I'x). For this aim we present
the tiled order Tk in form (3).

Let Ri = radlx be the Jacobson radical of the ring I'x and £(I'x) = (o::-‘j), E(Ri) =
(%), E(R}) = (8%). Then

Ri_1 w2 Ty 2 RZ_, + 72 Txy 72 Ry iThoy
= 2k =y :R - ok—1 9 9k .
| Ri_1 7 R Ty Ri_{+7° Tra

As rit g 261 50 B < 2 < 2% + of;!. Therefore R}, + 2Ty =RZ_,.

The equality (radA)A = A(radA) = radA holds for any prime tiled order A.
Hence 72° ' ReoiTeoi = 72 Ri—y. Since £(x2" ™ Re_1) — E(x? ' Ty) = (281 4
E(Rk-1) — (257! + £(Tk-1)) = E, we obtain

= B Rt} E )

(&R
5(&3)_5(&)—( k-1) P E(R2_,) — £(Rk-1)

From this follows that

(Q(T)] = [[Q(I‘k—l)] E ] '

E [Q(Tk-1)]
Let us compute the characteristic polynomial xx(z) = xjo(r,)(%)-
i@ = B - [@wea)l = | TIGE o B =
_ - [Q(TW)]-E 0 ' =
B ~E zE - [Q(Tk)] + B

=|(z - 1)E-[QTW-I(z + 1) E - [Q(Tx)]l

Therefore
Xk+1(x) = xk(z = 1) - xx(z + 1). (5)

Since x1(z) = B3 =% ' = z(z—2), we have x3(z) = (z-3)(z—1)(z—1)(z+1) =

=] @l
(z-3)(z~1)*(z+1), x3(z) = (z—4)(z—2)%z(x—2)z%(z+2) = (z—4)(z—-2)z%(z+2).
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m
2.6. Proposition. xm(z) = [[(z —m — 1+ 2i)Cm
i=0
We shall prove this proposition by induction. The basis of induction is clear.
Suppose that the formula is true for m = k. Then by formula (5) we have

k k
xi1(2) = [[(z = k =2+ 20)% J](z - k+2/)% =
i=0 j=0
k-1
=(z—k-2) H[n:— —242i)%%  [[(z - k+2)*(z + k) =
i=1 j=0
k-1 5 k=1
=(e-k-2) [[z-k+20)%" - [[(e =k +2) (= +k) =
i=0 §=0
k-1

= (2 —k=2) [[(z — k +20)5+" (z + k).

i1=0
As 08 ¢ 5 o C;ill, then xx41(z) = (z -k —2) ﬁ (z — k + 21) ady (z+ k)=
et

(z—k~2) ‘fjx*k-i-Q(j-—l)) b (z+ k) = ﬁ(:c-—(k+1)--l+23) ey

j=0
k k

By induction it is easily to prove that Z ¢i;(Tk) = b+ 1, Z gij(Tx) =k +1. So
=1

[Q(Tx)] = (k + 1) Pk, where Py is a twice stochastlc matrix.

3. On quasi-Frobenius factor rings of Gorenstein tiled orders. In this
section we describe all two-sided ideals I of a Gorenstein prime tiled order A = T
such that / alies in square of the Jacobson radical of the ring A and the factor ring
A/ is quasi-Frobenius.

Recall that there is a one-to-one correspondence between a two-sided ideal I and
the exponent matrix £(F) also, and , besides, the inequalities 15q + gt 2 ipe and
Qpgq + lq; ; lpt hold.

From the results of paper [2] it follows that the factor ring A/I is quasi-Frobenius
if and only if there are isomorphisms I >~ A4, I~ A.

L M
N T

2% 4
Chyy = ( e ® r“). Then L, M, N, T are ideals of the ring Tx, x4 =
™ Fk I‘k

(J}f ;';) and fk+1 = (? ﬁ}) are ideals of the ring k41, too.

3.1. Proposition. Let Iy = ( ) be an ideal of the ring

Proof. Since x4 is an ideal of the ring I'x41, we have

L M r, =TIy
badva=\x rIldP Iu J=
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_ (LI‘;,+M1r2:I‘k Le* Ty + MTk _
NT: + Ta®' T, Na?'Ty $+Tr ) b

oo foaios ] L 2T/ L M
IR AE R T SN 7T

- (I‘kkL+7r2kaN r,,yﬂ?“rktr i
72T L+TeN 72 ToM +1,T) ~ 50

We obtain the following equalities: LTk + Ma®' Ty = L' La?' Ty + MTy, = M,
NI +Tn2 Ty = N, No?* T + TTe =T, Tk L+ 7> T4 N = L, e M + 7' T T = M,
7Tl +TkN =N, n¥ TuM + T =T.

Thus, L, M, N, T are ideals of the ring I'x. Taking into account these equalities

we have "
f I _ N T | n? Vi -

B (NrﬁTw?‘rk Nr2“rk+Trk) _ (N T) _
“\ITe+Mn?Ty La®Tu+ ML)~ \L M)~ %

Tit1lx 1=( Lk ﬂz*r") (N T) = (F",{V'*'”zkrkL Fk?+772krkM) _
= w Tk Tk L M 72 TeN + Tkl =% )T+ TxM

N T P
=11 ¥ )=
Therefore [;4, is an ideal of the ring T'k41. Analogously, it can be proved that
Ix+y is an ideal of the ring Cx4. The proposition is proved.

3.2. Proposition. Let Ixyy be an ideal of the ring rki'l such that the factor ring

; 2
Uri1/lx41 is quasi-Frobenius. Then Ix4y = ( ;;f‘ 4 I"‘) or
™ fk Ik

2k

Tiys = (FI I 2{"} ) where I s an ideal of the ring Ty such that the factor
k m° Iy,

ring Tk /Ii 1s quasi-Frobenius.

Proof. The entries of the rows of the matrix £(T'x+1) have such a property: if ¢,/ <
2% or 4,1 > 2¥ then |a;; — ouj| < 2% for any j; if i < 2% 1> 2% or i > 2%,1 < 2% then
there exist at the least two values j and s such that a;j —ay; > 2* and aj, —au, < 2%,
The elements of the columns of the matrix £(I'x4+1) possess this property, too .

Let Ix4, be an ideal of the ring I'x41 such that the factor ring Ti+1/Ik+1 18 quasi-
Frobenius, 1 = e + €3 + - - - + €gx+1 be a decomposition of the identity of the ring into
a sum of local pairwise orthogonal idempotents. Hence by [2] for any i there exists ¢
such that the right module e; I+, is isomorphic to the indecomposable projective right
module €, Tk 41 = P;. Analogously, for any j there exists m such that the left module
Ixs+1€; is isomorphic to the indecomposable projective left module Tx416m = Qm.
Note that if e;fxy1 =~ Pi, Ixs16; ~ Qm and E(Jk41) = (Kuy) s0 by [1] kiy = 1y + ai
for all v, Ky; = aum + b; for all u (a;, b; are some integers).

Let e;lx+1 ~ P, and ejlkyr = P,,. Assume that 7,5 < o 1 < 2% and m > 2.
Then ki, = @ty + i, Kju = @my + a;. Let a; > a;. By the property of the rows of



IDEALS OF GORENSTEIN TILED ORDERS ......ccvivivieivnnnnens 51

the matrix £(Tx4+1) there exists w such that a¢y — ame > 2% Hence Kiy — Koy =
otw + @i — (Cmw + aj) 2 2% Since 0 € ayy < 2F forall 0 <1 < 2%, or 2 < ayy <
2%+1for all 0 < | € 2" then if i, < 2* we have ki —Kjuw = iz +by —(j:+by) < 2%,
where z satisfies the condition Ix4+,e, ~ Q.. We obtain contradiction.

Analogously, the case t > 2% and m < 2F is impossible for 7, j < 2*.

So for i,j < 2% two cases are possible : a) t,m <25 b) ¢,m > 2k

By Proposition 3.1, if [+, = (L M) is an ideal of the order I'y4; then

N T
L, M,N,T are ideals of the order I'k.

In case a) for every i < 2% there exists t < 2% such that e; [y, >~ P..

Since ay gk yy = @p,u+2% for v < 2%, we have & gepy = 0 orpy+8i = @y +284a; =
Kiv + 2¢, that is we have M = 72" L,

For every j > 2% there exists m > 2* such that ejlx4y =~ Pm. Since am, =
Qs 2k gy + 2k for v 2“,_hence Kjy = Qmy + @j = Qu 2k4y + 2% +a; = Kjak4v + 2",
ie. N=n2'T.

In case b) we obtain analogously L = M, T =n2N.

Now let us examine the entries of the columns of the matrix £(I'x41). Let Ix416i =
Qp and Ixpr€; ~ Qr, 3,J < 2% For these entries as well as for the elements of the
rows of this matrix there are two possible cases: ¢) p,r<2%,d) p,r> o

Suppose that in case a) for the entries of the rows we have case d) for the elements
of the columns. Then we obtain L = "N and T = n2"' M.

Since M = 72" L and N = 72“T, we obtain

K W ouk k41 i Kk ok k41
LNz T=r"Tand T=r* M =7* % L = n*

L.
Thus, L=T=N=M=0and li4y =0.

In case c) for the entries of the columns we obtain N = 7L, M = 72 T. As
M=x2Land N=n*Tso L =T, and therefore M = N.

Dencte L= I, thenT=L, M =N = e Ix. Thus, in case a) we have

[, = {k ﬂ-zh Ik)
T 72 I I '

I __(Trzkfk {k )
HEEA B R

Analogously in case b)

It remains to prove only the factor ring I'x/Ix is quasi-Frobenius. In case a) we
have

Kiv = 0py +a; forallv=1,..., 281

Ky =oum+b; forallu=1,... DEpL

(6)

Since £(Jx) = (Kuv), where u,v < 2¥, and £(T%) = (ij), 1,7 < 2%, the equalities
(6) are true for the entries of the matrices £(Jx) and £(T'x). Therefore by (1] ;I =~
e[k and Ixe; ~ I'repm. In view of [2] we obtain that the factor ring T /Ix is quasi-
Frobenius.

This completes the proof of the proposition.
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3.3. Proposition. There exist 2511 essentially different ideals Iy 41 of the ring I'y4,
such that the factor ring Txy1/lk4+1 is quasi-Frobenius.

Proof. By Proposition 3.2, it follows that on the basis of any ideal I such that
I'x /I is a QF-ring one can construct two ideals of the ring I'x 4, such that T'xy/lk 41
is a QF-ring. So the number of the ideals of the ring I'x4; is twice as many as the
number of the ideals of the ring 'y (with the property I'y/I; being a QF-ring). As
I'o = @ has the unique non-isomorphic ideal, by induction it is easily to obtain the
proposttion. '

Let Ix4; be an ideal of the ring I'x4; such that the fact?r ring Li41/k+1 1s quasi-

Frobenius. Therefore by Proposition 3.2 the transformation lx4;: = (i} ;{) “F

f;;H = (z ;;) is equivalent to the transformation Ix4+; = (f\} I;{) - fk+1 =

({}{ J{}) By such transformations we obtain again an ideal Tisr = Iy = L

such that the factor ring k41 /Tk+1 is quasi-Frobenius.

3.4. Proposition. By the above-indicated transformations any ideal Ix41 such that
the factor ring Try1/Ix 41 15 a QF-ring can be obtained from the principal ideal Ixyy =
7P Fk ¥i-

Proof. The transformation Iy4; — 43 is invertible, hence it is sufficient to show
that any ideal I;4; such that the factor ring I'xy1/Ik41 is a QF-ring can be reduced
to the principal ideal ka — & Ll BT
P A

I, =%,

). Along with this, the ideal 4 can be transformed

Suppose that an ideal /54, has the form I,4; = ( ) for some s < k.

- I 2 [

Then 1 = ] .
s+1 ( ﬂ_g Ik [3

into an ideal I, but the factor ring I'x41/I;, still remains quasi-Frobenius. There-

fore by the indicated transformations the ideal I is reduced to the ideal x4 for
7 2
L ﬁn—f’)forallsgk.
= 5 " = 1 72T, 7 7l
Let (‘:(Ik+1)= (Nruu) and K11 = p. Then I]_: (7{ 0‘- - 0) = (1{%0 j,'DO) =
P p+1 .
( ™0 0) _____WP(O 1:'0) e P
Assume thatyf;p = WP,‘I‘;S. Hence " .
i = Iy w2 fk) _ ( 7P T w2 7Py _ ﬂ-P( ' i _
B = ‘!Tzk Ik Ik o wzknFI‘k w”I‘k 1r2* Fk I‘k -
By induction we have prclved that fk+1 =% e
Obviously, e;lxy1 =~ P;, Ix+1€j =~ Q;. We note that by the indicated transforma-
another column of this matrix. If the first column turns into I-th column then for
any 1 < 2¢ there exists an integer r such that a;; = air. So by such transforma-

i
Which Is+1 == (ﬂz.fk Is_

ti0 PO 0 O
'rrPI'kH.
tions the first column of the matrix £(T'x) (and the others, too) always turns into
tions every principal ideal turns into an ideal Iy for which eIy ~ P;, Ixe; >~ Q;. As
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a1 =1—1=a soi=a;y + 1. Therefore

etle = Piyay,, Iner = Qiiay,- (7w)

The exponent matrix £(I'x) possesses 2% columns. Let us enumerate 2* ideals in such

a way that every ideal for which (3) holds has number r. Thus, we have proved the
following theorem.

3.5. Theorem. There exist ezactly 2% essentially different ideals I,, v = 1,2,...,2%,
such that the factor rings ['x /Iy, are quasi-Frobenius. Besides, ejly >~ Piiq,,, Ixei =

Q}+er,--

1. Zavadskij A. G., Kirichenko V. V. Torsion-free Modules over Prime Rings // Zap.
Nauch. Sem. Leningrad. Otdel. Mat. Steklov. Inst. (LOMI). - 1976. — Vol. 57. -
P. 100-116 (in Russian).

2. Kirichenko V. V. On quasi-Frobenius rings and Gorenstein orders // Trudy Mat.
Steklov. Inst. — 1978. = Vol. 148. — P. 168-174 (in Russian).

3. Zavadskij A. G. The structure of orders with completely decomposable
representations // Mat. Zametki. - Vol. 13. — N¢ 2. — 1973. - P. 325-335 (in
Russian).

4. Kash F. Modules and rings. - M., 1981 (in Russian).

5. Kirichenko V. V., Khibina M. A. Semi-perfect semi-distributive rings. In Infinite
Groups and Related Algebraic Topics. ~ Institute of Mathematics NAS Ukraine. -
1993. — P. 457-480 (in Russian).

6. Kirichenko V. V. Semi-perfect rings and their quivers // Ann. Stiint. Univ.
Ovidius Constanza. — 1996. - Vol. 4. — Ne 2. — P. 89-96.

7. Roggenkamp Klaus W., Kirichenko Vladimir V. , Khibina Marina A., Zhuravlev
Victor N. Gorenstein tiled orders // Communication in Algebra. — 2001. - 29(9). -
P. 4231-4247.

IAEAJIA IFOPEHIITEMHOBUX YEPEINNYHUX INOPSAKIB,
PAKTOP-KUIbIIA 3A AKUMHU KBA3I®PPOBEHIYCOBI

B. XKypaeasos, 2K. YYeproycosa
Kuiscorutl Hayionaabrull ynieepcumem iment Tapaca Illesuenxa,
6ya. Boaodumupcvra, 64 01033 Kuis, Yxpaina

BuB4eHO FOPEHIITEHOBMII TOPA10K, MATPHIS NOKA3HAKIB AKOro € Tabanieio Kexi
ckinvennoi rpymu. Omnumcaso ifeand UbOro MopAAKy, daxkTOp-Kiabld 3a AKUMU €
kBa3ippoOeHIyCOBUMM.

Ka04061 cA06a: TOPEHIITEHHOBUI YepenMdHAN MOPAJOK, MATPUIA NOKa3HUKIB,
MaTpHIA CyMiXHOCTI, KBasippobeniycose KUIbLE.

CrarTra Hagiimna go peakonerii 29.03.2002
IpuitaaTa go Apyky 14.03.2003


http://www.tcpdf.org

BICHHK JABBIB. YH-TY . VISNYK LVIV UNIV,
Cepia mez.-mam.2003. Bun.61.C.54-66 Ser.Mech-Math.2003.Vol.61.P.5/-66

YK 512.552
FROBENIUS RINGS
'Mykhailo DOKUCHAEYV, *Volodymyr KIRICHENKO

! Universidade de Sdao Paulo,
Rua da Reitoria, 109-Butanta 05509-900 Sao Pau!o, Brazil
2 Kyiv Taras Shevchenko National University,
64 Volodymyrska Str. 01033 Kyiv, Ukraine

We prove that a finite dimensional algebra A is a weakly symmetric if and only if
when every algebra C which is Morita equivalent to a Frobenius algebra A is Frobenius.
We give a description of serial rings the square of Jacobson radical of which is zero.

Key words: quasi-Frobenius ring, Frobenius ring, serial ring.

1. Let A be a two-sided artinian ring and R be its Jacobson radical. For a (right)
A-module M we denote by M™ the direct sum of n copies of M and we set M° = 0.
Then A can be represented as a direct sum of right ideals: A = P{'@...@ P, where
Py, ..., P, are pairwise non-isomorphic indecomposable right A-modules, which are
called the principal right A-modules. Set U; = Pi/PiR,;i = 1,...,s. It is well-
known that Pj,..., P, represent up to isomorphism all indecomposable projective
A-modules, while U,,... U, form a representative set of isomorphism classes of all
simple right A-modules. Let M be aright A-moduleand N be a left A-module. We set
top M = M/MR and top N = N/RN. We denote by soc M (respectively soc N) the
Jargest semisimple right (respectively left) submodule of M (respectively N). Since A
is artinian, soc exists for all A-modules. Let 1 = fi +...+ f, be a decomposition of the

identity element of A into a sum of idempotents such that fiA =P (i=1,...,s).
Then Af; = QF*, where Q,,...,Q, are the pairwise non-isomorphic indecomposable
projective left A-modules (the principal left A-modules). Set A;; = fiAf; (1,) =
1,...,s). Then A has the following canonical Peirce decomposition
s
A Y A (1)
i,j=1

Denote by R; the radical of Ay, (i = 1,...,s5). Obviously, A;; is artinian. Since
Hom(P;'", P) 2 A;j, then A;; C Rif i # j. The radical R of A has the following
Peirce decomposition:

© Dokuchaev Mykhailo, Kirichenko Volodymyr, 2003

The first author was partially supported by CNPq of Brazil, Proc. 301115/95-8 and partially by
Fapesp of Brazil, Proc.01/05305-7 the work of the second author was supported by Fapesp of Brazil,
Proc. 99/11761-3.



FROBENIUS RINGS 55

1,7=1
where f;Rf; = R; and fiRf; = Aij i #i(i=1,...,8).
Observe that two principal A-modules P and P’ are isomorphic if and only if
top P =~ top P'.

We recall now the classical definition of Frobenius and quasi-Frobenius rings as
given by Tadasi Nakayama (see [13, p.8], [9, Section 13.4)).

Definition 1.1. A two sided artinian ring A is called quasi-Frobenius, if there exists
a permutation v of {1,2,...,s} such that for each k =1,...,s we have

(qf1) soc Py = top Py(k},

(qf2) soc Q, k) = top Q.

A quasi-Frobenius ring A is called Frobenius, if n,;) = n; foralli =1,...,s. This
permutation v is called the Nakayama permutation of A. Clearly, v is determined up
to conjugation in the symmetric group on s letters, and conjugations correspond to
renumberings of the principal modules Py, ..., P;.

We construct now some examples of quasi-Frobenius rings. Recall that a local ring
O with non-zero unique maximal right ideal M is called a discrete valuation ring, if
it has no zero divisors, the right ideals of O form the unique chain:

OIMOIM2D...0M"D

and, moreover, this chain is also the unique chain of left ideals of A. Then, obviously,
@ is noetherian, but not artinian, all powers of M are distinct and ey M = 0
Moreover, M is principal as a nght (left) ideal.

Example. Denote by H,(O) the ring of all s x s matrices of the following form:

O O .. 0

M O ... 0

H=H,0)=] . b m

M M « O

It is easily seen that the radical R of H,(O) is

M O .- O M M s O
M M .. O M M - O
R=1 . i : and R’ = : E g, :
MM - M M2 M - M

The principal right modules of H are the “row-ideals” of H and the submodules of
each of them form a chain. In particular, the submodules of the “first-row-ideal” form
the following chain:
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0 o oy /M O .. 0 MM -0
0 0 0 0 0 -+ 0 0 0 - 0
j : ; - ‘ : 3 : > : . % . D
0 0 -+ 0 0 0 - 0 0 0 - 0

It is easy to see that each other row-ideal of H is isomorphic to a submodule of
the above module. In a similar fashion, the principal left H-modules are the column-
ideals, whose submodules form corresponding chains. Thtis, H is a serial ring in the
sense of (5, p. 224]. Let Py,... P, be the principal right modules of the quotient
ring A = H,(O)/R? and Q,,...,Q; be the principal left A-modules numbered such
that P; = e;;A,Q; = Aey, (i = 1,...,s), where e;; denote the s x s matrix whose
(i,7)’s entry is 1 and all other entries are zero. Then the submodules of every P; and
Q; form finite chains, and a direct verification show that

soc Py = top Py, soc Py = top Ps, ... ,soc Py = top P,

and
top Q1 = soc Qa,top Q2 = soc Q3, ... ,top Qs = soc Q.

Moreover, each of these modules is a one-dimensional vector space over O/ M. Hence,
A is a quasi-Frobenius ring whose Nakayama permutation is (1,2, ..., s).

More in general, the quotient ring A = H,(Q)/R™ (m > 2) is a quasi-Frobenius
ring whose Nakayama permutation is (1,2, ...,s)m“. It follows, in particular, that
the Nakayama permutation of A is identical if and only if m = 1(mod s).

We shall use the next two results.

Lemma 1.1. [4, Lemma 6.3.12)). Let 1 = ey + ...+ em = h1 + ...+ ha be two
decompositions of 1 € A into a sum of pairwise orthogonal primitive idempotents.
Then m = n and there exists an invertible element a € A and a permutation i — o(i)
such that e; = ah,(;ya™" foreachi=1,...,n.

Lemma 1.2. For every-simple right A-module U; and for each f; we have U;f; =
8i;Us, (i,§ = 1,...,s). Similarly, for every simple left A-module V; and for each f;,
Vi =6V, (hi=1,...,8).

Proof. Go modulo R and apply the Wedderburn-Artin Theorem.

This lemma will be a useful tool in our further considerations and we shall refer
to it as to Lemma on annihilation of simple modules. An idempotent f € A, which
is central modulo R, shall be called minimal modulo R if f can not be decomposed
into a sum of two orthogonal idempotents, which are central modulo R. For two
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idempotents ¢ and g of A we shall write e € g, if g = e + ¢/, where ee’ = ¢’e = 0.
Clearly, €’ is also an 1dempotent in A.

Theorem 1.3. Let 1 = fi +...+ fs = g1 + ...+ g: be two decompositions of 1 € A
into a sum of pairwise orthogonal idempotents, which are minimal central modulo R.
Then s =t and there exist an invertible element a € A and a permutation i — 7(i)
of {1,...,s} such that f; = ag,iya~' foreachi=1,...,s. '

Proof. Applying the Wedderburn-Artin Theorem to A = A/R, we get immedi-
ately that s = t. Let f; = eg'} + ...+ e,(:,} be a decomposition of f; into a sum of
pairwise orthogonal local idempotents. Then, obviously, U,-ef) #£0for k=), .. 0
It follows from the Lemma on annihilation of simple modules that U;g,;y = U; for
some g, ;) and, moreover, U;g; = 01if j # o (7). Renumber the idempotents g1,...9;s
such that U;g; = U; (i = 1,...,s). Take a decomposition g; = h(;) + ...+ h.f,') into
a sum of pairwise orthogonal local idempotents. Then we obtain two decomposi-
tions of 1 € A, which satisfy the assumptions of Lemma 1.1. Hence, there exits
a conjugating element @ € A which transforms one decomposition into the oth-
er, up to a permutation. It follows from our numeration of idempotents g3,...gs
that a{hgi),... ,h,(-:')}l’l_l = {e(li),... ,eg,)} for each i = 1,...,s and, consequently,
agq-a‘l = B =l R

Set A;; = f,;Afj. Then

3 8
A= (P 4 R=CD Ry,

i,7=1 i,i=1
where Ri; = fiRf; = Aij for i # j and Ry; is the Jacobson radical of A;; (¢, =
-

Such two-sided Peirce decompositions of A and R shall be called canonical. It

follows from Theorem 1.3. that every other canonical Peirce decomposition of A can
be obtained from

Ay Ay - Agg
| An Az -+ Az
Ag As2 e Ass

by a simultaneous permutation of lines and columns and the substitution of all Peirce
components A;; by aA;;a™".

2. MONOMIAL IDEALS. Let 1 = e; + ...+ e, be a decomposition of 1 € A
into a sum of pairwise orthogonal idempotents. By an ideal we mean a two-sided
ideal. For an ideal I of A the abelian group e;le; (i,j = 1,...,n) obviously lies in
I, and I = @®%;- 1L is a decomposition of I into a direct sum of abelian subgroups.
Such decomposition is called the two-sided Peirce decomposition of I corresponding
tol=é; +...+ e,. It has a natural matrix form:
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I hLa --- I
.- f?l 132 I?n
Inl Inz s Inn
If J = @ ;-,Ji; is also an ideal, then

Li+Ju hae+di2 -+ Iint Jin

Iwv+Jann Ipa+Jee - Ipp+ Jon
I+ J= = ; ; ®

Inl"‘-]nl In2+Jn2 Inn'i'Jnn

and each Peirce component (/J);; of the product IJ is given by

(D= s Bediy 053 = Lisony 1)y
so that addition and multiplication of elements from I and J can be done by the
addition and multiplication of corresponding matrices.

Let A be a two-sided artinian ring and 1 = fy+...+ f, be a canonical decomposition
of 1 € A into a sum of pairwise orthogonal idempotents. Then I = &; ;- /;; with I;; =
filf; (i,j = 1,...,s) is called the canonical Peirce decomposition of I. As above,
it is easily seen that one canonical Peirce decomposition of I can be obtained from
another one by a simultaneous permutation of lines and columns and the substitution
of each Peirce component I;; by al;ja=?.

Definition 2.1. An ideal I of a artinian ring A shall be called monomazal if each
line and each column of a canonical Peirce decomposition of I contains exactly one
non-zero Peirce component.

If I is a monomial ideal, then there exists a permutation v — v(i) of {1,...,s}
such that Jj,(;) # 0. Clearly, v is determined up to conjugation in the symmetric
group on s letters. We denote this permutation by v(I).

Lemma 2.1. Let A be a artinian ring. If I is a monomial ideal of A then each
canonical Peirce component of I is an ideal in A.

Proof. Let 1 = f; + ...+ f, be a canonical decomposition of 1 € A into a sum of
pairwise orthogonal idempotents. Write v = v([), then I = &; ;_, fif.(i). Obviously
fil fuiyfxAfi = 0 if k # v(i). Moreover, filfuyfuyAfi € fil i which is non-zero
if and only if ! = v(i), as I is monomial. Similarly, fx Afifil fyi) # 0 if and only if
k=1 =1i. It follows that f;If,(;) is an ideal in A foreach i =1,...,n.

Lemma 2.2. Let A be a artinian ring. Then soc Aa coincides with the left annihilator
I(R) of R = R(A), whereas soc oA coincides with the right annihilator r(R). In
particular, soca A and soc As are two-sided ideals.

Proof. If U is a simple right A-module, then, obviously, UR = 0 and, consequently,
soc A4 C I(R). On the other hand, the equality I[(R)R = 0 implies that I(R) is a
semisimple right A-module, so it has to be contained in the right socle of A, hence,
I{R) = soc Aas. Similarly, r(R) = soc 4 A.
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The first statement of the next theorem is well known (see [1]), however, we include
a proof in order to show that the whole result is a consequence of the Lemma on
annihilation of simple modules.

Theorem 2.3. Let A be a quasi-Frobenius ring. Then soc 4A = soc As. Moreover,

Z = soc 4 A is a monomial ideal and v(2) coincides with the Nakayama permutation
v(A) of A.

Proof. Denote by Z; (respectively Z,) the left (respectively right) socle of A. It fol-
lows from the definition of quasi-Frobenius rings and from the Lemma on annihilation
of simple modules that f;Z; # 0 foreach i = 1,...,s. Then for every local idempotent
e € f; the set ef; Z; = eZ; is different from 0. Therefore, the right ideal eZ; is a non-
zero submodule of the principal module P; and, consequently, eZ; contains soc F;,
which implies that Z; D Z,. Since the Nakayama'’s definition of quasi-Frobenius rings
is left-right symmetric, it follows that 2, 2 2, and thus, 2, = 2, = Z.

It remains to show that Z is monomial and v(Z) = v(A). Write v = v(A) and
consider the canonical Peirce decomposition of Z: Z = @] ;_,fiZf;. Since Ay =
®i_,fiA = ®_, P, we have that Z = @®}_,soc fiA and f;Z = soc fiA = soc P
It follows from Definition 1.1. that soc P** = U:{“.), so fiZ = U;“i), and the Lemma
on annihilation of simple modules implies that f;Zf; = 0 if and only if j # v(3).
Hence, Z is monomial and v(Z) coincides with v(A).

3. FROBENIUS RINGS. In [9] a ring A was called Frobenius if it is quasi-
Frobenius and soc Ag = top Aa, soc 4A = top sA. We want to point out that one of
these isomorphisms can be ommited, namely:

Proposition 3.1. A quasi-Frobenius ring A is Frobenius if and only if

soc Ay = top Ay.

Proof. Suppose that soc Ax = top Aa. Since top Ag = EB;ﬂU:(';(;’ and soc Ay =
®i=1UJ k), it follows from the Jordan-Holder Theorem that ni = n, (k) for all k.

We have that top As = §}_,lop P;(‘;“)"’ = @ile:(‘:;) = soc As. Then top 4 A =

@izltopQuﬁ;’ = @;zlvu(:(}*) = soc 4 A.

Proposition 3.2. A reduced QF -ring is Frobenius.

Proof. Immediately follows from Definition 1.1.

Lemma 3.3. If A is a Frobenius ring and v(A) is a cycle then A = M, (B), where

B is a reduced Frobenius ring with cyclic Nakayama permutation.

Proof. Let A = P'* @ ...® P} be a decomposition of a Frobenius ring A into a
direct sum of principal A-modules. We can suppose that ¥(A) = (1...s). Then by
Definition 1.1. ny = ny = ... =n,and A = (P, ® P, ® ... ® P,)" which yields
A= M,(B) where B=E(P,®...®P,) and v(B) = (1...s).
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Recall that a ring A is indecomposable if A cannot be decomposed into a direct
product of two rings.

Proposition 3.4. If A is a QF-ring and v(A) is a cycle, then A is indecomposable.

Proof. We can obviously suppose that v(4) = (12...s). Then Z = soc A is
a monomial ideal and v{A) = v(Z). Therefore the canonical Peirce components
Asipa(i=1,...,s—1) and A, are different from zero, by implies that A is indecom-
posable. ‘

Definition 3.1. [2] A ring A is called weakly prime if the'product of any two ideals
that are not in the Jacobson radical R of A is non-zero.

Obviously, any prime ring is weakly prime.

Proposition 3.5. (2] Let 1 = e; + ...+ en be a decomposition of the identity of
semi-perfect ring A into a sum of mutually orthogonal local idempotents and A;; =
eiAej(i,j=1,...,n). Then A is weakly prime if and only if Aij # 0 for all ¢, 7.

In [14] QF-rings A are considered which satisfy the following conditions:
a) A is reduced;
b) v(A) is a cycle;

¢) for any non-trivial idempotent ¢ € A eAe is a QF-ring and v(eAe) 1s a cycle.

Proposition 3.6. If a Frobenius ring A satisfies conditions (a), (b), (c) then A is
weakly prime and every local ring e; Ae; is Frobenius.

Proof. Since A is reduced, the local idempotents coincide with the canonical idem-
potents. Let A;; = fiAf; fori = 1,2...s. If Ai; = 0 then eAele = fi + fj) is a
Q F-ring. Obviously, eAe = (ﬁ" AO. ) and v(eAe) is a cycle.
3 _ 41jj
By Proposition 3.4., eAe is an indecomposable ring. Let Z = soceAe. The local
ring e; Ae; are Frobenius by condition (c).

Let 4 = P@ ... 8 P bea decomposition of an artinian ring A into a direct
sum of principal right A-modules and let 1 = f1 4+ ...+ f; be the corresponding de-
composition of identity of the ring A into a sum of pairwaise orthogonal idempotents,
le., f,‘A = P‘-n'.

Definition 3.2. An idempotent ¢ € A will be called standard if g = fi, + ... + fi,,
where n;, = ... = n;,, in particular, if f € {fi,...,fs} and fA = P"1 then
f E {.f‘ll S lffk}' I

Definition 3.3. Let 1 = g; + ...+ gm be a decomposition of 1 € A into a sum of
pairwise orthogonal standard idempotents. Put A;; = giAg; (1,7 = 1,... ,m). The
decomposition A = @, 4ij will be called the standard Peirce decomposition of
artinian ring A.
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m
Theorem 3.7. Let A = € Ai; be a standard Peirce decomposition of a Frobenius
=1

ring A, then A;; = My, (B;) where all rings B; are reduced Frobenius rings.
Proof. By Lemma on annihilation of simple modules the socle of arbitrary principal
A-module P = eA with e € g; is annihilated by every standard idempotent g; # gi

Hence, g;Zg; is the socle of M, (B;) and for each local idempotent ¢ € g; the
Aii-module eZg; is simple as a simple left A;;-module and it is also simple as a right
Aji-module. Therefore A;; 1s quasi-Frobenius.

The multiplicities of all principal A;;-modules are k; and consequently A;; is Frobe-
niusforalli=1...,s.

Theorem 3.8. Let A be a QF-ring and the Nakayama permutation v(A) of A 1is
identical. Then A is Frobenius and every ring C which is Morita equivalent to A is
also Frobenius. Conversely, if every ring C which is Morita equivalent tc a Frobenius
ring A is Frobenius, then v(A) s identity.

Proof. By Definition 1.1. every QF-ring with identical Nakayama permutation is
automatically Frobenius. Clearly, every ring which is Morita equivalent to a Frobenius
ring with identical Nakayama permutation is Frobenius.

Let A is a Frobenius ring and v(A) is not identity. Then we can assume that
soc P, =top Py. Let A = P @ P}*& ...@® P} be a canonical decomposition of A
into a direct sum of principal A-modules. It follows from the Definition 1.1., ny = n;.
Set P= P2@® P, ®...© P,. Then C = EndaP is a QF-ring, and v(A) = v(C),
and multiplicity of the first principal C-module is 2 and does not coincide with the
multiplicity of the second principal C-module. Therefore, C' is not Frobenius.

Finite-dimensional Frobenius algebras with identical Nakayama permutation were
called by [11, p. 444] weakly symmetric algebras. So from Theorem 3.8. we have such
theorem.

Theorem 3.9. Let A be a weakly symmetric algebra. Then A is Frobenius and every
algebra C which is Morita equivalent to A 1s also Frobenius. Conversely, if every
finite dimensional algebra C which is Morita equivalent to a Frobenius algebra A is
Frobenius, then A is a weakly symmetric algebra.

4. SERIAL QUASI-FROBENIUS RINGS. Definition 4.1. A module is
called uniserial if the lattice of its submodules is a chain, i.e. the set if all its sub-
modules is linearly ordered by inclusion. A module is said to be serial of it is a finite
direct sum of uniserial submodules.

Definition 4.2. A ring A is called right (resp. left) uniserial if Ay (resp. 4A) is an
uniserial A-module. A ring which is right and left uniserial is called uniserial. A ring
A is right (resp. left) serial if Ay (resp. 4A ) is a serial A-module. A right serial and
left serial ring shall be called serial.

Theorem 4.1. [10, Theorem 2.1} The quiver Q(A) of a serial two-sided Noetherian
ring A is a disconnected union of cycles and chaines (i.e. of quivers corresponding to
finite lineary ordered sets).
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Proposition 4.2. Let Q(A) be a quiver of a quasi-Frobenius ring A. If there 1s a
vertez 1 € Q(A) which s either a sink (i 1s not the tail of any arrow) or a source (i is
not the head of any arrow) then A ~ A, x Ay, where Ay ~ M, (D) with a division
algebra D.

Proof. Let ¢ is a sink. Then indecomposable projective A-module P; is simple.
Therefore v(i) = i, where v = v(A) is Nakayama permutation of a ring A, and
Ag£0fri=1L. ... 0= Li+ L. .0

Now we shall show that Ay, = O0for k=1,...,¢—1,i4+1,...,s. Let Ax; # 0.
Then, because Ax; ~ Hom (P, P*) we obtain by the Lemma of Shur that the
simple module U; appears in a direct decomposition of soc Px. So v(k) = v(i) = i
and Ax; = 0. Analogously, if i is source, then the left indecomposable projective
A-module Q; is simple and Ax; =0, A;j =0forjk=1,.. " ;i—1,i4+1,...,s.

As a corollary of this result and Theorem 4.1 we obtain the description of the
quivers of serial Q) F-rings.

Theorem 4.3. The quiver Q(A) of a serial QF-ring A is a disconnected union of
cycles and one-point quivers without arrows.

Definition 4.3. A local serial (=uniserial) ring is called a Kothe ring.

Proposition 4.5. A Kothe ring 1s Frobenius.
Proof. Immediatly follows from Definition 1.1.

Let A be a Kothe ring. Then the length I(A4) of the right regular A-module
coincides with the length {(4 A) of the left regular A-module. Thenl =1(A) = (4 4)
shall be called the length of a Kothe ring A and denoted by I(A).

A Kothe ring of length 1 is a division ring.

A Kéthe ring of length m has a unique chain of ideals (right, left, two-sided):

AR 3...3 B 34,

Lemma 4.6. A local Frobenius ring A with R?> = 0 is either a division ring or a
Kothe ring of length 2. In the second case Q(A) is a loop.

The proof follows from Definition 1.1.

We give the description of serial reduced rings, the square of Jacobson radical of
which is zero. Such rings are two-sided artinian, since the length of every right and
every left principal module is less or equal than 2.

Lemma 4.7. If A is an artinian indecomposable reduced serial non-local ring with
R? = 0 then there is a subring Ap in A such that A = Ao @ R (direct sum of abelian

groups).

Proof. Obviously, Q(A4) has more than one vertex. We have two cases:
a) QA) = {152 ... = s—1— s} is a chain,
b)Q(A) ={1—=2—...5s—1—s—1}isacycle.
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Suppose (a). By [6, p.287] A ~ T,(D)/I, where I is two-sided ideal of the ring
Ts(D) of all upper-triangular s x s-matrices over D.

Clearly, we can take Ay be equal to the subring of all diagonal s x s-matrices over
D.

In case (b) suppose first that s = 2. Then 1 = e; + e2. Put A; = e; Ae;, R; is the
Jacobson radical of A;(i = 1,2), X = e;Ae; and Y = ez Ae;.

By formula 2 (see §1) we have R = o :
: Y R

Clearly,

R? = R%+XY RiX +XRy
“\YRi+RyY RI+YX

Since Q(A) is two-pointed cycle by the Lemma on annihilation of simple modules
we have that XY = R, and YX = R,, which implies that XY X = XR; = R, X
and YXY = YR; = R,Y. Since R? = 0 it follows that R; = 0 and Ry = 0. Hence,

A, = D; and A; = D, are division rings and Ag = (D1 0 )‘R - (0 X),

0 D, Y 0
te. A = Ap® R. )

Let Q(A) = {122 — ... +s—1—= s — 1} be a cycle which contains at least
three vertices. Let 1 = e; + ...+ ¢, be a decomposition of 1 € A in a sum of mutually
orthogonal idempotents.

Set A; = e;Ae; where R; is the Jacobson radical of A;(z = 1,...,s). Let A;; =
eiAej(i # j;i,j = 1,...,s). By the definition of Q(A) we have that A;iy; # 0 for
i=1,...,s—1and A;; #0.

We show that R; = 0 for all i. Then by formula 2 of §1 we obtain that A = A¢@ R

where -
Ay 0
AG ) ( -. ‘ ) |
0 As

In fact, let Rx # 0 for some 1 < k < s. applying a cyclic renumbering of principal
modules we may assume that R; # 0.

Consider the ring B = (e; + ez)A(er + €2). By [3] B is a serial ring. Clearly,
B is reduced and (R(B))? = 0 where R(B) is radical of B. Since A;z # 0, then if
Ay # 0 we obtain that Q(B) is a two-pointed cycle. But then it follows from the
above arguments that R, = 0.

If Ay; = 0 then Q(B) = {1 — 2} and B ~ T5(D). Again R; = 0. Lemma is
proved.

Let @ = D[z, ¢]) be an augmented Ore domain (see [18], Chapter VII, §14). The
m .
ring D[z, o]] is the set of formal power series }_ a;z*, a; € D; o is an automorphism of

0

the division ring D. Addition and equality is defined in the usual way. Multiplication
is defined by the formula az = za? and its consequences. Then O is a discrete
valuation ring with unique maximal ideal M = z0O = Oz. Denoted by H{™(0) the
quotient ring H,(Q)/R™, where R is Jacobson radical of H,(O) (see Example from
§1).
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It follows from Lemma 4.7. and [10, §4] that every serial non-local reduced ring
whose quiver is a cycle, the square of whose Jacobson radical is zero, is isomorphic to

20). |

Set T2°/(D) = T,(D)/R? where R is radical of T} (D). It follows from Lemma 4.7.
and [6] that every serial reduced non-local ring A with R(A)? = 0 whose quiver is a
chain is isomorphic to T )(’D)

Since every serial A with one-point quiver and R(A)? = 0 is either a division ring
or a Kothe ring of length 2, we obtain the following theorem.

Theorem 4.8. Every indecomposable serial reduced ring A with R(A)? = 0 1s 1s0-
morphic to one of the following:

a) a division ring,

b) a Kéthe ring of length 2;
c) H:"(0);

d) TE ).

In the cases (c) and (d) we have s > 2. Conversely, all these rings are indecom-
posable serial reduced rings, the square of the Jacobson radical of which is zero.

Remark. The rings of types (a), (b), (c) are Frobenius. In cases (a) and (b) the
Nakayama permutation is identity and in case (c) it is a cycle (1,2,...,s).

Remark. If the quiver Q(A) of serial ring A is a chain then, there is a subring Ao,
such that A = Ap @ R (a direct sum of abelian groups). If Q(A) is a cycle with s
vertices and R® = o then there is a subring Ag in A such that A = Ao @ R (a direct
sum of abelian groups). In the last case if A is reduced then A is isomorphic to a
quotient ring of the QF -ring J76%2 (0), and the Nakayama permutation v(H( )( 0)) is
equal to (1,s,s—-1,...,2).

Proposition 4.9. Let A be a serial ring, Py,...,Ps all pairwise non-isomorphic
principal A-modules. If I(P;) = I; then soc P; = Uy, where k =i +1; —1(mods).

Proof. The proof immediately follows from the definition of Q(A).
This implies the following well-known fact (see {12] and also [8]).

Corollary 4.10. A serial artinian indecomposable ring A is a QF -ring zf and only
of the lengthes of all principal A-modules are equal.

Proof. If the lengthes of all principal A-modules are equal to 1 . Then since A is
indecomposable, by the Wedderburn-Artin Theorem A is isomorphic to M,,(D) where
D is a division ring, consequently, A is a @ F-ring.
If the length of all principal A-modules are equal to ! > 2 then Q(A) is a cycle.
The map
v:i—v(i)=1+i—1(mods)

is a permutation {1,...,s}.
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By Definition 1.1. A is a QF-ring and there exists a principal A-module P which
is simple. By Theorem 4.3. and Proposition 4.2. we obtain that Q(A) is a one-point
quiver without arrows. Therefore, A = P™ and by Schur’s Lemma A ~ M, (E(P)),
where E(P) is a division ring.

Thus, we can assume that if [(P;) > 2 for all .. By Theorem 4.3. and Proposition
4.2. Q(A) is a cycle.

Let ¢ : P — P;R be an epimorphism of the principal A-module P on P;R. If
is an isomorphism then soc P =~ soc P; which contradicts the Definition 1.1. Hence,
kero £0and l = I(P) 2 l; = |(F;). Let

QA) = {122>...s-1=s5—1}.

Then P= Py for1<i<s—1land P=P fori=s Thusli <l <...<L <l
as required.

Proposition 4.11. Let A be an indecomposable serial artinian ring and Q(A) s a
cycle, J is a two-sided ideal with J C R%. The quotient ring A/J is a QF-ring if and
only if J = R' for some l.

Proof. If J = R’ then, obviously, the lengthes of all principal A/J-modules are equal
and A/J is quasi-Frobenius.

Let A/J be a QF-ring. Then the lengthes of all principal modules are equal to
I > 2. Thus, [R(A4/J)}' = 0 which implies that J = R'.
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This is a survey of the last results of the author on classification of polynomial
functors, especially quadratic and cubic.

Key words: polynomial functors, tame and wild algebras, string and band modules.

Polynomial functors appeared in algebraic topology [8] and proved themselves use-
ful in various questions of this theory, especially in studying homotopy types. So
their classification is of a definite interest. Some time ago the author noticed that
at least the quadratic case can be treated in more or less usual framework of the
representation theory. It gave possibility to obtain their complete description [6].
Unfortunately, this is the last case when such a description can be given. The cubic
case is already wild in the sense of the representation theory (7]. Nevertheless, some
special types of cubic functors can be classified. Perhaps, the most important seems
the 2-divisible case, which is completely analogous to the quadratic one [7]. As a con-
sequence, a conjecture appears that the situation is the same for polynomial functors
of degree p (prime) if we invert all smaller primes. This survey is mainly devoted
to these results. Other special types of cubic functors that have been classified are
“cubic vector spaces,” weakly alternative and torsion free functors, but we only give
a brief outlook of their déscription, since its proper place is still unclear. The author
is grateful to Professor H.-J. Baues for his enthusiastic support of this research.

1. Generalities. We suppose all categories pre-additive, i.e. all morphism sets
endowed with abelian group structure. On the other hand, the functors are not
supposed additive, though we always suppose that they map zero objects to zero. If
F : A — B is any functor, we can measure its non-additivity by its polarizations (or
cross-effects). The latter are constructed as follows. Let A be additive (i.e. having
finite direct sums) and B be fully additive, i.e. additive category such that every
idempotent corresponds to a direct decomposition. For any objects Aj,...,A, from
A consider their direct sum A = @,_, Ai together with the embeddings ix : Ax —
A and projections px : A = Ak .

© Drozd Yuriy, 2003
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Then ey = ixp;r are orthogonal idempotent endomorphisms of A, hence f(k) =
F(ex) are orthogonal idempotent endomorphisms of F(A). Define recursively endo-
morphisms f(k;...kn,) foreach m<n, 1 <k <--- <k < n setting -

flky .. km)=Flen,+-+ewn) =Y, Y [flr.-.d),

I<m j1<<gi
for instance f(kl) = F(ex+e)— F(ex)— F(er). Set Fp(A1]...]An) =Imf(12...n).

Then
FA = P Faldul . |4.)

mgn ki< <km

The functor F is called polynomial if there is an integer d such that F, = 0 for
n > d. The smallest d with this property is called the  degree of F. Certainly
functors of degree 1 are just additive; those of degree 2 are called quadratic and of
degree 3 cubic.

In what follows we consider the case when A = fab, the category of finitely
generated free abelian groups, and B = R-Mod, the category of modules over a
ring R. As any additive functor F : fab — R-Mod can be identified with the
R-module F(Z), we call polynomial functors F : fab — R-Mod polynomial R-
modules. Moreover, as a rule we only deal with finitely generated polynomial modules,
i.e. polynomial functors F : fab — R-mod, the category of finitely generated R-
modules. If R = Z, we simply say “polynomial modules” not precising the ring.

One can show (see [1]) that a polynomial module M of degree d is completely
defined by the values M, = M,(Z|...|Z) (n times) for n < d and the homomor-
phisms HZ : M, = Mp41, P% : Moy = M, for each n < d, m < n, which are
defined as the following compositions:

H - M, = M(Z") = M(Z"*") = Mpy,,

where the first mapping is just the embedding of the direct summand, the last one is
the projection onto the direct summand, and the middle one equals M (J,,), where

, TN 7+ 1 =5 .
Om 1 Z" = Z ) ‘sm[zlw--;zn)—(zla--<:zm—1:zm;zmszm+l1---,Zn)s

and
Pl Mpt1— M(Z™YY 5 M(Z™) = M,

where the first mapping is the projection, the last one is the embedding, and the
middle one equals M (¥y.), where

1 =
Im ! Zﬂ-{- _)Zn‘ 'Ym(zls'-‘azni-l) = (zls---:3m—1:zm+3m+!:zm+2--':zn)-

Certainly, these mappings must satisfy some relations (cf. [1]), which we shall not
write in general case.

Important examples of polynomial modules are:

e tensor powers 1™ : A — A®"

e symmetric powers S"” : A+ S"A,

e exterior (skew-symmetric) powers A" : A~ A"A.

In particular, tensor power T™ and its polarizations T™* : A — T/ (A]...|A) (k
times) are just indecomposable projectives in the category of all polynomial modules
of degree n .
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2. Quadratic modules. For quadratic modules the previous construction gives
two R-modules My, M, , and two mappings H : My — M, and P: My — My, such
that PHP = 2P and HPH =2H .

We consider the “absolute” case, when R = Z (it is the most important for
topology). Then one can easily see that a quadratic module can be considered as
a module over a special ring A, which is the subring in the direct product Z x
Mat(2,Z) x Z consisting of the triples

by 2by
bs b4
Namely, if M is an A-module, in the corresponding quadratic module M; =

exM, My = eaM , H is the multiplication by h and P is the multiplication by
p, where

(a,b,c), where b:( ), b1 = a, by = c (mod 2).

e1 = (1,e11,0), ea = (0,e22,1), h = (0,e21,0), p=(0,2¢e12,0)

(€;; are the matrix units in Mat(2,Z)). Fortunately, this ring belongs to the class
considered by the author in [5]. In particular, it is tame; moreover, its representations
can be described in a rather usual language of “strings” and “bands.” Indeed, this
classification is a special case of the so-called representations of bunches of chains (cf.
[2]). For details of the calculations we refer to [6]; here we only formulate the result
in a bit more convenient form.

First, using the common tool of adéles groups, like in [4], we establish a sort of
“Hasse principle” for quadratic modules. Remind that we always suppose our modules
finitely generated.

2.1. Proposition. Two quadratic modules M and N are isomorphic if and only if
there localizations M, and N, are isomorphic for each prime number p.

If p>2, Ay = Z, x Mat(2,Z,) x Zy, so the description of Ap-modules is
quite simple: there are three indecomposable torsion free modules (direct summands
of A, ), and every other indecomposable module is isomorphic to P/p* P for some
positive integer k and one of these modules P . The description in case p = 2 is more
interesting. First introduce some configurations of integers called strings and bands.
Namely, define two symmetric relations on the set {1,2,3,4} : an equivalence relation
— such that the only non-trivial equivalence is 2 — 3, and ~ (not an equivalence!)
such that 1 ~2 and 3 ~ 4. Now a string is a configurations of one of the following
sorts:

7 ; J2J3 J2n-2J2n-1
(l) kl k2 k3 viee k?n—l
3-1 ’I':2 ! !.33'4 Ilgn Ly
or

J2J3 Jon-2j2n-1
(11) kg k3 e k2n—1
iz ‘i3i4 1-211—1

or
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7 J2J3 Jon
(ii) ky ks kan
B S§ 7 i2n-112n
where i,,j, € {1,2,3,4}, k. € N satisfy the following conditions:
® iy ~ 1y for each r =1,2,...,n. This condition is empty for types (i) and

(ii) if » = n and for type (ii) if » = 1, but in these cases we define i3, , respectively
17 so that it holds.

® jory1 ~ Jor foreach r=1,2,...,n—1.

e i, —j, foreach r=1,2,...,2n (again it is empty in some cases, but here we
do not define any extra values). .

Consider now the following mappings acting in every quadratic module:

6(11) = 2idy, — PH, 0(22)=PH, 8(23)=H,
6(32) = P, 0(33)= HP, 6(44) = 2idp, — HP.

Set also v{1,2} = 1, v¥{3,4} = 2. Then the quadratic string module M = MP
corresponding to a string diagram D is generated by the elements

g1:82,.---,8n &r € Mu{iﬂr—ls“ir}

subject to the relations
9k B(iar far )gr = 2 M 0(inrprdorn B (r=0,1,...,n).

We set here gp = gons1 = 0 and omit the case r = n for diagrams of types (i),(ii)
and the case r = 0 for diagrams of type (ii).

A band data is a pair (D,m,¢), where D is a diagram of type (iii) and ¢ =
A 4+ Aot + -+ Amt™ 1 +t™ is a polynomial over the residue field Z/2 such that

® joan ~ J1.

e D is non-periodic, i.e. cannot be written as a repetition D'D’...D
diagram D’.

e ¢ is a power of an irreducible polynomial and A; #0.

The quadratic band module M = MP'? corresponding to a band data is generated
by the elements

! of a shorter

grs (P2 L2nm §=1820.m) B € Mgy i)
subject to the relations
2% 010y jor )Brs = 227 0(igrp1d2r41)8r41,s (r=0,1,...,m) if 1< <
%170 (i3 jon)ns = 2 0(i11)g1041 if 1< 5 < m;

m
22§ (i3n jon)@nm = —25*0(i1j1) Y _ AsB1s-

s=1
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2.2. Theorem. 1) Every indecomposable quadratic module is isomorphic to one of
the string or band modules defined above, or to a module S?/p*, A?/pF, or 1d/p*,
where p 1s an odd prime.

2) The only isomorphisms between these indecomposable modules are the following:

o MP ~ MP"  where D is the symmetric diagram to a diagram D of type (ii)
or (11i). -

o MD% ~ MD'¥ where D' denotes the I-th cyclic shift of the diagram of type
(ii1), i.e. the configuration

Joi+1 Ja+272143 Jai
kary1 ka2 e k2
1204172042 i21—1191

o MP#¢ ~ MDY where ¢*(t) = AT Hm@(1/t).
3) Any quadratic module uniquely decomposes into a direct sum of indecomposable
ones.

2.3 Corollary. e Every quadratic module M has a periodic projective resolution of
period 4, namely

iy P 2 Py Py B Pia M0

ith Paid = Ppy Onis =00 fora > 2.
e The projective dimension of a quadratic module is either 0, or 1, or co. Hence
the finitistic projective dimension of the category of quadratic modules equals 1.

3. Cubic modules. A cubic module is given by 3 groups M;, M, M3 and 6
mappings
H:M - My, P:My— M, Hp :My > M3, P, : Mz M, (m=1,2)

subject to the conditions:

H\P, = H;P, =0, HiH = H3H, PP, = PP,

H;P;H; = 2H;, P;H;P; = 2P; (i = 1,2),
HPH = 2(H + (P, + P,)P), PHP = 2(P+ P(H, + H,)),
HP + Hy+ Hy = HiPyH2P,Hy + H2 P, H i P Hy,
HP + Py + P, = PiHyPHo Py + PoHy P H2 P,

where H = H1H = H>H, P= PP, = PP,.
We consider the ring B generated by three orthogonal idempotents e, ez, €3 such
that e; +e2 +e3 = 1 and 6 elements

H € e;Bey, P€eBea, Hy € e3Bea, Py € e2Bes (m = 1,2)

subject to the above relations. Then any cubic module can be considered as B-
module. Set By = ¢;Be; .
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3.1. Proposition. 1. The ring B; is generated by two elements a = PH—PH, b=
PH subject to the relations a* = 2a, b* = 6b, ab="ba =0.

2. The ring B, (all the more B ) is wild.

Proof. The first claim is verified by straightforward calculations [7]. To prove the
second, consider the free (non-commutative) algebra ¥ = Z/4(z,y) over the residue
ring Z/4 and the homomorphism ¢ : By = £ mapping a + 2z, b — 2y. For
every L-module L denote by 9L the Bj-module obtained from L by the change
of rings. Then one easily verifies that for any X-modules L, L’, which are free as
Z[4-modules,

e °L~°L" ifand only if L/2 ~ L'/2;

e °[ is indecomposable if and only if L/2 is indecomposable.

Hence the classification of Bi-modules is at least as complicated as that of modules
over /2 ~ Z/2{z,y) . 1t means that B, is wild in the sense of the representation
theory.

It gives no hope to obtain a good classification of cubic modules. Nevertheless, the
situation becomes much better if we “invert 2,” that is consider cubic modules over
the ring Z' = Z[1/2]. We call them 2-divisible cubic modules. Then straightforward,
though rather cumbersome, calculations give the following result.

3.2. Proposition. The ring B[1/2] is Morita equivalent to the direct product Z' x
7' x B', where B’ is the subring of Z' x Mat(2,Z') x Mat(2,Z') x Z' consisting of

quadruples
1 362
€3 € )’

The cubic modules corresponding to the first two factor Z' are just S*/p* and
A?/p* for odd primes p (they are indeed quadratic modules). The description of
B’-modules can be given in the same frames as that of quadratic modules. The
corresponding string and bands only differs from those of the preceding section by
the features that now the indices i,,j, are taken from the set {1,2,3,4,5,6} with
the relations 2—3, 4—5, 1 ~2, 3~ 4, 5~ 6, polynomials ¢ are taken from Z/3[t],
and the mappings #(ij) are defined as follows:

9(11) = 3ldpy, — Brn, 8(22) = B, 8(23) = a1, 0(32) = f, 6(33) = s,
6(44) = Baay, 6(45) = ay, th(54) = B2, 8(55) = aafs, 6(66) = 3ldpr, — a2f2,

_ _ (b1 3by _
(a,b,c,d), where b..-(ba 64),(:__

such that a = by, by = clh, cq = d (mod3).

where a; : M} — M, corresponds to the quadruple (0,e21,0,0), 81 : My = M
to the quadruple (0,3e12,0,0), a2 : My = M3 to the quadruple (0,0, e2:,0), and
By : M3z — M, to the quadruple (0, 0, 3612,0).

So we get the following results.

3.3. Theorem. 1) Two cubic 2-divisible modules M, N are isomorphic if and only
if M, ~ N, for each odd prime p.

2) Every indecomposable 2-divisible cubic module is isomorphic to one of the fol-
lowing:

e string or band module;
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o S3/p*, S3/p*, A3/pF, 1d/p*, where S**(A) = S3(A|A) and p > 3 is a
prime;

o S?2/p* or A%/p*, where p is an odd prime.
- 3) The only isomorphisms between these indecomposable cubic modules are:

o MP ~ MP" where D is the symmetric diagram to a diagram D of type (ii)
or (ii1). _

o MD$ ~ MDY yhere D' denotes the l-th shift of the diagram of type (iii),
i.e. the configuration

Jat41 J21+2J21+3 Jai
kai41 kaiy2 e ko
toi+112142 ig1-1t2

o MPD#~ MD'S"  where ¢*(t) = AT t™¢(1/1).
4) Any 2-divisible cubic module uniquely decomposes inte a direct sum of indecom-
posable ones.

3.4. Corollary. e FEvery 9-divisible cubic module M has a periodic projective reso-
lution of period 6, namely

-‘-—kpnﬁi}Pn,.l—F'---‘}Plil)Pg-“?M—}O

wtth Pais = Py Gaye =05 for n> 2.

o The projective dimension of a 2-divisible cubic module is either 0, or 1, or oo.
Hence the finitistic projective dimension of the category of 2-divisible cubic modules
equals 1.

3.5. Conjecture. Let p be a prime, Z®) = Z[1/(p— 1)!). Then the category
of polynomial Z.P)-modules of degree p is equivalent to the category AP _modules,
where A(®) is a direct product of several copies of 7®) and of the subring of ZP) x
Mat(2, Z(P))P=1 x Z¥) consisting of (p+ 1)-tuples {a,b?,..., 001, c), where

m= (3 B} with o= 05" (modp) for m=1,.p=2
21 22

a=bl, c=b55" (mod p).

If this conjecture is true, the description of Z®)-modules of degree p (we call them
(< p)-divisible p-modules) becomes quite analogous to that of quadratic or 2-divisible
cubic modules. Namely:

e Two (<p)-divisible p-modules M, N are isomorphic if and only if M, ~ Ny for
all prime ¢ 2 p.

e Indecomposable (<p)-divisible p-modules, except some “trivial” ones, are string
and band modules defined as above. Now i, j, are taken from the set $1. 2,520}
with corresponding changes of —, ~ and 6(ij). The isomorphisms between these
modules are the same as in Theorems 2.2 and 3.3.

e Every (<p)-divisible p-module uniquely decomposes into a direct sum of inde-
composable ones. '

e Every (<p)-divisible p-module has a periodic projective resolution of period
9p starting from as. Therefore a projective dimension of such a module is 0,1 or
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oc . In particular, the finitistic projective dimension of the category of (<p)-divisible
p-modules equals 1.

4. Other classes of cubic modules. We shortly outline three othe-r classes of
cubic modules that allow an acceptable description referring for details to [7].

A. Cubic vector spaces. They are functors fab — vecty, the category of
vector spaces over a field k. The interesting case is chark = 2, because otherwise
such functors are special cases of 2-divisible ones. Rewriting the relations for the
mappings H, P, H;, P; for this special case gives the following result.

4.1. Proposition. The category of cubic vector spaces s equivalent to the direct
product of a trivial k-linear category with one object (it corresponds to the functor Id®
A? ) and the category of modules over the k-algebra A generated by three orthogonal
idempotents e;,ez,ea such that e; + €3 +e3 =1 and four elements

h € esAe;, p€ ejAey, hy € esAey, p1 € ezAer
subject to the relations
hph = php = hipihy = pthipy =0, hipy = hihpp.
We consider A-modules as diagrams of vector spaces
M, 2 M, 2 Ms,

where M; = e; M and the arrows correspond to the action of h,p, h;,py. As hph =

php = 0, the fragment M; = M, decomposes into blocks of dimension at most 3

(the dimensions of My, M at most 2, and only one of them can be 2-dimensional).
Hence the mappings k& and p can be chosen in the form

I 00000 00000 I
07 0000 000000
L0001 00 oo 1000
=looo0o0o00|l°” PSlooo0oo0o00
00000 O 0000 I O
06000 0 000000

(I denotes the identity matrix). Now, if we reduce the matrix of h; to the simplest
possible form, the matrix of p; splits into 8 horizontal and 10 vertical stripes, which
we denote respectively by R; (i =1,...,8) and S; (j = 1,...,10). Moreover, one
can check that the admissible transformations of these stripes can be described as
representations of a bunch of semi-chains in the sense of [2], namely, we have two
semi-chains

5={RI>R2>R3>R4>R5>R7>R3, R3>R5>Rs},
.7::{.91<Sg<33<S4<55<S7<83<89<310, Sq(Ss*(S?}
with the involution ¢ such that o(z) = z except for the cases

O’(Rl) = Ra, O‘(Rz) = Ss, O'(Rs) = S.;, O'(Sg) = Sg.
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Hence, the description of cubic vector spaces fits again the frames of strings and
bands, though this time they are more complicated than before. We shall not precise
their shape (rather complicated) here, referring to [7].

B. Weakly alternative cubic modules. We call a cubic module M weakly
alternative if M(Z) = 0. Examples of such modules are A> and A? @ Id. For the
corresponding diagram it means that M; = 0. Then, reducing the relations with
respect to the conditions-h = p = 0, one obtains the following result.

4.2. Proposition. The category of weakly alternative cubic modules 1s equivalent to
the category of C-modules, where C is a semi-direct product C = (ZxCo)x D, where
C, is the subring of 7Z x Mat(2,Z) consisting of pairs (a,b) such that a = by, b2 =
0 (mod2), D is an elementary abelian 2-group with three generators £, 7,0, with the
multiplication £€n =8, n€ = 0 and the C-action:
e€ =€, ne=n, £(0,a,b) = a€, (0,a,b)n=an, where e=(1,0,0), (a,b) € Co.
The same observations as for quadratic and 2-divisible cubic modules imply

4.3. Proposition. Two weakly alternative cubic modules M, N are isomorphic if
and only if M, ~ N, forall p.

The only non-trivial cases are, of course, p = 2 and p = 3. In the former case
(Cp)e =~ Zy x Mat(2,Z,) and the second factor acts trivially on D = D, . So the
problem reduces to the classification of diagrams of Z»-modules

3
W, 2 W,
]

such that 2§ = 25 = nf =0. Splitting each of W; into direct sum of free modules
Coo = Z» and finite cyclic groups Ci = Z/2* , one can reduce § and 7 to a normal
form. Namely, consider (finite) words w of the shape

Ny e (e € BU {o0)

not containing subwords &, ®°n, mé. Such a diagram gives rise to a weakly alter-
native module W = W{(w) . Namely, :

w1 =P Ci., Wa=@DCi., €(Ci,) € Cj.yy 1(C5,) C Ci,

and the induced mappings are non-zero of period 2. Note that such mappings are
unique; we denote them by 4 (not precising indices). The modules W(w) are called
string Cy-modules. A band C,-module depends on a pair (w, ¢), where

T T TR

and ¢ # t™ is a power of an irreducible polynomial over Z /2. The corresponding
band module W = W(w, ¢) is defined as follows: :

Wi = @mC;,, Wa = ij 7] (@ijr)a

¢(mC;.) € mC;,_,, n(mC;,) C mC;,, €(mCi,) C mCj, n(nC;) C mCi,,
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where m = deg ¢, and the induced mappings coincide with yId, except for mC; —
mC;, that is given by the matrix y®, where @ is the Frobenius cell with the char-
acteristic polynomial ¢. In the case p = 3, D3 = 0 and we are in the situation
analogous to that of quadratic or 2-divisbile cubic modules. This time the values
i, jr are taken from the set {1,2,3,4} with 3—4 and 2~ 3. Gluing C,- and Cjz-
modules gives the following

4.4. Theorem. Indecomposable weakly alternative cubic modules correspond to the
C-modules of the following types: (1) Torsion modules: (a} 2-torsion: W(w)
and W(w,¢) such that € does not occur in w; (b) 3-torsion: all band Cj3-
modules and string modules of type (iii); (c) p-torsion for p > 3, which are
P/p* P, where P is an irreducible torsion free Cp-module.

(2) Torsion free modules, which are just irreducible modules and the projective
module C(0,1,e11). ,

(3) “Mized” modules M , which are also of three possible shapes given by their
localization at p = 2 and p = 3: (a) My = W(w), where w contains £%,
Ms = MP | where D 1is a string of type (i) or (ii) with i3,y = 2 or iy = 2 if both
occur, it gives two non-isomorphic modules; (b) My = W(w)®W (w'), where both
w and W' contains £€°, M3 = MP , where D is of type (ii) with jon-1 = j2 = 2;
(c) M3z = MP, where D 1s of type (i) or (i), M, is torsion free (hence uniquely
determined).

C. Torsion free cubic modules. They are such modules that all groups
M; (i = 1,2,3) are torsion free. As usually, we study them locally. The only non-
trivial case is p = 2. Then the calculations of subsection 4A imply that the corre-
sponding (localized) ring is isomorphic to the subring in Z3x Mat(2, Z;) x Mat(4, Z,)?
consisting of all sextuples satisfying the following congruences modulo 2:

(a;,ag,ag,b,c,d) with  a; = b1y = €11, a2 = bag = €32 = ca3,
a3 =caq, b12=0 and ¢;; =0 if i <.

It is a Backstrom order, i.e. its radical coincides with the radical of a hereditary
order. Therefore we can apply the method of [9] that reduces the description of
torsion free modules to some diagrams of vector spaces. The precise shape of our ring
implies that in this case the corresponding diagram is a disjoint union of 4 diagrams
of types A,, Az, D4 and D, . Hence the classification of such modules is again a
tame (and rather easy) problem (cf. [3]). Moreover, the specific form of this order
implies the following important corollary for all cubic modules, extending the claim
(1) of Theorem 3.3.

4.5. Corollary. Two cubic modules are isomorphic if and only if all their localiza-
tions are 1somorphic.
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HYPERSPACE FUNCTOR IN THE COARSE CATEGORY

Victoria FRIDER, Mykhailo ZARICHNYI
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

We consider the hyperspace monad in the category of topological coarse spaces and
equivalence classes of coarse maps. It is proved that the G-symmetric power functor
acting on the category of topological spaces can be naturally defined also for the category
of topological coarse spaces and, on this category, it can be extended to the Kleisli
category of the hyperspace monad. ¢

Key words: coarse space, coarse map.

1. The coarse category was first introduced by Higson, Pedersen, and Roe [1].
Methods of coarse topology (geometry) found numerous applications in different areas
of topology and analysis (see, e. g. [1-5]). The present paper is devoted to the
hyperspace functor and hyperspace monad in the coarse category.

The paper is organized as follows. Section 2 contains necessary definitions. In
Section 3 the hyperspace functor acting in the coarse category is defined and we
prove in Section 4 that the hyperspace functor determines a monad in the coarse
category. In Section 5 we consider the problem of extension of functors onto the
Kleisli category of the hyperspace monad.

2.1. PRELIMINARIES. Coarse structures. Let X beaset and M, M C X x
X. The composition of M and N is the set MN = {(z,y) € X x X | there exists z €
X such that (z,2) € M, -(z,y) € N}, the inverse of M is the set M~! = {(z,y) €
XxX|(yz)e M}.

A coarse structure on a set X is a family £ of subsets, which are called the en-
tourages, in the product X x X that satisfies the following properties:

1) any finite union of entourages is contained in an entourage;

2) for every entourage M, its inverse M —1 is contained in an entourage;

3) for every entourages M, N, their composition M N is contained in an entourage;
G uE=XxX.

A coarse structure on X is called unital if the diagonal Ax is contained in an
entourage. A coarse structure on X is called anti-discrete if X x X is an entourage.

If £, &> are coarse structures on X, then & < &; means that for every M € &
there is N € &5 such that M C N.

Two coarse structures, £ and &5, are said to be equivalent if £, < & and &, < &,.
We usually identify coarse spaces with equivalent coarse structures.

If £ is a coarse structure on a set X, then, obviously, the coarse structure & =
{MUM~='| M € £} is equivalent to £ and is symmetric in the sense that N™' € £
for every N € &;.

@© Frider Victoria, Zarichnyi Mykhailo, 2003
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Given M € £ and A C X, we define the M-neighborhood M(A) of A as follows:
M(A) = {z € X | (a,z) € M for some a € A}. We use the notation M (a) instead of
M({a}). A set A C X is bounded if there exists ¢ € X such that A C M(z).

Let (X;,&;), 1 = 1,2, be coarse spaces. A map f: X; — X is called coarse if the
following two conditions hold:

1) for every M € £, there exists N € & such that (f x f)(M) C N;
2) for any bounded subset A of X the set f~'(A) is bounded.

It is easy to see that the coarse spaces and coarse maps form a category. We denote
it by CS.

Definition 2.1. A subset A of X is called coarsely dense in X if there exists M € £
such that M(4) = X.

Lemma 2.2. A subset A in X is coarsely dense in X iff the class [i] of the inclusion
map i: A = X is an isomorphism in £.

Proof. Suppose that A is coarsely dense in X, then there is M € £ such that
X = M(A).

Define a map g: X = A as follows: for any z € X, g(z) is an arbitrary point af A
with z € M(g(z)). Obviously, g is coarse.

Then,

(gi(z), z) = (9(z),z) € M,
(ig(x),z) = (9(x),z) € M,

ie. gi ~14,ig ~ lx, which means that [g][i] = [14],[i}{g] = [1x]). O

If [d] is an isomorphism, then there exists a coarse map g: X — A such that [i][g] =
lig] = [g] = [1x]). That means that g ~ 1x, i.e. there is M € £ such that (g(z),z) €
M, forevery z € X.

Proposition 2.3. Let f,g:(X,€) = (X', E’) be a coarse maps. If fla ~ gla on some
coarsely dense subset A of X, then f ~ g.

Proof. Let i:A — X denote the inclusion map. Then fi ~ gi and therefore
(f]li] = [fi] = [93] = [g]ls]. Since [i] is an isomorphism (by previous lemma), we
obtain that [f]=[g). O

2.2. PRELIMINARIES. Topological coarse structures. Now suppose that
X is a Hausdorff topological space. A coarse structure £ on X is called topological if
the following conditions are satisfied:

1) every entourage is open in X x X

2) every bounded set 1s precompact.

Note that if a space X can be endowed with coarse structure, then X is necessarily
locally compact.

Proposition 2.4. In a coarse topological space, every dense subset is coarsely dense.

2.3. PRELIMINARIES. Coarse categories. We denote it by CT'S (respec-
tively CTS) the category of coarse topological spaces and coarse maps (respectively,
of coarse topological spaces and proper continuous maps).
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We will need one more category related to the coarse structures. In order to define
it, we introduce the following notion.

Let f,g: (X, &) = (X', &) be coarse maps. We say that f and g are equivalent (and
write f ~ g) if there exists M € &’ such that (f(z),g(z)) € M for every z € X. It is
easy to verify that ~ is an equivalence relation and we denote by [f] the equivalence
class of f.

Lemma 2.5. Let fi, fo: (X, &) = (X', &), g1,92: (X", &) = (X", E") be coarse
maps. If fi ~ f2 and g1 ~ g2, then g1 fi ~ g2 fa.

Proof. Since fy ~ fa, there is M’ € &' such that (fi(z), f2(z)) € M’ for every
r € X. Since g; is coarse, there is M" € £” such that (g1 x ¢1)(M’') C M". We
see that (g1 f1(z),91f2(z)) € M”, for every z € X, i. e. g1f1 ~ g1f2. Obviously,
g1f2 ~ g2f and the result follows from the transitivity of ~. O

Lemma 2.5 allows us tc define & composition of the equivalence classes as [gf] =
[9][f]. We define the category CTS/ ~ as the category whose objects are as in CT'S
and the morphisms are the equivalence classes of the morphisms in C'T'S with respect
to the equivalence relation ~.

3. Hyperspaces of coarse spaces. Given a Hausdorff topological space endowed
with a topological coarse structure £, denote by exp X the set of all nonempty compact
subsets in X. A base for the Vietoris topology on exp X is formed by the sets

k
(Ur,....U)={A€expX |AC| Ui, ANUs #0foralli=1,...,k},
i=1
where Uy, ..., U run over the topology of X. For every M € £ let My = {(A, B) €
exp X xexp X | for every a € A there exists b € B with (a,b) € M and for every b €
B there exists a € A with (a,b) € M}.

Proposition 3.1. The family Eg = {Mpu | M € £} 15 a topological coarse structure
on exp X. &y is unital if so is £.

Proof. QObviously, if M C N, then Mg C Np. Show that for every M, N € £ we
have

| MygNyg = (MN)g. (3.1)

Indeed, suppose that (A, B) € MyNg. Then there exists C € exp X such that
(A,C) € My, (C,B) € Ny.

Given a € A, there is ¢ € C with (a,c¢) € M and there is b € B with (c,b) € N.
Therefore, (a,b) € MN.

Similarly, we show that for every b € B there is a € A with (a,b) € MN. This
shows that (A, B) € (MN)y.

Using (3.1) we conclude that the product of entourages in £y is contained in an
entourage. Besides, if M, N € &, then My C (M UN)y, Nu C (MU N)g, ie.
My U Ng C (M U N)y, which implies that the union of two entourages is contained
in an entourage.

Finally, show that Uy = exp X x exp X. Given (A, B) € exp X x exp X, find,
for each a € A, b € B, an entourage My, € € such that (a,b) € Mg,. The cover
{Ma | @ € A, b € B} contains a finite subcover {Ma5, | i = 1,...,k} of A x B.
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There exists M € & such that U5, M,,,, C M. Then A x B C M and, obviously,
(A,B) € My.

Now suppose that £ is a unital coarse structure on X. There exists M € £ with
Ax C M. Then, obviously, Aexp x C My

Show that £y is a topological coarse structure on exp X.

First, show that every set My is open in exp X x exp X, for every M € £,. Indeed,
suppose the opposite and let (A, B) € Mg be a non-interior point of Mgy. Then
there is a net (A, By)yer converging to (A, B) such that (A, B,) ¢ My for every
~+ € I'. Without loss of generality, we may assume that, for every v € ', there exists
by € By \ M(A,).

There exists a subnet (b, ) of (by) converging to b € B (see the definition of the limit
in the Vietoris topology [6]). Show that b ¢ M(A). Indeed, otherwise we would have
a net (a-,) converging to a € A such that a,; € A,,. Since the net (a,,, b,) converges
to (a,b) € M, there exists i(0) such that (ay,,,,by,o)) € M, i. €. by, € M(Ay ),
a contradiction. 4

Now show that every subset of the form My (A) is relatively compact. Note that

the set M(A) is bounded and, therefore, M(A) is compact. Obviously, My(A) C
exp(M(A)), and therefore the closure of My (A) is compact. 0O

The coarse structure £ is called the Vietoris coarse structure on exp X. In the
sequel, we always endow the hyperspace of a coarse topological space with the Vietoris
coarse structure.

Let f:(X,€) = (X', £’) be a coarse map between coarse topological spaces. Define
the map exp f:exp X — exp X' by the formula exp f(A) = f(A). Note that exp f is
well-defined as the set f(A) 1s obviously bounded for every compact subset A C X

and therefore the set f(A) is compact.
Proposition 3.2. The map exp f: (exp X,Ex) — (exp X', Ey) is coarse.

Proof. Indeed, suppose that M € £. Then there is M’ € £ such that (f x f)(M) C
M'. Then it is easy to see that (exp f x exp f)(My) C M}, this shows that exp f is
coarsely uniform.

Show that exp f is coarsely proper. It suffices to show that the preimage under the
map exp f of every set of the form My ({z'}) is bounded. Since f is coarsely proper,
there exist M € £ and z'€ X such that f~1(M’'(z')) C M(z). It is easy to see that
then (exp )~} (M4 ({z'}) € Ma({z}). O

It is not difficult to construct two coarse maps f, g such that exp(gf) # expgexp f.
Indeed, consider the real line R with the bounded coarse structure, i. e. the coarse
structure

E={{(z,y) ERxR||z -y < C}|C >0}

Define f, g: R — R as follows: f(z) = = whenever z < 0 and f(z) = z+1 otherwise,
g(z) = = whenever z < 1 and g(z) = z + 1 otherwise. Let A = {0}U{1l/n | n € N},
then exp f(A) = {0} U{1}U{1+1/n|n € N} and

expgexp f(A) = {0}u{1}u{2}U{2+1/n|n e N},
while
exp(9f)(A) = {0}u{2}u{2+1/n|n € N}.
This example can be regarded as a motivation of introducing the category CT'S/ ~.



82 VICTORIA FRIDER, MYKHAILO ZARICHNYI

Lemma 3.3. If A is a subset of a coarse topological space (X,£), then for every
M € &£ we have A C M (A).

Proof. Suppose = € A, then there is a € AN M~ (z). This means that z € M(A).
a

Proposition 3.4. Let fi, fo: (X,€) = (X',&') be coarse maps. If fi ~ fa, then
exp fi ~exp fa.

Proof. There exists M’ € &' such that (fi(z), fo(x)) € M’ for every r € X.
Without loss of generality, we may assume that M’ = (M’)~!. If A € exp X, then
f1(A) C M'(f2(A)) and f2(A) C M'(f1(A)). By Lemma 3:3,

H(4) € M'(f1(4)), f2(4) C M'(f2(4))
and we obtain ‘

Fi(A) € M'M'(f2(4)), f2(A) C M'M'(f1(A)).

The latter means that (exp fi(A),exp f2(4)) € Mg. 0O

Proposition 3.4 allows us to define the hyperspace functor exp in the category
CTS/ ~ as follows. Given a morphism f: X — Y in CT'S, we define exp[f]: X = Y
in CTS/ ~ as exp[f] = [exp f].

4. Hyperspace monad in the coarse category. Recall that a monad on a
category C is a triple T = (7,7, #) consisting of an endofunctor 7:C — C and natural
transformations 7: 1¢ — 7' (unit), p: 72 — T (multiplication) making the diagrams

T _r}lg.. rf\? TS LT,.. T?
e W
Tn [ Tu In
¥
?12 _E._._a’-... S T2 _i_} J"

commutative (see [7] for details).
Theorem 4.1. The triple H = (exp, s, u) is a monad on the category CTS/ ~.

Proof. First show that the map u,: (exp? X,Enn) — (ezpX,Ex) is coarse. Let
(A,B) € Myn, for some M € £. Show that (UA,UB) € Myg. Indeed, if a € UA,
then there is A € A with @ € A. By the definition of Mgy, there is B € B with
(A, B) € Mg . Then there is b € UB with (a,b) € M.

We can similarly prove that for every b € UB there is a € UA with (a,b) € M.
Together this means that (UA,UB) € My.

To this end, we have to show that uZ'(Mp(A)) is bounded for every A € exp X
and every M € £. If B € uJ'(Mu(A)), then (UA,UB) € My.

There exists an entourage N € £ such that M(A) C N(z), for some z € X.

Suppose that B € u;}(My(A)) and B € B. Then B C M(A).

Given b € B we see that b € N(z), whence £ € N~1(b) and A C NN~(b) C
NN-1(B). Let L € £ an entourage containing M U (NN~'). Then for any B €
uz(Mp (A)) and any B € B we have B C M(A) C L(A)and A C NN~!(B) C L(B).
This means that B € Ly (A).

Now we are going to show that ([ux]) is a natural transformation of exp? into exp.
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Given a coarse map f: X — Y we have to show that the diagram

2
exp? X =l exp?Y

fuxl | [t

expX —— expY
exp(/]

1s commutative.
We first start with finite sets.
Let A € exp® X, then

exp’[f](A) = {exp[f](4)|A € A} = {f(4)|A € A},
[uy)(exp®[f](A)) = U{F(A)]A € A}.

On the other hand,

exp[f]([ux](4)) = f(UA).
Let A= {A,...,An}. Then

[uy)(exp?[f}(A) = UFANli = 1,...,n} =
= W{T@)li=1,...,n} = UF (A = 1,...,n} = F(UA).

The set {A € exp? X||A| < oo} is dense in exp? X and therefore this set is coarsely
dense in exp? X. According to the Proposition 2.3 we conclude that the diagram is
commutative for each A € exp® X.

Show that the diagram

exp® X M exp? X

[texp x]i J_[ux]

exp? X —— expX
[ux]
is commutative.
Similarly as above, we' consider the set

F={%cexp® X | |ux(texpx())| < o0}.

It is well-known that F is dense in exp® X and the restriction of the above diagram
on F is commutative. The result follows from Proposition 2.3. O

5. Coarse structures on symmetric powers. Let T be a monad on a category
C. The Kleisli category of the monad T is the category Cr defined as follows: |Cx] =
IC], Cr(X,Y) = C(X,TY), and the composition g * f of morphisms f € Cr(X,Y),
g€ Cr(Y,Z) isgiven by g x f = pZ o Tgo f (see[7]).

Note that the category Cy can be embedded into CT as a full subcategory by means
of the functor ®

®X = (TX,uX), ®f =puYoTf, f€Ca(X,Y).
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A functor F:Ct — Cr called an extension of the functor F:C — C on the Kleisli
category Cy if IF = F1I. '

The following theorem 1s a criterion of extension of functors onto the Kleisli cate-
gory; see [8-12] for the proof.

Theorem 5.1. There erists a bijective correspondence between extensions of func-
tor F onto the Kleisli category Cy of monad T and natural transformations §: FT —
TF satisfying

1)§o Fn=nF;

2) uF oTEoET =€ o Fp.

For any X, as usual, X" denotes its nth cartesian power. Given a coarse structure
£ on X, define the coarse structure £" on X™ as £" = {M"® | M € £}.

Let G be a subgroup of the symmetric group S, (the group of bijections of the set
{1,...,n}. Recall that the G-symmetric power functor is defined as follows. Define
an equivalence relation ~g on X™ by the condition: {(zi1,...,2s) ~c (¥1,.. -, S ) of
and only if there exists o € G such that z; = y,(;) for alli = 1,...,n. We denote by
[z1,...,2a]c the equivalence class that contains (z1,.. ., z,). By the definition, the
G-symmetric power of X is SPEX = X"/ ~g.

Given a map f: X — Y, we define a map SPZf: SPGX — SPZY by the formula

SPGf([a1,. .., znc) = [f(21), ..., f(2a)]a-
Now suppose that (X, €) is a coarse space. For any M € £ let
M ={([z1,...,ea)c, W1, -, Unlc) € SPEX x SPEX
| there is o € G such that (zi,yo(;)) € M forevery 1 =1, .. s A Y

If X is a topological space, then SP™"X is endowed with the quotient topology of
X™. A base of this topology is formed by the sets of the form

[U;,.‘.‘Un](;: {{m;,,..,rnlg|x,- El 1= 1,.‘.,?1}.

Proposition 5.2. The family £ = {M | M € £} is a coarse structure on SPEX. If
£ 1is topological (unital), then so 1s €.

Proof. The fact that £ is a coarse structure easily follows from the equalities
(MNY=MN and (M~1y= (M)

Suppose now that £ is topological and ([ay, ..., an]G,[b1,- .., bn]c) € M for some
M € €. Then there exists 0 € G such that (a;,b,;)) € M, for alli = 1,...,n.
There exist open sets U; and Vo (;) in X such that (a;, bs(i)) € Ui x Vo(i) C M. Then

obviously

-~

([(I]_, .. '1an]G: [bls Jr ':bﬂ]G) & ([UI: . '!Uﬂ]G: [V].:' . 'sanG) & M.
O
Proposition 5.3. SP2 s an endofunctor in the category C'S (respectively CT'S).

Proof. We only consider the case of the category CT'S. It is sufficient to verify that
the map SPA f is coarse, for every coarse map f:(X,&) — (X', €"). Given M € £ we
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can find M’ € £ such that (f x f)(M) C M’. Then it can be immediately verified
that (SPAf x SPAf) (M) C M'.

Besides, we have to prove that for every [ay,...,an]c € SPEX’ and every M’ € &’
the set K = (SP2f)~'(M'([a1,...,an)c)) is relatively compact. It is easy to see
that K is contained in the closure of the set UL, f~!(M’(a;)); the latter is relatively
compact, because f is coarse. O

Theorem 5.4. There erists an extension of the functor SPZ onto the Kleisli category
(CTS/ ~)n-

Proof. We exploit an idea from [13]. For every coarse topological space X define a
map dx: SPZexp X — exp SPG by the formula

dX([Al,---‘An]G)z {[al,...,a"]g|a;€Ai, 7z 1,..,,1’1}.

It is easy to verify and we leave it to the reader that dx is a coarse map for every X.
That d = (dx) is a natural transformation of the functor SPg exp into the functor
exp SPZ follows from the facts that

dy SP™ exp f([A1,. .., An)c) = exp SP™ fdx ([As, .., Anla)

for every finite Aq,..., A, (see [13]), that the set {[A),...,An)g | Ai is finite, i =
1,...,n} is dense in SPZexp X, and Proposition 2.3.

Similarly, one can prove the equalities dx o SP&sx = sspzx and uspax ©exp dx o
dexpx = dx o SPZux which are known to be true for finite X (see [13]). Again,
by Proposition 2.3, this shows that the conditions of Theorem 5.1. hold. Applying
Theorem 5.1 we complete the proof. 0O

6. Remarks. The importance of the hyperspace monad in the category of com-
pact Hausdorfl spaces is closely related to the fact that the category of algebras for
this monad (see [7] for the definition) can be described as the category of compact
continuous semilattices [14]. A natural question arises whether a counterpart of this
result exists in the coarse category.

Besides, in [13] the symmetric power functors are characterized as the normal
functors of finite degree that have extensions to the Kleisli category of the hyperspace
monad. In the forthcoming publication we are going to extend this result (at least
partially) to the coarse category.
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REDUCTION OF A PAIR OF MATRICES OVER AN ADEQUATE
DUO-RING TO A SPECIFIC TRIANGULAR FORM
BY IDENTICAL UNILATERAL TRANSFORMATIONS

Andriy GATALEVICH
lvan Franko National Unwersity of Lviv, I Unwversitetska Str. 79000 Lviv, Ukraine

It is proved that a pair of matrices over an adequate duo-ring can be reduced to a
specific triangular form by means of identical unilateral transformations.
Key words: adequate ring, duo-ring, elementary divisor ring.

Throughout this paper, all rings are associative adequate duo-rings with identity.
A ring is said to be a duo-ring if every its left or right ideal is two-sided. A ring is a
Bezout ring if every its finitely generated right and left ideal is principal.

Matrices A and B over ring R are equivalent (A ~ B), if there exist invertible
matrices P and @ over R such that A = PBQ.

An m x n matrix A admits diagonal reduction if A is equivalent to a diagonal
matrix [e;;] (i-e. €;; = 0 whenever i # j) with the property Reiyy,i+1R C ReiiNei iR
(in the case of a duo-ring we can write: €41i41R C € ;R). If every matrix over
R admits diagonal reduction, then R is an elementary divisor ring. The elements
€11,€92, . .., €y are called the invariant factors of the matrix A.

A ring R is called right adequate if R is a Bezout ring without zero divisors and
for a,b € R with a # 0, there exist r,s € R such that ¢ = rs,rR+ bR = R, and
s'R+ bR # R for any nonunit s’ : sR C s'R.

Using left principal ideals by analogy we can define left adequate rings. In the class
of duo-rings these notions are equivalent and we will use the term adequate ring.

Commutative adequate rings were considered in [1-3].

V .Petrychkovych investigated the reducibility of pairs of matrices by means of the
generalized equivalent transformations to the diagonal form [4].

Let R be an adequate duo-ring.

Lemma 1. Leta,b,c € R and a # 0,c # 0. Then there ezists an element r € R such
that (a4+7b)R+rcR = aR+bR+cR and ifaR+bR+cR = R thenrR+aR+bR+cR =
R.

Proof. Let aR+ bR+ cR = R. Assume that (a+rb)R+rcR = hR, and h ¢ U(R).
Then we obtain:

1) re=rrs,rR+ hR=hR and (a+rb)R C h'R.
It follows that a € h’R and aR C h'R. We obtain a contradiction with

© Gatalevich Andriy, 2003
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"R=rR+aRChR+aR#R.
2) If rR+ hR = R, then -
r?R+hR=R,7PPu+hv=1
r?us + hvs = s,r2su’ + hst' = s
u,v,u,v' € R.

We have
sRC hR and hR+aR =h'R,

where A’ ¢ U(R). Thus,
(a+rb)RC KR, b RC 'R, R=rR+aR=rR+ k'R,
aRC WR,bRC h'R,cRC h'R/
This yields
R=aR+bR+cRC KR,
and we have A’ € U(R).
IfaR+ bR+ ¢cR = dR,a = dag, b = dbg, c = decp we provide the proof similarly for

elements ag, bg, Co-

Lemma 2. Let A;,i = 1,2 be 2 x k; matrices over a ring R, and at least one of them
is not a right zero divisor. Then there exist invertible matrices P and ki =12
over R such that

(1)

£ B =8 e B
PA;Q; = 1 . ) 4
@ ( * Eg) 0 ... 0
where fg-i) are invariant factors of matrices A;,1=1,2.

Proof. We may assume that A» is not a right zero divisor, so that ky > 1,k > 2.
Since R is an elementary divisor ring [5], there exist invertible matrices 5, My, M»
over R such that

B sos B _fa 0 0 ... 0
Ao bty = (0 ek 0 . U)‘SA2M2_ (b c 0 ... 0)’
elRCelRand e #0,e#0.
By Lemma 1 for elements a,b,c € R there exists an element r € R such that
(a+ rb)R+ rcR = aR + bR+ cR. Consider the matrix

(3 1)

It is easy to verify that matrices TSA; M; can be reduced to the form

(sgﬂ B 0 w 0)
* eg') 0 ... 0/

using right-side multiplication by invertible matrices.
The proof is complete.
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Theorem 1. Let A;,i = 1,2 be m x k; matrices over a ring R, and at least one of
them s not a right zero divisor.
Then there exist invertible matrices P and Q;,t = 1,2 over R such that

r:(:) o ... 0 ... 0
fg'} wr W e B

x '
f,(.:,) o

where cg-i) are tnvariant factors of the matrices A;,1=1,2.

Proof. Assume that Aj is not a right zero divisor. We shall prove the theorem
by induction on number m of rows of the matrices. If m = 2, the Theorem is true
by Lemma 2. Suppose that the theorem is true for matrices with the number of
rows m — 1. Thus ‘R 1s an adequate duo-ring and there exist invertible matrices

S,Q;,1=1,2, such that

Yo 0 0
(1)
0 ¢ iz B wee O
SAQ=]| _ _ = B,
\ 0 O " E,{T];) 0
( aij 0 0 0
a31 as9 0 0
SA2Q. = ; = Bs,
\aml Qme2 ... Qm ... 0

where 551) are invariant factors of the matrix A;. Consider submatrices B;,i = 1,2,

of the matrices B; obtained by crossing off the last rows of the matrices B;. For them
by the induction hypothesis there exist invertible matrices M, N; such that

Mo 0 0
IS 0 S
MBN, = . ,
* i .
c,(,rl‘}_l 0
o0 0 0
¥ e B . @
MBLN, = e ,
* % .
Pty - 0
where t,o;z} are invariant factors of the matrix B5. Then
0 0
C] = M 3 By N1 H —
0 0

0 ... 01 B s B 1
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Voo 0 0
ot fgl) 0 0 o
. 1
0 0 & 0
( 0 0
=] M | M |=
: o 0
\O sy B X 0 0 1
2
[P0 0 ... O
— * ‘ : :
o0 ... 0
\a:’nl il Bl 53 O
Let 59(12))‘2 +a. ,R+d,,,R=R. By Lemma 1, there exist 7 € R such that for the
elements ap?], @1, G We Obtain

(@2 + raly )R+ rdpmR= ¢V R+ afp R+ afpn R,
rR+ ¢ R+ G R+ appn R = R. (1)

Consider an m x m matrix of the form

T 8 e #
T = 0 1 0
0 O i 1
Multiply the matrices C;,i = 1,2, on the left by this invertible matrix T"
(1) (1)
Tcl:(cl B s e ) [ — 0>,
*
.TC:Z: ( (12)+T‘ain}; ra:.nz, ra‘:nma Q s 0)
*

Using condition (1) we obtain that the greatest common right divisor of the ele-
ments of the first row of the matrix TC, is the greatest common right divisor of all
elements of the matrix C. Since ES;T}R C egl)R, we have a similar situation for the
clements of the first row of the matrix TC;. Thus by multiplication on the right by

the matrices L;,7 = 1,2 the matrices T'C; can be reduced to the form

g o B e B
.. o0 ...
TCiL: = 2 o 7
* e
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)

where E&i 1s the first invariant factor of the matrix A;.

Consider the submatrices of the matrices TC; L; obtained by crossing off the first
rows and columns. They have the number of rows m — 1, satisfy the condition of the
theorem and for them by induction hypothesis the theorem is true.

If :,ogz]R + aj, R + a},, R = dR we can represent the matrix C; = DCj, where
D = diag[d,d,...,d] is a diagonal matrix and repeat the same arguments for the
matrix C4. The proof is complete.

Theorem 2. Let C = AB, where A, B are matrices over R which are not right
and left zero divisors. Then the elementary divisors of the matriz C are divizible on

coresponding elementary divisors of matrices A and B.

The same result was obtained for other classes of rings in (2], [3], [6].

1. Helmer O. The elementary divisor theorem for certain rings without chain condi-
tions // Bull. Amer. Math. Soc. - 1943. - 49. - P. 225-236.

2. Kaplansky J. Elementary divisors and modules // Trans. Amer. Maht. Soc. -
1949. - 66. — P. 464-491.

3. Zabavs’ky B. V., Kazimirs’ky P. S. Reduction of a pair of matrices over an adequate
ring to a specific triangular form by means of idential unilateral transformations //
Ukrain. Mat. Zh. - 1984. — 36. - P. 256-258.

4. Petrychkovych V. Generalized equivalence of pairs of matrices // Linear and Mul-
tilinear Algebra. — 2000. — 48. — P. 179-188.

5. Gatalevich A. I. On adequate and general adequate duo-rings and elementary di-
visor duo-rings // Matem. Studii. ~ 1998. - 49. - P. 10-15.

6. Newman M. On the Smith normal form // J. Res. Bur. Stand. Sect. - 1971. -
75. - P. 81-84.

3BEJEHHA IAPU MATPHUIL HAJl AJEKBATHUM Y O-KIIBIIEM
10 COEWIAJBHOI'O TPUKYTHOT'O BUIVIAAY HLIAXOM
IAEHTUYHUAX OJHOBIYTHUX NMEPETBOPEHBb

A. Taranesnu

Jveiecoruti nayionaabnutl ynicepcumem iment leana Ppanxa,
sy. Ynieepcumemcexa, 1 79000 Jvsis, Yxpaina

NloBefeHo, MO Napa - MATPUUb HaJ afeKBATHHM JYyO-KLIbIEM 3BOAUTHCA 1O
CIENaJbHOI'O TPHKYTHOT'O BULVISAAY UUIAXOM iJeHTHYHUX OJHOGIYHUX NEePeTBOPEHb.

Kawuoei caosa: ajeKBaTHe Kilblle, Iyo-Kijble, Kiablle eJeMEHTAPHAX AIILHUKIB.

CrarTa Hagiimaa go pegxorerii 16.01.2002
Ipuitaara go apyky 14.03.2003


http://www.tcpdf.org

BiLAaun JAobilp. Yi1—-1J VIidiNYn Lviv UNIY.,

Cepia mez.-mam.2003.Bun.61.C.92-97 Ser.Mech-Math.2003. Vol.61.P.92-97

YIK 519.116

COMBINATORIAL SIZE OF SUBSETS
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64 Volodymyrska Str. 01033 Ky, Ukraine

L]

A triple B = (X, P, B) is called a balls structure if X, P are nonempty sets and, for
allz € X, o € P, B(z,a) 3 z is a subset of X, called a ball of radius o around z. We
classify subsets of X by their sizes with respect to the ball’s structure B and apply this
classification to semigroups and oriented graphs.

Key words: ball's structure, large and small subsets.

1. Ball’s structures. Let X, P be nonempty sets and let, forany z € X, a € P,
B(z, ) 3 = be a subset of X, which is called the ball of radius a around z. Following
[1], a triple B = (X, P, B) is called a ball’s structure.

Forany z € X, a € P, put B*(z,a) = {y € X : z € B(y,a)}. A ball’s structure
B" = (X.P, B*) is called dual to B. Observe that B**(z,a) = B(z,a) for all z,e
and thus B*™* = B.

Define a preordering < on the set P by the rule: a < 8 if and only if B(z,a) C
Bz, 3) for every z € X. A subset P’ of P is called cofinal if, for evéry a € P, there
exists B € P’ with a < 3. A ball’s structure B is called symmetric if there exists a
cofinal subset P’ C P such that B(z,8) = B*(z¢,p) forallz € X, g € P'.

Given any subset A C X and a € P, put

B(A,0) = | | Bla,a), Int(A4,a)={z€ X : B*(z,a) C A}.
06}1
A ball’s structure B = (X, P, B) is called multiplicative if, for any o, 3 € P there
exists y(a, 8) € P such that B(B(z,a),8) C B(z,v(a,p)) for every z € X. Since
B*(B*(z,a),B8) C B*(z,v(8, @)), B is multiplicative if and only if B* is multiplica-
tive.

Example 1. Let Gr = (V, E) be an oriented graph where V is the set of vertices of Gr
and E C V x V is the set of its edges. For every z € V, put d(z, z) = 0. If for distinct
r,y € V there exists an oriented path from z to y, then let d(z,y) be the length
of the shortest oriented path from z to y. Otherwise, put d(z,y) = co. Given any
z €V and n € w, put B(z,n) = {y € V :d(z,y) < n}. The ball’s structure (V,w, B)
will be denoted by B(Gr). Taking into account that B(B(z,n),m) C B(z,n + m)
we conclude that B(Gr) is multiplicative. Note also that B*(Gr) coincides with

© Gnatenko Andriy, Protasov Igor, 2003
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B(Gr*), where Gr* = (V,E™Y), E~! = {(y,2z) : (z,y) € E}. If E = E~!, then
B(Gr) = B*(Gr).

Example 2. Let S be a semigroup with the identity e and let Fin be the family of
all finite subsets of S containing e. Given any s € S and F' € Fin, put

Bi(z,F) = Fz and B,(z,F) = zF.

The balls’s structures (S, Fin, B;) and (S, Fin, B,) will be denoted by B;(S) and
B,(S). fz € Sand F, F' € Fin , then

B/(Bi(z, F), F") C Bi(z, F'F) and B, (B, (z, F), F') C B,(z, FF).

Hence, B;(S) and B,(S) are multiplicative. If S is a group, then B;(S) and B.(S)
are symmetric {1, Example 2].

2. Classification of subsets by their sizes. Fix a ball’s structure B =
(X,P,B). Asubset AC X is called
e large if there exists a € P such that X = B(A, a);
o small if X\ B(A, a) is large for every a € P;
e extralarge if Int(A, @) is large for every a € P;
o piecewise large if there exists 3 € P such that Int(B(A, 8), o) # 0 for every a € P.
Observe that for a multiplicative ball’s structure B = (X, P, B) a subset A C X is
large if and only if B(A, o) is large for some a € P.

Lemma 1. Let B = (X, P, B) be a ball’s structure, AC X, a € P. Then
Int(X\A,a) = X\B(A, o).

Proof. Let z € Int(X\A,a). Then B*(z,a)NA = @, so z ¢ B(a,a) for every
a € A. Hence, z € X\B(A, a). '

Let z € X\B(A, ). Then z ¢ B(a,a) for every a € A. Hence, a ¢ B*(z,) for
every a € A, so B*(z,0) C X\A and z € Int(X\A,c). O

The following statement is a refinement of Theorem 1 from {1].

Theorem 1. Let B = (X, P, B) be a ball’s structure and let S C X. Then the
following statements are equivalent:

1) S is small;

2) S 1s not preceunse large;

8) X\S is extralarge.
If, moreover, B is multiplicative, then the statements 1)-3) are equivalent to

4) (X\S) N L is large for every large subset L of X.

Proof. 1) = 2). For every a € P, pick B(a) € P such that B(X\B(S,a),B(e)) =
X. Take any z € X and choose y € X\B(S,a) with z € B(y,8(a)). Then y €
B*(z,8(a)) and B*(z,B(a)) N (X\B(S,a)) # 0. Hence, Int(B(S,a), f(a)) = @ and
S is not piecewise large. .

2) = 3). For every a € P, pick f(a) € P such that Int(B(S,«),f(a)) = 0. Then
B*(z,B(a)) N (X\B(S,a)) # 8 for every z € X. By Lemma 1,

B*(z,B(a)) N (Int(X\S,a)) #0
for every z € X. Hence, X = B(Int(X\S, a),B(a)) and X\S is extralarge.
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3) = 1). For every a-€ P, pick f(a) € P such that B(Int(X\S, a),B(a)) = X.
By Lemma 1, B(X\B(S, a), 8(a)) = X. Hence, S is small.

3) = 4). Put Y = X\S and take any large subset L. Choose a € P such that
X = B(L,a). For every z € Int(Y,e), choose y(z) € L with z € B(y(z),a),
equivalently, y(z) € B*(z,e). Put Y’ = {y(z) : ¢ € Int(Y,a)} and note that
Y' CYNL. Since Int(Y,a) C B(Y’,a) and Int(Y, a) is large, by the multiplicativity
of B, Y' is large. Since Y/ C Y N L, we get that Y N L is large.

4) = 3). Put Y = X\S. Since YNX =Y and X is large, Y is large too.
Fix any @ € P and show that Int(Y,a) is large. For every z € Y\Int(Y, ), pick
y(z) € B*(z,0)\Y. Put Y' = {y(z) : 2 € Y\Int(Y,e)}, L = Y' U Int(Y,a). Note
that Y C B(L,a). Since Y is large, B(L,a) is large. By the multiplicativity of B,
L is large. By the assumption, Y N L is large. Since Y N L = Int(Y,a), Int(Y,a) is
large. O

1

Theorem 2. Let B = (X,P,B) be a multiplicative ball’s structure. If subsets
Xy, Xs,...,Xn of X are extralarge, then Xy N XN ...N X, is ertralarge. If subsets
$1,8,...,Sn of X are small, then S; USaU...US, ts small. If a piecewise large
subset A of X finitely partitioned A = Aj U A2U...U Ap, then at least one cell A; of
the partition is piecewise large. In particular, X can not be partitioned into finitely
many small subsets.

Proof. Take any large subset L of X. By equivalence 3 < 4 Theorem 1, X, NL
is large. Since (X; NX2N...NX,)NL=(X3NXz2N...N Xn-1)N(Xn N L), by
induction, (X3 N XoN...N X,) N L is large. By equivalence 3 <> 4 of Theorem 1,
X;NX5N...N Xy is extralarge. The second statement follows from the first one and
the equivalence 1 < 3 of Theorem 1. The third statement follows from the second
statement and the equivalence 1 < 2 of Theorem 1. [

By Theorem 2, the family ¢(B) of all extralarge subsets of X is a filter on X.

Theorem 3. Let B = (X, P, B) be a multiplicative ball’s structure and let ¥ be an
ultrafilter on X. Then @(B) C v if and only if every subset A € ¢ is piecewise large.

Proof. Suppose that ¢(B) C ¢ and take any subset A € ¢. Assume that A is
not piecewise large. By equivalence 1 > 2 of Theorem 1, A is small. By equivalence
1 < 3 of Theorem 1, X\ A is extralarge. Hence, X\A € ¢(B), a contradiction with
A X\A €. ;

Suppose that every subset A € 1 is piecewise large, but ¢(B) € ¢. Choose any
subset Y € ¢(B),Y ¢ ¢ Since % is an ultrafilter, then X\Y € 9. By equivalence
1 < 3 of Theorem 1, X\Y is small, a contradiction with equivalence 1 > 2 of Theorem
: B

3. Resolvability of ball’s structures. Let B = (X, P, B) be a ball’s structure
and let £ be the family of all large subsets of X. A subset A C X is called £-dense
if ANL # @ for every large subset L of X. A ball’s structure B is called w-resolvable
if X can be partitioned into countably many £-dense subsets.

Lemma 2. Let B = (X, P,B) be a ball’s structure. Suppose that there erxists a
cofinal linearly ordered sequence (an)new of elements of P and a sequence (Zn)new
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of elements of X such that the family {B*(z,,ay,) : n € w} is disjoint. Then B is
w-resolvable.

Proof. Let w = U‘,“EW Wi be a partition of w into countably many infinite subsets.
It suffices to show that, for every k¥ € w, the subset Ay = UnEW;‘ B*(zn,an) is
L-dense. Take any large subset L of X and pick a € P such that X = B(L,a).
Choose n € Wi such that a, > a. Since X = B(L,a,), we get z, € B(L,a,) and
B*(zn,an)NL#0. Hence, LN Ax #0. O

The following statement is a generalization of Theorem 5.31 from [2] concerning a
resolvability of the ball’s structures of groups.

Theorem 4. Let B = (X, P, B) be a ball’s structure such that the balls B(z,c),
B*(z,a) are finite for all z € X, a € P. If there exists a cofinal linearly ordered
sequence {an)new Of elements of P, then B is w-resolvable.

Proof. Using the assumptions, construct inductively a sequence (Zn)new Of ele-
ments of X such that the family { B*(zn, @n)} is disjoint. Then apply Lemma 2. O

4. Applications to semigroups. Let S be a semigroup with the identity e
and let Fin be the family of all finite subsets of S containing e. Given any subsets
A,BCS, put '

A'B={seS:AsnB#0}, AB'={s€S:sBNA#0}.

For every element s € S and every subset A C S, we write A™'s and sA™" instead
of A='{s} and {s}A™L.
A subset A C S is called
o left (right) large if there exists F € Fin such that $ = FA (5§ = AF);
o left (right) small if the subset S\FA (S\AF) is left(right) large for every subset
F € Fin;
o left (right) extralarge if S\ A is left(right) small;
o left (right) piecewise large if there exists F € Fin such that, for every subset
H € Fin, there exists € S with H™'z C FA (zH~! C AF).
Note that a left (right) size of subset A of semigroup S is exactly a size of A in the
ball’s structure B;(S) ( B-(S) ).
A subset A C S is called
o left" (right*) large if there exists F € Fin such that S = F~1A (S = AF-1);
o left* (right*) small if S\F~*A (S\AF~') is left* (right*) large for every subset
F € Fin;
o left* (right*) extralarge if S\A is left* (right*) small;
o left" (right”) piecewise large if there exists F' € Fin such that, for every subset
H € Fin, there exists ¢ € S with Hz C F~'A (zH C AF™!).
In topological dynamics [3], left* (right*) large subsets are called left* (right")
syndetic while left* (right*) piecewise large subsets are called left (right) syndetic.
Note that a left* (right*) size of subset A C S is exactly a size of A in the ball’s
structure B} (S)(B;(5)).

Theorem 5. For every finite partition of semigroup S, among the cells of the par-
tition there exist a left piecewise large subset, a right piecewise large subset, a left*
piecewise large subset, and a right' piecewise large subset.
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Proof. Apply Theorem 2 to the ball’s structures B;(S), B.(S), B;(S), B;(S)
respectively. OO '

Theorem 6. Let S be a countable semigroup such that the subsets F~'z and zF~!

are finite for every subset F' € Fin. Then the ball’s structures B;(S), B,(S), B} (S5),
B;(S) are w-resolvable.

Proof. Apply Theorem 4. O

Remark 1. By Theorem 6, every countable group G can be partitioned G = |, ¢,, 4n
so that each subset G\ A, is not right large. In particular, there exist a partition
G = B; U B; such that By, B; are not right large. Let X be an infinite set of
cardinality v and let S = S(X) be the semigroup of all mappings X — X. A.Ravsky
(4] proved that, for every partition § = Ua<_r S«, there exist « < v and s € S
such that S = S,s. i.e. at least one cell of the partition‘is right large. A countable
counterpart of this statement was proved in [5]. There exist a countable semigroup
S such that, for every finite partition S = A; U A3 U...U A,, there exist i < n and
s € § such that S = A;s. Obviously, the ball’s structure B,(S) is not resolvable,
i.e. S can not be partitioned into two L-dense subset, where £ is a family of all right
large subsets of S.

Remark 2. By [1], every infinite group can be partitioned into countably many subsets
such that each of them is left and right small. Ravsky’s results concerning S(X) shows
that this statement is not valid for all semigroups.

Question [5]. Does there exist an infinite semigroup S such that, for every partition
S = A; U A,, one of the cells Ay, Az is left and right large.

5. Application to orgraphs. Let Gr = (V,E) be an oriented graph. By
Theorem 2, for every finite partition of V/, at least one cell of the partition is piecewise
large with respect to the ball’s structure B(G'r). In particular, if V' is finite, then there
exists a vertex v € V such that the subset {v} is piecewise large. Let us illustrate the
last observation.

Let Gr = (V, E) be an arbitrary oriented graph. For every v € V, denote by St(v)
(resp. St*(v)) the set of all z € V such that there exists an oriented path from v to
z (resp. from z to v). Define a preordering < on V' by the rule: v; < vz if and only

if St(v1) C St(va).

Theorem 7. Let Gr = (V, E) be a finite orgraph and letv € V. Then v is <-mazimal
if and only if {v} is a piecewise large in the ball’s structure B(Gr).

Proof. Suppose that v is <-maximal. Since V is finite, it suffices to show that
St*(v) C St(v). Take any ¢ € St*(v). Then v € St(z). By maximality of v,
z € St(v). Hence, St*(v) C St(v).

Assume that {v} is piecewise large. Since V' is finite, then there exists z € V
such that St*(z) C St(v). Take any element y with v € St(y). Then y € St*(z), so
y € St(v). Hence, v is <-maximal. 0

An orgraph Gr = (V, E) is called locally finite if the set {y € V : (z,y) € E}U{y €
V : (y,z) € E} is finite for every z € V
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Theorem 8. Let Gr = (V, E) be an infinite locally finite orgraph. Then the ball’s
structure B(Gr) 1s w-resolvable.

Proof. Apply Theorem 4. O
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TOPOLOGICAL BRANDT M-EXTENSIONS OF ABSOLUTELY
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t

Some properties of homomorphic images of Brandt A-extensions of algebraic semi-
groups are established. It is proved that for every cardinal A > 2 any topological
Brandt M-extension of an absolutely H-closed topological inverse semigroup is absolute-
ly H-closed in the class of topological inverse semigroups.

Key words: topological inverse semigroup, Brandt A-extension, topological Brandt A-
extension, H-closed topological semigroup, absolutely H-closed topological semigroup,
algebraically h-closed semigroup, topological semilattice, topological semigroup.

In this paper all spaces are Hausdorff.

A topological (inverse) semigroup is a topological space together with a continuous
multiplication (and an inversion, respectively).

We follow the terminology of [2, 3, 7].

If S is a semigroup, then by E(S) we denote the band (the subset of idempotents)
of S, and by S! we denote the semigroup S with the adjoined unit (see: [3]). By
w we denote the first infinite ordinal. Further, we identify all cardinals with their
corresponding initial ordinals. If Y is a subspace of a topological space X, and
A CY, then by cly (A) we denote the topological closure of Ain Y.

Let S be a semigroup and /) be a set of cardinality A > 2. On the set By(S) =
Iy x St x I, |J{0} we define the semigroup operation ” - * as follows:

(a,ab,é), ifﬁ =,
0, i3 #7,

and (o,a,8)-0=0-(a,a,8) =0:-0=0for @, 3,7,6 € I, a,b € S'. The semigroup
By(S) is called the Brandi-Howie semigroup of the weight A over S [8] or the Brandt
\-ezxtension of the semigroup S [9]. Obviously B)(S) is the Rees matrix semigroup
MP(SY; I, In, M), where M is the I x I -identity matrix. Further, if A C S* then
we shall denote Ayp = {(e,s,8) | s € A} for a,B € I,. If a semigroup S is trivial
(i.e. S contains only one element), then By(S) is the semigroup of I\ x I\ matriz
units [3] and we shall denote it by Bi.
Further, by S we denote some class of topological semigroups.

b, ) <y ) == {
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Definition 1 [9]. Let A be a cardinal > 2, and (S,7) € §. Let 75 be a topology on
B, (S) such that

a) (Ba(S),78) € S;

b) 7B|(a,51,a) = T for some a € ).
Then (Bx(S), ) is called a topological Brandt A-extension of (S,7) :n S. If S coin-
cides with the class of all topological semigroups, then (B (S), 78) is called a topo-
logical Brandt A-extension of (S, 7).

A semigroup S € S is called H-closed in S, if S is a closed subsemigroup of any
topological semigroup T' € § which contains S as a subsemigroup. If § coincides
with the class of all topological semigroups, then the semigroup S is called H-closed.
H-closed topological semigroups were introduced by J. W. Stepp in [12], and there
they were called marimal semigroups.

Definition 2 {10, 13]. A topological semigroup S € § is called absolutely H-closed
in the class S, if any continuous homomorphic image of S into T € S is H-closed in
S. If S coincides with the class of all topological semigroups, then the semigroup S
is called absolutely H -closed.

An algebraic semigroup S is called algebraically h-closed in S, if S with discrete
topology 0 is absolutely H-closed in S and (S,2) € 8. If S coincides with the class of
all topological semigroups, then the semigroup S is called algebraically h-closed.

Absolutely H-closed topological semigroups and algebraically h-closed semigroups
were introduced by J. W. Stepp in [13], and there they were called absolutely mazimal
and algebraic mazimal, respectively.

Obviously, any algebraically h-closed semigroup (in a class ) is absolutely H-
closed (in a class S), and every absolutely H-closed topological semigroup (in a class
S) is H-closed (in a class S). Further we shall show that the converse statements do
not hold.

Recall [1], a topological group G is called absolutely closed if G is a closed subgroup
of any topological group which contains G as a subgroup. In our terminology such
topological groups are called H-closed in the class of topological groups. In [11]
D. A. Raikov proved that a topological group G is absolutely closed if and only if it
is Raikov complete, i.e. G is complete with respect to the two-sided uniformity.

A topological group G is called h-complete if for every continuous homomorphism
h:G — H the subgroup f(G) of H is closed [5]. The h-completeness is preserved
under taking products and closed central subgroups [5].

For any A > 2 the semigroup of Iy x Iy matrix units is a Brandt A-extension of
the trivial semigroup. The semigroup of Iy x I matrix units is algebraically h-closed
in the class of topological inverse semigroups for each A > 2 [10]. In [9] it is proved
that for every A > 2 any topological Brandt A-extension of an H-closed topological
inverse semigroup is H-closed in the class of topological inverse semigroups. In this
paper we show that a similar statements hold for absolutely H-closed topological in-
verse semigroups and that any Brandt A-extension of an algebraically h-closed inverse
semigroup is algebraically h-closed in the class of topological inverse semigroups.

Proposition 3. Let h: By(S) = T be a homomorphism, such that h((a, z, 8)) = h(0)
for some z € S, a, B € Ir. Then h((7,y,68)) = h(0) for all y € S'zS*, 7,6 € I,.
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Proof. Assume that y € S'zS'. Then y = azb for some a,b € S*. Therefore
h((v,¥,9)) = h((y.a,a) - (a,z,B) - (B,b,6)) = h((y,a,)) - h((a, z, B)) - h((B,b,4)) =
h((‘}‘,a,d)) ’ h(O) h((ﬂ,b,é)) e h((':{,a,a) +0- (ﬁsb: 6)) = h(O)

A semigroup homomorphism h: S — T is called annihilating if there exists ¢ € T'
such that h(a) = c for alla € S.

Corollary 4. A homomorphism h: B\(S) — T is annihilating if and only 1if the
homomorphism h|g,: By = Ba(1) = T is annihilating.

Proposition 5. Let h: By(S) = T be a homomorphism and h((ay,a,p1)) =
h((az,b, B2)) for some a,b € S', ay,as,p1,B2 € Ix. If oy # az or By # B2 then
h((a1,a, 1)) = h(0). ;

Broot Assume that o 3 0z, Then
h{(a1,a, B1)) = h((a1,1,a1)(a1, @, 41)) = h({a1, 1, @1)) - h((a1,0,81)) =
h((a1,1,a1)) - h((@2,b, B2)) = h((e1, 1, a1) - (a2, b, B2)) = h(0).
The proof of the case 8, # B2 is similar.

Lemma 6. Let A > 2 and B,(S) be a topological A-extension of a topological semi-
group S. Let T be a topological semigroup and h: Bx(S) — T' be a continuous ho-
momorphism. Then the sets h(Asp) and h(Ays) are homeomorphic in T for all
a,B,v,8 €I, and AC S*.

Proof, If h is an annihilating homomorphism, then the statement of the lemma is
trivial.
In the other case we fix a,3,7,6 € Iy. Define the maps goZ'iﬁ:T ~ T and

@2:T — T by the formulae ¢)5(s) = h((7,1,@)) - s - h((8,1,4)) and e le) =
h({a,1,7))-s-h((8,1,8)), s € T. Obviously ap:f (tp:% (h ((a,x,ﬁ))]) =h{fo, @, 8),;
P (so?,f(h((%xsé)))) = h((y,z,4)), for all @,8,7,8 € Ir, z € S, and hence

@28 laus= (¥25)"! |a,s- Since the maps (pl% and r,o:f are continuous on T, then
22% Ih(Aas): h(Aap) = h(A4s) is a homeomorphism.

Proposition 7. Let A > 2 and B,(S) be a topological \-extension of a topological
semigroup S. Let T' be a topological semigroup and h: Bx(S) — T be a continuous
homomorphism, A C h(Bx(S)), and the set A intersects at least two subsets of the
type h(Sa). Then h(0) € A- A.

Proof. The case h(0) € A is trivial. Assume that h(0) ¢ A, AN A(Say0,) # @
and A N h(Sp,p,) # @ for some ay,az,B1,P2 € I, i.e. there exist z,y € St such
that h((a1,z,a2)) € A and h((B1,¥,82)) € A. If @1 # a3 or B1 # B2, then R(0) =
h((Oq, T, az)) : h((al, T, 0!2)) €A-Aor h(O) = h((ﬁl,y, ﬂg)) . h((ﬁl, y,ﬂg)) €A A If
o, = ay and By = B, then ay # Bi, and hence h(0) = h((ai, z, @2)) - ({51, ¥, Ba)) €
A A
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Lemma 8. Let A > 2, B)(S) and T be topological semigroups and h: Bx(S) = T be a
continuous homomorphism. Let h(Bx(S)) be a dense subsemigroup of T and h(Sap)
be a closed subset in T for some a, € In. Then a-a = h(0) for all a € T\h(B,(S)),
and h(0) is the zero of T.

Proof. Since h(Bx(S)) is a dense subsemigroup of T, then by Proposition 2 [9],
h(0) is the zero of T. . .

Assume that a-a = b # h(0) for some a € T\h(Bx(S)). Then for any open
neighbourhood U(b) # h(0) there exists an open neighbourhood V(a) # h(0) such
that V(a) - V(a) C U(b). By Lemma 6 the set h(Sy;s) is closed for each v, € I,.
Therefore the neighbourhood V(a) intersects infinitely many sets of the type h(Sap)
(o, B € I,,). Then by Proposition 7 we have h(0) € V(a)-V(e) C U(b), a contradiction
with the choice of U(b).

Proposition 9. Let A > 2, S and T be algebraic semigroups. Let h: By\(S) = T be
a homomorphism, A and B be disjunctive subsets of h(Bx(S)). If the sets A and B
intersect at least two subsets of the type h(Sap) (o, € In), then h(0) € A - B or
h(0) € B - A. )

Proof. The cases h(0) € A or h(0) € B are trivial. In the other case for
i = 1,2,3,4 we fix a;, 5 € I such that A(Vh(Sa,p,) # @, Ah(Sa,8.) # 2,
BN h(Sass,) # @ and B h(Sa,p,) # @- By Proposition 5 the sets h(Sa,,)\2(0)
and h(Sa,p,)\(0) are disjunctive in h{Bx(S)), hence ay # az or By # B2. Let &1, 2o,
23, z4 be elements of the semigroup S! such that h((a1,z1,81)), h((a2,22,02)) € A
and h((as, x3,83)), h((as, z4,84)) € B. If a1 # a3, then oy # P53 or as # 3, and

hence

h(0) = h((es, z3,83).- (a1, 21, 81)) = h((as, z3,B3)) - h((e1, 21, 51)) € B - A,
or

h(0) = h((as, z3, Bs) - (a2, 22, B2)) = h((a3, 23, B3)) - h{(2, 22, B2)) € B - A.
If B, # B, then By # ag or By # @3, and hence

h(0) = h((e1, 21, 1) - (@3, 23, 83)) = h((e1, 1, 1)) - h((as, 23, 55)) € A - B,

or

h(O] = h((ag, J:g,ﬁg] * (03,1;‘3,53)) = h([allxl,ﬁl)) . h((a3,$3,ﬁ3)) (S A B.

Theorem 10. Let A > 2, By(S) and T be topological inverse semigroups, h: Bx(S) —
T be a continuous homomorphism such that the set h(Sap) be a closed in T' for some
a,B8 € I,. Then h(Bx(S)) s a closed subsemigroup of T.

Proof. In the case 2 < A < w the statement of the lemma follows from Lemma 6.

Let A > w. We denote G = clp(h(Bx(S))). By Proposition I11.2 [6}, G is a
topological inverse semigroup. Let b € G\h(Bx(S)). Then by Lemma 8, b,b~! €
G\E(G). We remark that b-b6~! # h(0) and b~! - b # h(0). Suppose contrary:
b-b=1 = h(0) or b=! - b = h(0). Since h(0) is the zero of G, then b =b-b~1-b =
h(0) - b = h(0) or b= = b1 -b-b~! = h(0) - b= = h(0), a contradiction with
b € G\h(B\(S)). :
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Therefore there exist e, f € E(G) = E(h(Bx(S))) such that b-b"! =eand b=1-b =
f. At first we consider the case e # f. Let W(e) # h(0) and W(f) # h(0) be
disjunctive open neighbourhoods of e and f in T, respectively. Then there exist
disjunctive open neighbourhoods U(b) # h(0) and U(b~!) # h(0) in T such that
Ud)-U(b~) € W(e) and U(db~?) - U(b) C W(f). By Lemma 6 the set h(Sqp)
is closed in T for each a,8 € I, and hence the sets U(b) and U(b~?) intersect
infinitely many sets of the type h(Sys)\k(0) (7,6 € Ix). thus by Proposition 9 we get
h(0) € U(b) - U(b~*) C W(e) or h(0) € U(b~") - U(b) C W(f), a contradiction with
the choice of the neighbourhoods W (e) and W (f).

In the case e = f we similarly obtain a contradiction.

The obtained contradictions imply the statement of the theorem.

The proof of the following proposition is trivial.

Proposition 11. If S as absolutely H-closed topological semigroup (in the class of
topological semigroups §), then so is S* (if S* € S).

Propositions 6 and 11, and Theorem 10 imply

Theorem 12. For any cardinal X > 2, every topological Brandt A-extension B)(S)
of an absolutely H-closed topological inverse semigroup S in the class of topological
inverse semigroups, is absolutely H-closed in the class of topological inverse sema-
groups.

Corollary 13. For any cardinal X > 2, every topological Brandt A-eztension B (S)
of a compact topological inverse semigroup S in the class of topological inverse semi-
groups, is absolutely H-closed in the class of topological inverse semigroups.

Theorem 14. Let S be a topological inverse semigroup. Then the following condi-
tions are equivalent:

(i) S is an absolutely H-closed semigroup in the class of topological inverse semi-
groups;

(ii) there exists a cardinal A > 2 such that any topological Brandt A-extension Bx(S)
of the semigroup S is absolutely H-closed in the class of topological inverse
Semigroups;

(iii) for each cardinal X > 2 any topological Brandt A-extension By(S) of the sema-
group S is absolutely H-closed in the class of topological inverse semigroups.

Proof. The implication (iii)=>(ii) is trivial, and Theorem 12 implies the implications
(1)=>(i1) and (i)=>(iii).

We shall show that the implication (ii)=>(i) holds. Suppose contrary: there exists
non absolutely H-closed topological inverse semigroup S in the class of topological in-
verse semigroups, and for some cardinal Ag > 2 every topological Brandt Ao-extension
By, (S) is absolutely H-closed in the class of topological inverse semigroups. Then
there exist a topological inverse semigroup T" and a continuous homomorphism “into”
h:S — T such that h(S) is not closed subsemigroup of T'.

Let 75 and 7 be direct sum topologies on By, (S) and By, (T’), respectively (see: [8,
p. 129]). Then (B»,(S),7s) and (Bx,(T), 7r) are topological inverse semigroups, s
and T are homeomorphic to Sas and Tag, for all &, B € I (see: (8, p. 129]). We define
the map h: By, (S) = Bj,(T) as follows: h(O) = 0 and h((a 5,B8)) = (a, h(s), B) for
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alla,B€ I, s € Si. Obviously, the homomorphism h: (By, (S), Ts) = (B, (T), 7r)
is continuous and h(Bj,(S)) is not a closed subgroup of (By,(T), 7). Therefore,
there exists a topological Brandt Ag-extension B),(S),7s), which is not absolutely
H-closed in the class of topological inverse semigroups.

The obtained contradiction implies the statement of the theorem,

The following example shows that there exists an absolutely H-closed topological
Brandt A-extension Bj(S) in the class of topological inverse semigroups of a topo-
logical inverse semigroup S, such that S is not absolutely H-closed in the class of
topological inverse semigtoups.

Example 15. Obviously, S = (N, max) with the discrete topology is a topological
semigroup. We define a topology 7p on B3(S) as follows:

a) (a,z, ) is an isolated point in By(S) for all @,8=1,2, 2 € §;

b) the family B(0) = {{{0} U{(e,z,8) | @,8 = 1,2,z > k}} | k € N} is a base of

the topology 7p at the point 0 € By(S).

It is easy to see that (B2(S), 7B) is a compact topological inverse semigroup, and
hence it is absolutely H-closed. But S is not H-closed in the class of topological
inverse semigroups.

Theorem 12 implies

Theorem 16. For each cardinal A > 2, every topological Brandt A-extension B)(S)
of an algebraically h-closed inverse semigroup S in the class of topological inverse
semigroups, is algebraically h-closed in the class of topological inverse semigroups.

Theorem 14 implies

Theorem 17. For an inverse semigroup S the following conditions are equivalent:
(1) S is an algebraically h-closed semigroup in the class of topological inverse semi-
groups; _
(11) Bx(S) is algebraically h-closed in the class of topological inverse semigroups for
some cardinal A\ > 2;
(ii1) Byx(S) 1s algebraically h-closed in the class of topological inverse semigroups for
any cardinal A 2 2.

Since the band of a topological semigroup is a closed subset of it, then we have

Proposition 18. If L is a subsemigroup of the band of a topological semigroup S,
the so 1s cls(L).

The closure of an Abelian subsemigroup of a topological semigroup is an Abelian
semigroup (2, Vol. 1, pp. 9-10], then Proposition 18 implies

Corollary 19. The closure of a topological semilattice in a topological semigroup is
a semilattice.

Therefore we get

Proposition 20. A topological semilattice is H-closed if and only if it is H-closed
in the class of topological semalattices.

Since a homomorphic image of a semilattice is a semilattice, then Corollary 19
implies
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Proposition 21. A topological semilattice 1s absolutely H-closed if and only if it is
absolutely H-closed in the class of topological semilattices.

In [13] J. W. Stepp proved that a semilattice is algebraically h-closed if and only
if any chain of it is finite.

Since a maximal subgroup of a topological inverse semigroup is a closed subset,
then we have

Proposition 22. A topological group 1s [absolutely] H-closed in the class of topo-
logical inverse semigroups if and only if it is [absolutely] H-closed in the class of
topological groups.

Absolutely H-closed topological groups in the theory of topological group are called
h-complete [4]. Complete minimal topologically simple groups and locally compact
totally minimal groups are h-complete [4]. There exist' non-compact non-Abelian
h-complete topological groups, but an h-complete Abelian topological group is com-
pact [4, Example 3.8]. Every locally compact topological group is H-closed in the
class of topological groups. Therefore in the class of topological groups the notions
a compact group, an absolutely H-closed topological group, and an H-closed topo-
logical group, and hence in the class of topological inverse semigroups, are different.
We also remark that there exists absolutely H-closed non-compact Abelian Clifford
topological inverse semigroup, such as algebraically H-closed infinite semilattices [13].

The following example shows that there exists a Clifford topological inverse semi-
group S with a compact band and finite maximal subgroups, such that S is not
H-closed in the class of Clifford topological inverse semigroups.

Example 23. Let be J = {0} {J{3 | n € N} with the usual topology, and operation
“max”. Then (J,max) is a compact semilattice. Let G = {e,a} be the two-clements
group. Then S = 7 x G with the product topology is a Clifford compact topological
inverse semigroup. Obviously 7" == S\{(0,¢)} is a subsemigroup of S, and 7' is not
closed subset of S.
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ON ASSOCIATED GROUPS OF RINGS
SATISFYING FINITENESS CONDITIONS

Yuriy ISHCHUK
Ivan Franko National Uniwversity of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

We consider the construction of associated group of a ring‘with identity element.
The characterization of rings with periodic, FC-group, nilpotent associated group are
given. It is shown that some finiteness conditions or commutativity of a ring R follow
from the finiteness conditions of the associated group G(R).

Key words: associated group of a ring, adjoint group, FC-group, periodic group.

1. Let R be an associative ring with an identity element. The set of all elements of R
forms a semigroup with the identity element 0 € R under the operation aob = a+b+ab
for all @ and b of R. The group of all invertible elements of this semigroup is called
the adjoint group of R and is denoted by R°. Clearly, if R has the identity 1, then
1 + R° coincides with the group of units U(R) of the ring R and the mapa —1+a
with a € R is an isomorphism from R° onto U(R).

Many authors have studied the rings with prescribed adjoint groups (or equiva-
lently, groups of units) (see, for example, [1-16]).

This paper is concerned with the question of how properties of associated group
influence some characteristic of rings structure. The idea of associated group was
introduced in [1] for radical ring. We extend this construction to arbitary associative
rings with identity element.

In Sections 3,4,5 we obtain some results on rings determined by their associated
groups which are periodic, FC-groups, nilpotent groups. It is proved that finiteness
conditions of the associated group G(R) imply some finiteness conditions or commu-
tativity of a ring R.

2. Preliminaries. Let R be an associative ring (not necessarily with identity
element) and R° its adjoint group. In the same way as in [1] we consider the set of
pair G(R) = {(z,y) | = € R,y € R°} and define an operation by the rule

(,9)(uw,v) = (y-u+u+z,y00). (2.1)

Definition 2.1. Let R be an associative ring. Then G(R) = A x B 1is a group with
the neutral element (0,0) with respect to the operation (2.1), where A= {(z,0) |z €
R}=R*, B={(0,y) |y R°} = R°.

Following [1], the group G(R) will be called the associated group of the ring R.

© Yuriy Ishchuk, 2003
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Lemma 2.2. Let R be an associative ring with associated group G(R). If S is a
subring of R with associated group G(S) = X xY then following statements are true:

() G(S) < G(R), X< A, Y < B

(i) if S is a left ideal of the ring R, then X 4 G(R);

(111) if X aG(R), then rS < S for all r € R;

(iv) if S is a right ideal of the ring R, then G(S)4 A Y,

(v) if G(S)«AxY, then SSR<L S;

(vi) if S a two-side ideal of the ring R, then G(S) <«G(R), X «G(R);

(vii) Ca(B) = {(a,0) | a € Ann,(R°)}, Cp(A) = {(0,b) | b € R° and b €
Ann;(R)}; wn particular, if R is a ring with identity, then Cp(A) = ((0,0)) and if R
is a domain, then Cp(A) = C4(B) = ((0,0)).

Proof. (i) is immediate from Definition 2.1.
(i) Let S be a left ideal of ring R and rs € S for all elements r € R and for all

elements s € S. Then for an arbitrary element (a,b) € G(R) and arbitrary element
(z,0) € X we have

(a,b)"}(z,0)(a.b) = "Vz +2,0) € X, (2.2)

hence X is a normal subgroup in G(R).
(iii) If X < G(R), then (2.2) implies that b~z € S for allb € R® and all z € S.
(iv) Let S be a right ideal of the ring R and sr € S for all s € S, r € R. Then for
all elements (z,y) € X %Y and all (a,c) € A x Y we have

(a,¢)" Yz, y)(a,c) = (—c~Va - a,cN)(z,y)(a,c) =
(ya+cDya+ Vet 2, g+ Hy+ye+cVye) € X 1Y,
because ¢,y € S. Therefore G(R) <A x Y.
(v) If ¢ = 0, then (2.3) yields SR < S.

(vi) Since S is a two-side ideal of the ring R, for arbitrary elements (z,y) € X x Y
and (u,v) € G(R) we have

(2.3)

(u,v) "z, Y)(u,v) =

(2.4)
(yu+ v Nyu+ vz 42, y+ v Vy + yo + v Vyv) € G(S).

In particular, if y = 0 then (u,v)~(z,0)(u,v) = (v{~Yz+z,0) € X, hence X aG(R).
(vii) Let (a,0) € C4(B). Then for arbitrary elements (0,b) € B we have
(0,) = (a,0)~*(0, b)(a,0) = (ba,b) (2.5)

and consequently ba = 0 for all b € R°. Therefore a € Ann,(R°®). The converse
statement is also true.
Let (0,b) € Cp(A). Then for all elements (a,0) € A we have

(a,0) = (0,6)"(a,0)(0,b) = (5{~Na + q,0) (2.6)
and hence b(~Da = 0 for all a € R. It follows that
0=0-a=(b+bY +bb(~V)a = ba, (2.7)

hence b € Ann;(R).
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Lemma 2.3. Let R be a ring and I be an ideal of R such that I < J(R). Then
G(R/I) = G(R)/G(I). . (2.8)

Proof. Let G(R) = A x B (respectively G(I) = X xY, G(R/I) = C x D) be an
associated group of the ring R (respectively of the ideal I, of the quotient-ring R/I).

Then
G(R)/G(I) = AB/G(I) = AG(I)/G(I) - BG(I)/G(I) =
(AXY /XY)x (BXY /XY)= (AY/XY) x (XB/XY). (25
Moreover,
oo D = (R/I)® = R°/I° = B]Y = XB/XY,
(2.10)

C=(R/NtT=RY/IT = A/X = AY/XY.

(2.8) is immediate from the above equations. '
The next corollary follows from Lemma 4.2 [3].

Corollary 2.4. Let S be unital subring of ring R such that |R* : ST| < co. Then
IG(R) : G(S)| < 0.

3. Rings with Periodic Associated Group. By analogy with Lemma 1.1 [3]
the following lemma can be proved.

Lemma 3.1. Let R be a ring and J = J(R) its Jacobson radical. Then G(R) 1s a
periodic group if and only if J is a nil ideal with periodic additive group J* and the
group G(R/J) 1s periodic.

Remark 3.2. [t s clear that for any ring R with identity the following statements
are equivalent:

1) the group G(R) 1s periodic if and only if so is the group of units U(R),

2) charR 1s finite.

Let us recall that a field 7" is absolute if T is a field of prime characteristic p and
T is an algebraic extension of its simple subfields. Hence the multiplicative group T™
of an absolute field T is a periodic p’-group.

Lemma 3.3. Let R be a comutative ring with identity. Suppose that R has no zero
divisors and Q(R) its field of quotients. Then G(Q(R)) is a periodic group if and only
if R 1s an absolute field.

Proof. (<) Sufficiency of the lemma is clear.

(=) Suppose that G(Q(R)) is a periodic group. Then for all elements r € R there
exists n = n(r) € N such that 7™ = 1. Therefore the element r is invertible in R. The
lemma is proved.

Theorem 3.4. Let R be a ring with identity and suppose that R has no zero divisors.
Then G(R) is periodic group if and only if the following statements are equivalent:
1) P[z] is a field, where P is simple subfield of R;
2) the element z € R 1s algebraic over P;
3) z € U(R).

Proof. Necessity. Suppose that the group G(R) is periodic. Then charR = p,
where p is prime.
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(1) = (2). If P[x] is a field, then the element « is invertible. It follows that z™ = 1
for some n € N, hence z is algebraic over P.

(2) = (1). If z is algebraic over P, then the domain P[z] is finite and therefore it
is a field. :

Implications (3) = (2) and (1) = (3) are obvious.

Sufficiency. Suppose that the items (1), (2) and (3) are equivalent for the ring R.
Assume the contrary, that a is an element of infinite order in the adjoint group R°.
Then 1+4a € U(R), hence P[1+a] is a field and the condition (2) imply that element
a is algebraic over P. This contradiction completes the proof.

Corallary 3.5. Let R be a ring with identity, P be a prime subring of R. If R has
no zero divisors, then R® = {0} if and only if the following statements are true:

1) P=GF(2);

2) any element € R — P is transcendental over P,

8) Plz] 1s not a field for arbitrary element ¢ € R — P.

Proof. Suppose R° = {0}, then 2 = -2 and therefore charR = 2. Assume that
there exists an element a € R — P algebraic over P. Then P[a] is a finite ring without
zero divisors. It means that Pla] is a field and a € U(R), giving a contradiction. So
condition (2) is true. Condition (3) is obvious. The converse is trivial.

The rings R with torsion free additive group R* and periodic group of units U (R)
were studied in paper [5].

Remark 3.6. If K[G] is a group ring, of a non-trivial group G over a skew field K
of zero characteristic, then the group of units U(K[G]) is not periodic.

Indeed, if charK = 0, then the prime subfield P of skew field K is isomorphic to
Q, but @~ is not a periodic group.

Corollary 3.7. Let K[H] be a group algebra of a group H over a skew field K. Then
the following statements are equivalent:

1) G(K[H]) is a periodic group;

2) U(K[H]) is a periodic group;

3) K 1is an absolute field, H 1s a locally finite group.

Proof. (1) <> (2) is obvious.
(2) = (3). Since the groups H and K* can be embedded in U(K[H]), it follows
from Lemma 2.1 [15] that K is an absolute field and H is a periodic group.
oo

Let ¥;,...,Yn be arbitrary elements of the group H. Since K = |J Ki, where
i=1
K; are finite fields and K;[y, ... ,yn] are finite domains (hence fields), the subgroup
(y1,--- ,Yn) < H is finite:
(3) = (2). Clearly, for any element ¢ € K[H] there exists a finite subfield F' of
the field K such that z € F[C] for certain finite subgroup C of the group H. Since
subring F[C] is finite, the group U(K[H]) is periodic.

4. Associated Groups with Finite Conjugacy Classes. A group G is called
an FC-group if every conjugacy class is finite, i.e., if |G : Ce(z)| < oo for all element
reG.
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Lemma 4.1. Let R be a ring with identity. Then G(R) is an FC-group if and only
if G(R) is a locally normal group.

Proof. Let G(R) = A » B, where A = R* and B = R°. If the group R° is not
periodic, then by Corollary 3.10 [20] Cg(A) # 1. But it contradicts Lemma 2.2 (vii).
Therefore, the subgroup R° is periodic. Let (a,0) be an arbitrary element of A. Since
(a,0)" € Z(G(R)) for some n = n(a) € N, we obtain

(na,8) = (na,0)(0,8) = (0,8)(na,0) = (bna + na, b). (4.1)

Hence,
bna=0 (4.2)

for arbitrary non-zero element a € R. '

If charR = 0, then (—2)e € R°, where e is the idenjity element of the ring R.
From (4.2}, if we put a = ¢ we get nb = 0 for arbitrary b € R°. It contradicts that
the order | — 2el, is infinite. Therefore charR = n is finite. Thus G(R) is a locally
normal group. The converse is trivial. The lemma is proved.

Corollary 4.2. Let R be a ring with identity. Then G(R) is a fibrewtse finite group
if and only if R is a finite ring.

Corollary 4.3. Let R be a ring with identity. Suppose R has no zero divisors, then
G = G(R) is an FC-group if and only if R® = {0} or R is a finite field.

Indeed, if the adjoint group R° is not trivial, then it follows from Lemma 4.1 and
fact, that quotient-group G/Cg(z€) (where z€ = (g7 'zg | g € G)) of FC-group G
is finite forallz € G. -

Theorem 4.4. Let R be a ring with identity. If G = G(R) is an FC-group, then
G = A x B is a locally normal group with finite commutant, moreover, the subgroup
B is finite, |G : Z(G)| < o0 and BN Z(G) = 1.

Proof. Let G = G(R) = A x B be an FC-group. Then for all element g € G the
quotient-group G/Cg(g®) is finite. Lemma 4.1 implies that subgroup B is finite. By
Lemma 3.10 [20] |G : Z(G)| < oo and by theorem of Baer the commutant G’ is finite.

Corollary 4.5. Let K[H] be a group algebra of a group H over a field K. Then
G(K[H]) 1s an FC-group if and only if the algebra K[H} is finite.

Proof, Taking into account that the groups H and K* can be embedded into the
adjoint group (K[H])°, we see that H and K* are finite by Theorem 4.4. Therefore,
the algebra K[H] is finite as well. The converse is trivial.

5. Rings with nilpotent associated groups.

Lemma 5.1. Let T be a skew field. Then G(T) is a nilpotent group if and only if
T = GF(2). .

Proof. (<«=) is obvious.-

(=). If the associated group G(T) is nilpotent, then T is a field of characteristic
p for some prime p. Since the field GF(p) embeds in T and by Lemma 2.2 we have
|IGF(p)) =p—1=1,s0 p= 2. Let p= GF(2) be a prime subfield of T, then
Exercise 9 [19] implies that that T D P is a finite algebraic extension and 7' = P.
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Remark 5.2.
1, n=1;
U(Zazn) = § Za, n=19 (5.1)
Ly X Zign-2, n 2 3.

The equation above implies that G(Za») is a nilpotent 2-group.
Remark 5.3. Ifp is an-odd prime and n € N, then
U(an) = Zpu—1(9_1)- (5.2)
From Lemma 2.2 (vii) it follows that the group G(Zy») is not nilpotent.

Lemma 5.4. Let R be a ring with identity e and suppose that R has no zero divisors.
Then G(R) is a nilpotent group if and only if charR = 2 and R° = {0}.

Proof. Let G(R) = A x B be a nilpotent group. Then C4(B) # 1 by Proposi-
tion 1.6 [20]. According to Lemma 2.2 (vii), B is an identity group and consequently
R® = {0}. Moreover, charR = 2. Conversely, if R® = {0}, then G(R) = R® is an
abelian group. The lemma is proved.

Below N (R) will denote the set of all nilpotent elements of a ring R.

Theorem 5.5. Let R be a ring with identity e. If the associated group G(R) is
nilpotent, then charR = 2™ (m € N). If, thereto, ring R is a commutative, then
R° = N(R).

Proof. Let additive order |e|ly = m for some m € NU {0}, then the group G(Zn)
is embedded in G(R) (where Zo = Z). According to Lemma 54 m # 0. If m =
2°p$t...p" is a canonical decomposition of m, then by Theorem 3 [19)]

U(Zm) 2 U(Zoe) x U(ZE) % ... x U(Z3,), (5.3)
where U(Zg!) = Zjei-1, and U(Zass) is described in Remark 5.2. Remark 5.3

implies a=...=a = 0 and m = 2°.

Let R = R/2R. If a torsion part T(R°) # {0} then by Lemma 2.2 (vii), T(R°) is
a 2-group and therefore T(R°) C N'(R). Conversely, let # € N'(R), then " = 0 for
some n € N. It follows, that the adjoint power #2°) = 0, where s € N is such that
n < 2°. Hence T(R°) = N'(R).

Suppose R is a commutative ring. Then, clearly, N(R) is an ideal of R. Let

G(D) = A x B is a group associated with a ring D = R/N(R), then B is torsion
free and Cg(A) = 1. This means, that B is embedded in the group Aut(A) of the
subgroup A.

If B is not identity subgroup, then [4, B] = A. It contradict to the nilpotency of
the group G(D). Hence B is an identity subgroup and R° = N(R). The theorem is
proved.

Remark 5.6. Let R = Q[a], where a®> = 0. Then R is a local Artinian ring. From
the results in [21] we have R = B + J(R), where the field B = Q. It follows that
R° = B° x J(R)® is a mized abelian group. Assume (a,0) is non zero element of
G(R), then

(a,0)71(0, =2)(a, 0) = (~a,0)(0, =2)(a, 0) = (—2a,~2) & T(G(R)). (5.4)
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Since (0,—2) € T(G(R)), then G(R) 1s a nilpotent group.

Remark 5.7. Let F = GF(p™),n > 2 and o is the Frobenius automorphism of the
field F. Suppose Flz,c) is a skew polynomial algebra such that za = o(a)x for all
a € F. Then R = F|z,0]/(z?) is a local Artinian ring. Since R = J(R) + B, where
field B = F, then U(R) = (1+J(R)) x B*, where 1+ J(R) is a p-group, |B*| = p" —1.
As a corollary of [11] we have that the group U(R) is not nilpotent.
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1

The paper is devoted to the study of formations §, for which set of all §-subnormal
subgroups is a sublattice of all subgroups in any finite group. The review of the main
results on formations with the given property obtained in Gomel algebraic school.

Key words: finite group, lattice of subgroups, subgroups functer, formation.

1. All groups considered are finite. Following Wielandt [1] we say that a subset
£ of subgroups of a group G is a lattice if ANB € £ and < 4,B > € £ for any A
and B in £. By classical Wielandt theorem, the set of subnormal subgroups of G is
a lattice. There are two generalizations of subnormality in the theory of formations.
A formation is a class § of groups which is closed under homomorphic images and is
such that each group G has unique smallest normal subgroup G¥ (the F-residual of
G) with factor group in §. Let § be a non-empty formation. A subgroup H of G is
called:

1) Z-subnormal in G (Carter-Hawkes formation subnormality [2]) if either H = G
or there exists a chain

G:HQDH}D...D.F“:H

such that H; is a §-normal maximal subgroup in H;_; forany i€ 1,...,n;
2) KF-subnormal in G (Kegel formation subnormality [3]) if there exists a chain

G=HyDH,D...QH.,=H

such that for every i € 1,...,n asubgroup H; is either normalin H;_ or H?_l C Ity

In 1978 L. A. Shemetkov ([4], problem 12; [5], problem 9.75) and O. Kegel [3] posed
a problem of finding conditions under which the set of §-subnormal { K F-subnormal)
subgroups of G is a lattice.

We will say that a formation § has the lattice property (briefly, lattice formation)
if the set of all F-subnormal subgroups is a lattice in every group.

2. Lattice formations. Saturated case. In 1992 at the conference of Byelorus-
sian mathematicians (Grodno) S. F. Kamornikov, V. N. Semenchuk and A. F. Vasil’ev
reported on the solution of problems of Kegel and Shemetkov for saturated forma-
tions (see [6]). The detailed article was published in the Kiev book dedicated to the

® Kamornikov Sergej, Vasil’ev Alexander , 2003
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memory of the algebraist S. N. Chernicov [7]. First of all, in [7] it was shown that
Kegel’s problem and Shemetkov’s problem are equivalent. Remind that the forma-

tion J§ is said to be saturated if the group G belongs to § whenever the factor group
G/®(G) € 3.

2.1. Theorem ([7]). Let I be an S-closed (soluble S, -closed) saturated formation.
Then the following statements are equivalent:

1) the sct of all KF-subnormal subgroups is a lattice in every (soluble) group;

2) the set of all F-subnormal subgroups is a lattice in every (soluble) group.

Let {J; : 1 € I} be a set of groups classes. Then Dp(U;erSi) denotes a class of
all groups G which is presented in the form G = G;, x ... x G;, where i € I and
Gi, € i,k = 1,...,t. In this terminology we will formulate the results which is
devoted to the Kegel-Shemetkov problem for saturated formations in the class of all
(soluble) groups.

2.2. Theorem ([7]). Let § be an S-closed (soluble S,,-closed) saturated formation.
Then the following statements are equivalent:

1) the set of all K§-subnormal subgroups is a lattice in every group;

2) § can be presented in the form § = Do(UierSx,), where miNm; = O foralli# j
in 1.

Recall that a class § of groups is a Fitting class if § is closed under taking normal
subgroups and in every group G there is a unique normal subgroup that is maximal
with respect to being in J; that subgroup, the F-radical, will be denoted by Gs.

2.3. Theorem ([7]). Let § be an S-closed saturated formation. Then the following
statements are equivalent:

1) the set of all F-subnormal subgroups is a lattice in every group;

2) § can be presented in the form § = Do(IMU H), where M and 5 are S-closed
local formations satisfying the following conditions:

o) 7T N 7(5) = 0;

b) § = Do(UierSnr,), where miNm; =0 foralli # j in I;

c) M = SpamyM is a Fitting class which is normal in MIM;

d) every non-cyclic minimal non-M-group G has the following property: G/®(G)
is monolithic, Soc(G/®(G)) = (G/®(G))™ is non-abelian and G/G™®(G) is a cyclic
group of prime power order.

For the results in this direction also see [8].

3. Lattice formations. Nonsaturated case. The condition of saturation for
a formation played an essential role in the proof of the results given above. In [9,10]
we give another approach, different from the approach given in [7, 8], which allows to
give a constructive description of soluble S-closed formations § such that the set of
all F-subnormal (K F-subnormal) subgroups is a lattice for every group.

3.1. Theorem ([9, 10]). Let § be a soluble S-closed formation. Then the following
statements are equivalent:

1) the set of all K§-subnormal subgroups in every group is a lattice;

2) the set of all F-subnormal subgroups in every group is a lattice;
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3) there is a partition {m; | i € I} of m(J) such that F = Do(UierSn,), where
S, =8N Gy, and Fr, = Gn, if |m| > 1.

A class of groups which is both a Fitting class and a formation is called a Fit-
ting formation. There are Fitting formations which are neither subgroup-closed nor
saturated (see [11]).

3.2. Theorem. Let § be a soluble Fitting formation. Then the following conditions
are pairwise equivalent:

1) the set of all KF-subnormal subgroups in every (soluble) group is a lattice;

2) the set of all F-subnormal subgroups in every (soluble) group is a lattice;

3) ¥ can be presented in the form § = Do (Uie1Sr,), where miNm; = @ for all i # j
in 1. !

In order to prove our theorems, we need the following résults about the formations
with Shemetkov property. We say formation § has the Shemetkov property if every
minimal non--group is either a Schmidt group or a cyclic group of prime order.

3.3. Proposition ([12]). Let F be a soluble S-closed formation with the Shemetkov
property. Then § is saturated.

3.4. Proposition ([13]). A soluble S-closed saturated formation § is a formation
with the Shemetkov property if and only if § = LF(f) and f satisfies the following
conditions:

1) f(p) = Gr(y(py) for each p € 7(J);

2) f(p) = 0 for each p & 7(3J),

3) f(p) = Npf(p) for each prime p. -

4. Subgroups lattice functors. In spite of the completed results of [7, 8] the
issue of the existence in finite groups of other natural lattices similar to the lattice
of all subnormal subgroups is still under discussion. In {14] we introduce another
(functor) approach to the development of Wielandt results.

Axiomatizing the main properties of subnormal subgroups (invariantness under
homomorphism, transitivity, heredity in subgroups), we introduce the notion of the
natural transitive lattice functor and describe all the lattices induced by such functors
in finite soluble groups.

Let A, B be groups, ¢ : A — B is an epimorphism, and let Q and ¥ be some
systems of subgroups from A and B respectively. Further Q¢ = {H ¢|H € Q}, and
$¢7" = {H®"'|H € £} is the full inverse image of all subgroups from ¥ in A.

Let © be the map, which associates with every group G' some non-empty system
©(G) of its subgroups. It is reported in [15], that © is a group functor, if the condition
of abstractness is

(0(6))* = 6(G*)

for every isomorphism ¢ of every group G.
If H is a subgroup of group G, then we write H N©(G) = {H N R|R € O(G)}.
Subgroup functor © will be called:
1) natural, if (©(4))* C ©(B?) and (6(B))*”" C ©(A) for any epimorphism
¢: A — B, and also HNO(G) C ©(H) for any subgroup H of group G;
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2) transitive, if ©(H) C ©(G) for any subgroup H € O(G);

3) lattice, if always from H, K € ©(G) follows, that HNK C ©(G) and < H, K >C
O(G).

The examples of natural transitive lattice functors (further called NT L-functors)
are the functors, which in every finite group G take the set S(G) of its all subgroups;
the set {G}; the set sn(G) of its all subnormal subgroups. Other examples of N7 L-
functors are given in [7].

There are posed the problem of finding all NT L-functors, given on groups from
the given class of groups X.

The following theorem solves the problem for the case, when X is the class of all
soluble finite groups.

4.1. Teopema ([14, 15]). Let © be a subgroup NT L-functor. Then
1) class Xo = {G|O(G) = S(G)} is an S-closed saturated formation;
2) there ezists a partition {m;|i € I'} of set m(Xe), such that Xe = Do(Uie1Sr,);
3) O(G) = snxg (G) for any group G.

5. Some characterizations and applications of lattice formations. From
theorems 2 and 3 it follows that the saturated subgroup-closed lattice formations are
Fitting formations, moreover a totally-saturated (primitive in soluble case) Fitting
formations. These formations are generalizations of the class of all nilpotent groups
in the sense that the groups in the lattice formation are the direct product of all Hall
subgroups corresponding to pairwise disjoint sets of primes.

As applicatoins we will show that some well-known properties of the class of all
nilpotent groups characterize lattice formations.

It is well-known that nilpotent radical F(G) of a group G can be obtained as the
join of the subnormal nilpotent subgroups of G.

5.1. Theorem ([7]). Let § be an S-closed saturated formation. Then the following
statements are pairwise equivalent:

1) § 1s a Fitting class such that the §-radical Gy of a group G 1s presented in the
form

Gy =< H € §|H is K§-subnormal in G >;

2) if H and K are two K §-subnormal F-subgroups of a group G, then< H,K >€ §;

3) § 1s a lattice formation.

In [16] B. Amberg, B. Hofling and L. S. Kazarin studied subgroup-closed formations
¥ which are closed under taking groups, which are products of pairwise permutable §-
subgroups. Earlier [17] R. Bryce and J. Cossey described subgroup-closed formations
of soluble groups which are closed under taking products of normal §-subgroups. In
this direction the next two theorems are obtained. We consider only soluble groups.

5.2. Theorem ([18]). Let § be a soluble S-closed saturated formation. Then the
following statements are pairwise equivalent:

1) if G = AB, where A and B are abnormal §-subgroups of G, then G € J;

2) if the group G have abnormal F-subgroups A and B such that (|G : A, |G :
B}) = 1 than G € §;

3) ¥ is a lattice formation.
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5.3. Theorem ([19]). Let § be a soluble Fitting formation. Then the following
statements are pairwise equivalent:

1) if G = AB, where A and B are abnormal §-subgroups of G, then G€ §;

2) § 1s S-closed saturated lattice formation.

Following [15, 20], will say that a function wg : G — G¥ is a Wielandt-Kegel
operator if < H, K >¥=< H¥ K¥ > for any two KF-subnormal subgroups H and K
of an arbitrary group G. S. F. Kamornikov investigated this operators in [15, 20-21].

5.4. Theorem ([15, 20]). Let § be an S-closed saturated lattice formation. Then
wg is a Wielandt-Kegel operator.

5.5. Theorem ([15, 20]). Let § be a soluble formation. Then wg is a Wielandt-
Kegel operator if and only if § is S-closed saturated lattice formation.

In [22] V. S. Monakhov proved that F{A) N F(B) C F(G) for every finite group
G = AB which is the product of two subgroups A and B. The result of Johnson
[23] says that for every finite soluble group G = AB and for every set of primes ,
the maximal normal m-subgroups satisfy Ox(A) N Ox(B) C Ox(G). B. Amberg and
L. S. Kazarin in [24] showed that the result of Johnson cannot be extended to arbitrary
finite groups and indicated conditions under which this problem has an affirmative
solution.

Since classes of all nilpotent groups and all m-groups are Fitting classes it is natural
to look for Fitting classes § such that Az N Bz C Gg for every group G = AB.

5.6. Theorem ([25]). For the universe of all soluble groups any two of the following
statements about a Fitting formation § are equivalent:

1) if G = AB then Az N Bz C Gg;

2)if G= AB and A,B € § then AN B C Gg;

3) F 1s S-closed saturated lattice formation.
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ABSORBING SETS RELATED TO HAUSDORFF DIMENSION

Natalia MAZURENKO
Ivan Franko National Unwversity of Luiv, 1 Universitetska Str. 79000 Lviv, Ukraine

It is proved that the hyperspace of compact sets in the n-dimensional cube I™ of
the Hausdorff dimension > a, 0 < o < n, forms an Fs-absorber in the hyperspace
exp(I™) homeomorphic to the Hilbert cube. Moreover, for arbitrary sequence (a;),
0< a; € ag € ... < n, the sequence of hyperspaces of compact sets in I" of the
Hausdorff dimension > a; forms an F,-absorbing sequence in exp(I™).

Key words: hyperspace, Hausdorff dimension, Hilbert cube, absorbing system.

The classical result of West, Curtis, and Schori asserts that the hyperspace of any
nondegenerate Peano continuum is homeomorphic to the Hilbert cube. This allows
us to apply methods of infinite-dimensional topology to investigation of classes of sets
with prescribed geometric properties.

In particular, in a series of papers [1],{2],(3],[5], the topology of the hyperspace of
sets of given Lebesgue dimension (see also [1] for the case of cohomological dimension)
is described. In this note we consider the case of the Hausdorff dimension.

PRELIMINARIES. A typical metric will be denoted by d. By diamn(A) we denote
the diameter of a subset A in a metric space Given a cover U of a metric space,
we define mesh{l) as sup{diam(U)|U € U}. For z € X and ¢ > 0 the set O((z) =
{y € Xid{z,y) <e¢} is an open =-hall centered at .

(e S]
By Q we denote the Hilbert cube, @ = [][~1,1];. The class of absolute neighbor-

hood retracts is denoted by ANR. A close(i slubset A of X € ANR is called a Z-set in
X if for every continuous function £: X — (0, 00} there exists a map f: X — X\A
which is e-close to the identity in the sense that d(z, f(z)) < (), for every z € X.
An embedding g:Y — X is called a Z-embedding if its image g(Y') is a Z-set in X.

By B(Q) = Q\ ﬁ (—1,1); we denote the pseudoboundary of Q.
i=1

HYPERSPACES. Let X be a metric space. The hyperspace of X is the space
exp X of nonempty compact subsets of X endowed with the Vietoris topology. A
base of this topology consists of the sets

n
(Vh,....Va)={A€expX|AC U V; and for every i € {1,2,...,n} ANV; # 0},

g=1

© Mazurenko Natalia, 2003
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where V1,..., V, run over the topology of X. The Vietoris topology is generated by
the Hausdorff metric dy,

d(A, B) = inf{e > 0| A C O.(B), B C O.(A)}.

For n € N, we denote by exp, X the subspace of exp X consisting of sets of cardi-
nality < n. Let exp, X = U{exp, X|n € N}.

HAUSDORFF DIMENSION. Let F be a subset of R™ for some n and s a non-
negative number. For € > 0 define

Hi(F) = inf Y _ (diamB)*,
BeB

where the infimum is over all covers B of F with mesh(B) < e.
Let H*(F) = li_l;I‘lg H:(F). There exists a unique number s, the Hausdorff dimen-

sion of F, such that H*(F) = oo whenever 0 < s < sp and H*(F) = 0 whenever
sg < § < 0o. We write dimgyg F = s¢.

Proposition. For every a > 0 the set Co = {A € expR" | dimy(4) < o} 5 a
Gs-subset of expR™.

Proof. For every A € C,, by the definition of Hausdorff dimension, ?{“"’1"‘(14) = )
for every i € N. Therefore, for every A € Cq there exist open sets Up, , ..., Um,, which
are elements of a fixed countable base I/ of R", such that

k
A€ (Unyy i Um,) and 3 (diamUp, )2+ < 1/i.
=1
Let
a5 o Ui | }_;(aiarnymj)“+1f’=< 176 Uiy yoneslliny € 13

F=1

20 oo
We have just shown that C, C () Vi. Prove the inclusion (| Vi C Cy. Assuming the

i=1 i=1
opposite, choose B € expR™ such that dimygB = s > a and B € (| V;. Then there
i=1
is ig € N such that a + 1/i< s for every 1 € N, 1 2 1,.
We therefore have H>+!/(B) = oo for all i € N, i > io. Taking into account that
*+1/%B) > 0, we conclude that I(i) = inf{#Z*'/(B)|0 < e < 1} > 0.
The function (i) is an increasing function of i. Thus, there is 93 € N with
o0
(i) > 1/4;. Then obviously B ¢ Vi, D [ Vi and we obtain a contradiction.

i=1

0
We have proven that C, = () Vi. Since V; are open in expR", this completes the
=1
proof. 0O
ABSORBING SYSTEMS. We briefly recall some definitions from the theory of

absorbing systems; see (3], [4] for details.
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Let T be an ordered set and M, a class of metric spaces for ¥y € I'. Put Mp =
(M4)yer. An Mp-system in a space X is an order preserving indexed collection
(Ay)~er of subsets of X such that A, € M, for every 7.

An Mr-system X in X € ANR is called strongly Mr-universal in X if for every
Mr-system (A,) in Q, every map f:@Q — X that restricts to a Z-embedding on
some compact subset K of @ can be approximated by a Z-embedding ¢:Q — X
such that g|K = f|K and for every ¥ € I we have g7} (X, )\K = A,\K.

An Mp-system X is called Mr-absorbing in X if the set | ¢r X5 is contained in
a o-compact 0-Z-set in X and & is strongly Mr-universal in X.

By F, we denote the class of o-compact spaces.

MAIN RESULT.

Lemma 1. Let n € N. For every continuous function f:Q — exp(I") that re-
stricts to a Z-embedding on some compact subset K of Q and for every ¢ > 0
there is a Z-embedding h: Q — exp(I™) such that h|K = f|K, for every z € Q\K
d(f(z), h(z)) < € and dimg (h(z)) = 0.

Proof. Consider a sequence of compact subsets {B;}{2, in I" defined as follows:

Bl—_-g'ﬁn,
| R | )
BQ—“'Q‘E'JJ- +§'y01

where s = (L, 1,.., 1).
Let a; be an embedding [-1,1] into B;. Forevery r € Q, z = (2:){2, let Z € () be
defined as follows:

z= [.'51,:El,.’52,1:1,172,1'3,31,1!2,33,34,_ . )

Let the map £ be given by the formula
oC
&(z) = |J ai(@:) U {no}-
=1

It is clear that for every z € @, £(z) is a compact subset in I". On the other hand,
£(z) is a countable subset of I", therefore, dimg (§(z)) = 0.

Choose two points z,z’ € Q, z = (2;)82,, ' = (z}){2,. If ¢ # z’, then there is
i € N such that z; # z/. In this case for some j € N, a;(%;) # a;(2}). Therefore,
&(z) # &(z'). This implies that £ is an injective map.

Let ¢ > 0. Let f:Q — exp(I™) be a map that restricts to a Z-embedding on
some compact subset K of Q. Without loss of generality we may assume that f
is a Z-embedding because exp(I™) is homeomorphic to the Hilbert cube (see [4]).
Define u: Q@ — [0, 1] by u(z) = } -min{e, dg(f(z), f[K])}. The set exp(I")\ exp, (I")
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is locally homotopy negligible in exp(I™)(see [4]). Therefore, there is a homotopy
H:exp(I®) x I — exp(I"™) such that

1) HU = Iexp(i"];

2) for every t € (0,1], He(exp(I™)) C exp, (I").

It is clear that we may additionally assume that

3) for every t € [0, 1], dy (H;, lexp(in)) < 2t;

4) for every t € (0, 1], He(exp(I™)) C exp, ([0,1 — 3t/4]").

For every r € Q, let F(z) = H(f(z),p(z)). Then, if p(z) > 0, F(z) is a finite
approximation of f(z).

Now define h: Q@ — exp([™) as follows:

he) = Fe)u | Wa@)/4-€@)+ 9.

yEF{z)

CLAIM 1. The map h is well-defined, continuous and satisfies h|K = f|K.
Moreover, for every z € Q, dg(f(z), h(z)) < 3 min{e,d(f(z), f[K])} and for every
z € Q\K, dimg(h(z)) = 0.

a) Let z € Q. Then by (4), F(z) C [0,1 — 3u(z)/4]". For every y € F(z), the
diameter of the set [u(z)/4-&(z) + y] does not exceed u(z)/4, which implies that
h(z) C (0,1 - p(z)/2)".

b) If u(z) > 0, then h(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, ther h(z) = f(z) which is also compact and non-empty.
Therefore for every x € Q, h(z) € exp(l™).

¢} That A is continuous follows from the continuity of the involved maps.

d) If u{e) > 0, then h{z) is a finite union of countable sets. Therefore for every
z € (NK dimplh(r)) = 0.

oi Fix 2 € Q. It is clear that dy(fiz), h(z)) < 2-p(x)+p{z)/4=9- pnlaei/4, frow
which it tollows that dy (f(z), k{x)) < 3/4 - min{e,dg(f(z), fIK])]. So we are done
because this inequality implies that hj{K = fIN.

CLAIM 2. The map h is injective.

Let us first observe that from Claim 1 and the fact that f is an embedding it follows
that

 R[Q\K]NA[K] = 0. (%)

Now fix z,z' € Q. 1f both z and z’ belong to K, then since h|K = f|K and since f
is an embedding, it is trivial that h(z) = h(z') implies z = 2’. If z ¢ K and 2’ € K,
then from (x) it follows that h(z) # h(z'). So without loss of generality we may
assume that z,z’ € Q\K.

Let h(z) = h(z’). Our task is to show that z = z’. We will first prove that
p(z) = p(z'). Assume the contrary, e.g. assume p(z) < p(z'). For some y € F(z),
consider in I" the set By = (u(x)/4) -I" 4+ y. There exists a point m € h(z) such that
im| < |p| for all p € h(z). Moreover, this point m is an element of F(z) N F(z’) (by
construction of the map h and since h(z) = h(z')). For this m, we see that B, Nh(z)
is infinite while By, N h{z’) is a finite set, being a finite union of finite sets. This
contradiction establishes that p(z) = p(z’).
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Again consider the point m = (my,...,my) € h(z) such that |p| < |m| for every
p € h(z). Since p(z) = u(z'), we have

m* = (my — pu(z)/4,... ,m, — p(z)/4) € F(z) N F(z').

Since F(z) and F(z') are finite, /n is maximal, there are a neighborhood U of 7 and
a d € (0,1] such that

UNh(z) =m" + p(z)/4(€(z) N Os(y0)) =
=m" + pu(z")/4(£(z") N Os(yo)).

Since the coordinates of z appear infinitely often in the coordinates of #, and the
same is true for z’, it now easily follows that z = z'.

CLAIM 3. The map h is a Z-embedding.

Since h[K] = f[K] is a Z-set, it suffices to show that h[Y]is a Z-set if Y C Q\ K is
compact. But this easily follows from the fact that the map h’: Q — exp(I™) defined
by

W)= |J Do) Ulua)/4-£(z) +3]

yEF(z)

maps @ into the complement of h[Y], for every positive §, and is d-close to the identity.
This completes the proof of the Lemmal. O

Theorem 1. Ifn > 1 and o € (0, n), then the set Dso(I") = {A € exp(I™)|dimy A >
a} is strongly Fo-universal in exp(I™).

Proof. Let € > 0. Choose a sequence A; C Ay C ... of compact subset in the
Hilbert cube @ and let A = [J)_, An. Let f:Q — exp(I") be a map that restricts to
a Z-embedding on some compact subset K of Q. Let p: Q — [0, 1], H:exp(I") x1 —
exp(I”), F: Q — exp(I™) be maps, as in the proof of Lemma 1.

For every t € [0, 1] let ¢:I — exp(I") be defined as follows: ¢(t) = H,(I"). Then,
it is clear that ¢(0) = I" and ¢((0,1]) C exp,, (I").

Let {B;}2, be a sequence of compact subsets of 1", as in the proof of Lemma
1, let 8;:1" — B; be a homeomorphism. For some A € (0,1} and y € I" define
(ﬂ,-); = AB; + y + Ayo, where yo = (1,1, ...,1).

Let h: Q — exp(I") be a map that satisfies the conditions of Lemma 1.
Now define g: Q — exp(I”) as follows

g@) =h@)u |J [UBEH((d(z, A1) U {n(=)/2-v0 + v}
yeF(z) Li=1

U{h(z) + p(z)/2- yo} -

We claim that g is a required map, i.e., g is an approximation of f with the
properties stated in the definition of strong F,-universality.

CLAIM 1. The map g is well-defined, continuous and satisfies g| K = f|K. More-
over, for every z € Q, dy(f(z),9(z)) < 35 min{e, d(f(z), f[K])}.
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a) Let € Q. Then by Lemma 1, h(z) C [0,1 — p(z)/2]". For every y € F(z), the
= =]
diameter of the set J (ﬁi);(z}ﬁ(cﬁ(d(a:, A;))) does not exceed u(zx)/4, which implies
i=1 -
that g(z) C I".

b) If u(z) > 0, then g(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, then g(z) = f(z) which is also compact and non-empty.
Therefore for every z € @, g(z) € exp(I”).

¢) That g is continuous follows from the continuity of the involved maps.

d) Fix ¢ € Q. It is clear, by the proof of Lemma 1, that dg(f(z),g(z)) < 9/4-
u(z) + p(z)/2 = 11 - p(z)/4, from which it follows that dg(f(z),g(z)) < 11/12-
min{e,dg(f(z), f[K])}. So we are done because this inequality implies that g|K =
fIK. -

CLAIM 2. The map g is injective. '

Injectivity of g follows from injectivity of h and construction of the map g.
CLAIM 3. We have g~ }[Dso(I")]\K = A\K.

By analogy to the proof of Lemma 1, we first observe that from Claim 1 and the
fact that f is an embedding it follows that

glQ\K]Ng[K] =0. (*)

Choose ¢ € Q\K. If r € Ax for certain k, then d(x, Ax) = 0. This implies that
é(d(z, Ag)) = I". In this case, we see that g(z) contains the n-dimensional cube and
this implies that dimg (g(z)) > n. Therefore, g(z) € D5 o(I").

If + ¢ A, then d(z,Ax) > 0 for every k € N and ¢(d(z, Ax)) is a finite set for
all & € N. In this case, by construction, g(z) is a countable set, being a countable
union of finite sets. This implies that dimg(g(z)) = 0. Therefore, g(z) &€ D5 (I").
Equality (x) completes the proof of Claim 3.

CLAIM 4. The map g is a Z-embedding.

Follows from the same results for the map A.
This completes the proof of Theorem 1. U

Corollary. In the assumptions of Theorem I, the pair (exp(I™), Dso(I")) s home-
omorphic to (Q, B(Q)).

Proof follows from the standard results of the theory of absorbing sets in @Q;
see [4]. O

Theorem 2. Ifn > 1 and T = {9 }§L, is a countable ordered set, where 0 <
1 < ... € Yk < ... < n then the sequence {Ds~, (I")}5%, is strongly F,-universal in
exp(I™).

Proof. Let € > 0. Choose a decreasing sequence of g-compact subsets {Am}oo_,
in Q and a map f:Q —> exp(I™) that restricts to a Z-embedding on some compact
subset K of Q.

Write N as the disjoint union of infinitely many infinite sets, say, Nj, Na,.... It is
clear that for every ¥ € (0, n] there is a set C € exp(I") such that dimy(C) = 7. For
p>=1and i€ Ny, let C; € exp(I™) be a set such that dimgy(Ci) = 1p41.
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Since the set exp(I™)\ exp,, (I") is locally homotopy negligible in exp(I")(see [4]), w
can find a continuous function ¢;: I —» exp(I") such that ¢;(0) = C; and ¢;((0,1]) C
exp, (I7).

Let 1:Q — [0,1], F: Q — exp(I[") be maps, as in the proof of Lemma 1.

For every m > 1 write A, = U AP, where AP are compact subsets of Q. Let

p=1
i(m, p) be the pth element of N,.

Let {B;}{2, be a sequence of compact subsets of I", as in the proof of Lemma 1,
and 3;:I" — B; be a homeomorphism. For some A € (0,1] and y € I" define
[,6‘,v)" ABi + y + Ayo, where yo = (1,1, ..., 1).

Let h: Q@ — exp(I") be a map that satlsﬁes the conditions of Lemma 1.

Now define g: @ — exp(I") as follows:

g(z) =h(z)u |J U U (Bitm. )4 4 ($i(m,p) (d(z, AF))) U {n(2)/2 - yo + v}

yEF(z) Lm=1p=1
U {h(z) + p(z)/2 - yo} .

We claim that g is a required map, i.e., g is an approximation of f with the
properties stated in the definition of strong F,-universality.

CLAIM 1. The map g is well-defined, continuous and satisfies g|K = f|K. More-
over, for every z € Q, du(f(z),g(z)) < 1; min{e, d(f(z), f[K])}.
a) Let z € Q. ’Ihen by Lemma 1, h(z) C [0,1 — p(z)/2]". For every y € F(z), the

diameter of the set U U (Bi(m p))“(x] (¢i(m p)(d(z, AB,))) does not exceed p(z)/4,

m=1p=1
which implies that g(z) C I".

b) If u(x) > 0, then g(z) is compact and non-empty, being a finite union of compact
non-empty sets. If u(z) = 0, then g(z) = f(z) which is also compact and non-empty.
Therefore, for every z € Q, g(z) € exp(I").

¢) That g is continuous follows from the continuity of the involved maps.

d) le z € Q. It is clear, by the proof of Lemma 1, that dy(f(z),9(z)) < 9/4-
u(z) + p(z)/2 = 11 - p(z)/4, from which it follows that dp(f(z), g (z)) < 11/12.-
min{e, dH f(z), f[K])}. So we are done, because this inequality implies that g|K =
fIK.

CLAIM 2. The map g-is injective.

Injectivity of g follows from injectivity of h and construction of the map g.

CLAIM 3. For every k € N we have g7![Dy, (I")\K = Ax\K.

By analogy to the proof of Lemma 1, we first observe that from Claim 1 and the
fact that f is an embedding it follows that
g[Q\K]ng[K]=0. (%)

Choose z € Q\K. If z € Ax\Ak41 for certain k, then z € A}, for some p. This
implies that d(z, AY) = 0 and ¢;k p)(d(z, A})) = Ci(x,p), Where dimg (Cix, o) =t
Thus, g(z) is a union of finitely many countable sets and countable union of the sets for
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which the Hausdorff dimension does not exceed 4x41. Therefore, dimg(g9(z)) = Yk41-
This implies that for z € A\ Ak 41, 9(2) € Dy, (I")\ D5, ,, (I").

If z ¢ Aj for every k € N then g(z) is a countable set and therefore dimg (g(z)) = 0.
Equality (x) completes the proof of Claim 3.

CLAIM 4. The map g is a Z-embedding.

Follows from the same results for the map h.
This completes the proof of Theorem 2. O

Corollary. The pair (exp(I"), D=n(I")), where D=, (I") = {A € exp(I")|dimyA =
n}, ts homeomorphic to (Q“, B(Q)¥).

Proof. Since B(Q)“ is F,s-absorbing set in Q“ (see [4]) and we can write
D=zn(I") = () Dsn-1/:(I"), this follows from Theorem 2. O
i=1 '
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SOME PROPERTIES OF MINORS OF INVERTIBLE MATRICES

10rest MEL’NYK, ?Volodymyr SHCHEDRYK
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50 Pekarska Str. 79010 Luviv, Ukraine
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The invariants of matrices which reduced a matrix over a commutative elementary
divisor domain to canonical diagonal form is investigated. Some properties of minors
of invertible matrices are considered.

Key words: commutative elementary divisor domain, transformable matrix, invert-
ible matrix, minors, invariants of matrices.

Let R be a commutative elementary divisor domain [1]. Let A be a nonsingular
nx n matrix with the canonical diagonal form ® = diag(¢1, . .. , ¢n). Therefore, there
exist invertible matrices P and @ such that PAQ = ®. The matrices P and @ are
called the left and the right transformable matrices of the matrix A, respectively. By
P, we denote the set of left transformable matrices of the matrix A. It follows from
the results of the papers [2, 3] that P4 = Gg P, where Gg is the group of invertible
matrices of the form

hi hig e hin-1 hin
%hn hag ... han-1 han (1)
%?hni %':'hzz sen ";‘f'f_lhnn—l hrm

It means that the set P4 is a left conjugate class of the complete linear group GL,(R)
with respect to the subgroup Geg. In the papers [2, 3, 4, 5] it is proved that the set
P, plays the main role in the description of the divisors of matrices. The papers 2,
3, 6, 7) are dedicated to investigations of invariants and description of properties of
the set P4. Our paper is connected to this topic. We also study properties of minor
determinants of invertible matrices.

Let U be an m x n matrix over R, m < n. The matrix U is called primitive if the
greatest common divisor (g.c.d.) of the minors of order m of the matrix U is equal
to 1. We denote by Uy, . ;, the matrix consisting of 7, ... , ik columns of the matrix
U,where k<m, 1 <1 <...< i <n.

© Mel'nyk Orest, Shchedryk Volodymyr , 2003



130 OREST MEL'NYK, VOLODYMYR SHCHEDRYK

Lemma. The g.c.d. of the minors of order m of the matriz U, which contain the
matriz U, . i, 15 equal to the g.c.d. of the minors of order k of the matriz U;, . ;, .

Proof. If k = m the lemma clearly holds. Suppose that k < m. A suitable permuta-
tion of the columns of U gives || S Ui,,... i, || = UL, where L is a suitable permutation
matrix. There exists an invertible matrix K such that

Uy * *

B % o
I{Us';u.., A 0 0 ¥ e H Usl'[')‘"’*

0

where u; - ug is g.c.d. of the minors of order k of the matrix U;,, . i,. Then

L

Every minor of order m of the matrix KU L which contains the matrix

lx U!

By, l‘.k

KUL=K|IS U, all=|p ™%

!
11,00,k

has the form
* u!

L3 T ,%'*

det T s 0

]

where Ty is an (m — k) x (m — k) submatrix of the matrix T'. Therefore, g.c.d. of
such minors is equal to u; ...u,7, where 7 is the g.c.d. of the minors of order m — 1
of the matrix T. Since the matrix KU L is primitive, it follows that the matrix 7" is
primitive. Thus 7 = 1. Since any minor of the order m of the matrix U differs from
respective minor of the matrix KU L by a unit multiplier of the ring R, the proof of
our statement is complete. O

Let U € P4. We denote by U™ the matrix consisting of the last m rows of the
matrix U. 1 < m < n, by U, the matrix consisting of 4y, ..., columns of the
matrix U™, 1 < k< n, 1<4; <...<i <n,and by 67  ; the g.c.d. of the minors
of order min{m, k} of the matrix U’ ;.

Theorem. The elements (6:;‘ i e
S Pn-m
of transformable matrices from Py, for all indices iy,... i, 1 < i1 < ... < ik < 7,

k=1,...,n,m=1,...,n—1.

) are invariant with respect to the choice

Proof. Let V € P4. By AT ;. wedenote the g.c.d. of the minors of order min{m, k}
of the matrix V7, . At first we consider the case k = m. Since V = HU, where H
is an invertible matrix of form (1), it follows that

f:,,_:hal ;%f“’l’hss—l hsa han-—l hsn
Ps Pagl s+1
ym . = Etlhegrr oo SRt £ 2hot1s oo Repinor hspinfl

1,047 m

‘E“;‘hnl ,p‘f: hns—l ":,_’:hns ;%E_lhnﬂ——l hnn
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Ui, ... Uli,
x ¥
uﬂl.], v E unim
where s = n—m + L. Smce —ét'- are divisible by £ for any i = 1,...,n -,
j=1,...,s—1, s+i> j, all minors of order m whlch are built on last m rows of
the matrix H, except the minor
hss han—l hsﬂ
"_-th«l-ls hs+1n-1 hs+1n
| 1
%‘:"h ;‘i_};hnn—l hﬂﬂ.

are divisible by 2= Since H is an invertible matrix, we have (|H,1, ;“”T) =1. By
the Cauchy-Binet formula and from what has been said it follows that

] = tp d+|H|| 2 el

where
Ui, -+- Ulip

lb‘i’m

L 5 T Iml_
Un i, Unin,

(«a o IV ‘) = (so oz imi) = (—:j U,-';*____,,.m|)_

We remark that 67 ; = [UT” ; |and A} . 75
holds for k = m.
Let m < k €< n. We choose a minor g of order m of the matrix U] ;. The

1k ;
corresponding minor of the matrix V™ ; is denoted by v. The first case implies
that

®s @s )
Ce—— - V‘ .
(# Ps—1 ) ( Ps—1

is g.c.d. of the minors of order m of the matrix UT

Ps Ps
6m ik = A:n i ,—'—'—") i
( P1,-ee 00k ‘Pa»—l) ( 1y-en otk Ps—1

Finally we consider the case 1 < k < m. Let p1,. ..,y be minors of order m of the
matrix U™ which contains the matrix U ;. By v1,...,v we denote the respective
minors of the matrix V™. By Lemma we get

(au'l: “. ‘,}J't) = 6:1:. k! (Vl, S Vt) = A:r:, By

Then

, hense the result

Since 67 we have

o k!

Thus,

Ps Ps
£ )= (o 2)
( e Ps—-1 & A Ps—1

i
P
Y S
RS
Tls
A
P i
=
s
(Y
-
L TR
]
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/ 5 3 s
:( w, = );---1(Vh e ))z(yli'“)l”h = ):(A?: ‘.*’_(’f.__)_
Ps-1 Ps-1 Ps—1 SN Ps—1

The proof of the Theorem is complete. ) O

Proposition 1. Let A be an m X s matriz with the canonical diagonal form
diag(l,...,1,ak41,...,a;), where axyy € U(R), m > s. Then the matriz A is a

k
submatriz of some invertible n x n matriz if and only if n —m 2> s — k.

Proof. Necessity. Let A be a submatrix of an invertible n x n matrix U. We may
assume, without loss of generality, that

A B
C D

where B, C, D are matrices of respective sizes. Let P and @ be transformable matrices
of A, 1e.

U=

L}

PAQ=[_9% 5 |=s,

where Ej is the identity k x k matrix, S = diag(@k41,...,as). Then

P .0 U Q 0 _ | ® PB
0 Eim 0 E..,| ICQ D
Put F be an (m— k) x n matrix consisting of k+1, k+2,..., m columns of the matrix
® PB
H cQ D \ Therefore
0
S
F= ol
Ck
where Cy is a submatrix of C. Since axqilaj for j =k +1,...,s, we see that ax41

divides all minors of order s — k of the matrix F, which contain at least one of first
m rows of F. The matrix F is primitive, therefore there exists a minor of crder s — k
which does not contain the first m rows of F. It means that the (n —m) x (s — k)
matrix Cx contains at least s — k rows, i.e. n—m > s — k.

Sufficiency. Let

1 B 0 1
|t o o s Q' o
U‘“H o Exflo o EmtilTo En.
E'_k 0

The matrix U is an example of a desired invertible matrix of order n = m+ s — k.0

Corollary. Let U be an invertible n X n matriz, V be a square submatriz of U and
diag(1,...,1,ak41,...,@n—t) be the canonical diagonal form of V. Then k <t. U
S S

k
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Proposition 2. Let be U = |luy|l] and U™ = V = ||v;;||T. Then g.c.d. of the
minors of mazimal order of matrices

Uiky Uiyky -+ Uik, Vk!i} Uktey,  --- Ukl _,
t_ | Yigky  UWigky .- UWigky o k!t Vk!i! ca Vkti
= - and V' = "1 23 2'n—» 4
Uik, Wisky - Uik, Vit WL e WL,

coincides, where iy < i3 < ... < i, together withi{ < iy < ... <i,_, and k; < k3 <
... < kp together with k) < k) < ... < kj,_, form the complete system of indices
. — N

Proof. Suppose that s > p. It is well known that the minors U ( S ) and

k]_ S kp
Pl el ¥ s L
% T differ from each other by a unit multiplier of R (see: [6, Part 1, §4]).
1---*n-p
k...

!
All the minors V i"l ’ ,“‘P) can be characterized as all minors that contain the
1" ""n—-p

submatrix V’. Then Lemma implies our statement. The case s < p is similar. O
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INVARIANT HYPERCOMPLEX STRUCTURES

Igor MYKYTYUK
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12 S. Bandery Str. 79013 Lviv, Ukraine

G-invariant Kihler structures (J;,§2) on the cotangent bundles T*(G/K) (symplec-
tic manifolds with the canonical 2-form §2) of Hermitian symmetric spaces with the
standard antiholomorphic involution are considered. For arbitrary such a structure
(J1,9) a hypercomplex manifold (T*(G/K), {J1, J2}) is constructed.

Key words: invariant hypercomplex structures.

1. A hypercomplex manifold (X, {J1, J2}) is a pair consisting of a 4n-dimensional
manifold X together with two anticommuting complex structures Jy,J;. It then
follows that X has a family of complex structures Jy = Ay Ji+X2Ja+A3J3, J3 = JiJs,
parametrized by points A = (A1, Az, A3) in the unit sphere S? C R®.

This article concerns the construction of hypercomplex structures on the cotan-
gent bundle of Hermitian symmetric spaces. Non-compact homogeneous manifolds
carrying such a structure were considered by Barberis and Miatello in [1], the case of
compact homogeneous manifolds was considered by Joyce in [2].

Let M = G/K be a Hermitian symmetric space and o : TM — TM the involution
which maps any tangent vector Y at m € M onto —~Y at m. Let € be the canonical
symplectic structure on TM (the standard G-invariant metric gy on M identifies
the cotangent bundle 7* M and the tangent bundle TM). The main purpose of this
note is to construct the following rich family of examples: let 9 be a set of all G-
invariant Kahler structures on some tube T°M = {v € TM : g(v,v) < s} (with Q
as the Kahler form) such that the mapping ¢ is an antiholomorphic involution. We
prove here that for any J, € P there is a complex structure J; on T°M for which
(T* M, {J1, J2}) is a hypercomplex manifold. The proof is simple because it is based
on a Lie algebraic method of description of the elements J; € P [4] (usually the
tensors J, are described in terms of geometric structures associated with the metric
gm on M [5,6]). Remark that the set 9B is non-empty because it contains the adapted
complex structure [3]; for all rank-one symmetric spaces this set P is described in [4].
Moreover, the obtained set of hypercomplex structures on TM contains the hyper-
Kahler structure constructed in [5,6].

2. Anticommuting structures. We recall some facts on Kahler and hyper-
complex structures (see for example [4]). Let X be a (real) manifold with a symplectic
form  and J be an almost complex structure on X. J is a complex structure

© Mykytyuk Thor, 2003
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if the complex subbundle F of (0, 1)-vectors of J is an involutive subbundle of the
complexified tangent bundle TCX. By definition, for any z € X we have F(z) = {Y +
iJ:(Y),Y € T, X} (J? = —1). Wesay that a complex structure J is a Kahler structure
with the Kaler form Q if 1) Q,(Jz(Y1), Jz(Y2)) = Q:(Y1,Y3) for any Y1,Y2 € T: X;
2) the quadratic form B.(Y1,Y2) = Q. (J-Y1,Y2) is symmetric and positive-definite.
Such a Kahler structure J will be denoted by (J, F, Q).

A pair (J;, J2) formed by two anticommuting complex structures Jy, Js is a hyper-
complex structure on X. Then J3 = J;J is also a complex structure on X (for a
proof see [7]).

3. G-invariant complex structures. Let M = G/K be a symmetric space with
a real reductive connected Lie group G and a compact connected subgroup K. Let g
and  be the Lie algebras of the groups G and K respectively,

g=tom,  [EmlCm [mm]CE (1)

Suppose that there is a nondegenerate Ad G-invariant bilinear form (,) on g such
that its restriction (,)|m is a positive definite form and ¢Lm. This form defines the
G-invariant Riemannian metric g on M = G/K. The metric gy identifies the
cotangent bundle 7" M and the tangent bundle TM and thus we can also talk about
the canonical symplectic 2-form Q on TM. This form Q is G-invariant with respect
to the natural action of G on TM.

Since g = ¢@ m is an Ad K-invariant (orthogonal) splitting of g, we can consider
the trivial vector bundle G x m with the two Lie group actions (which commute)
on it: the left G-action, {4 : (g,w) — (hg,w) and the right K-action rx : (g, w) =
(gk, Adg- w). Let m : G x m = G xg m be the natural projection. It is well

known that G x g m and TM are isomorphic. Using the corresponding G-equivariant

diffeomorphism ¢ : G xg m = TM, [(g.w)] = d;‘tLg exp(tw)K and the projection

7 define the G-equivariant submersion IT: G xm = T'M, I1 = ¢o 7. Let &' be the
left-invariant vector field on the Lie group G defined by a vector £ € g. Since Q 1s a
symplectic form, the kernel K C T(G x m) of the 2-form Q = II*Q is the kernel of
Il., i.e. is generated by the global (left) G-invariant vector fields L, ¢CetonGxm,
¢E(g,w) = (€'(9), [w, <))

For given s, 0 < s < oo consider the tube T° M def {v € TM of length < s}. Put
W € {wem:|w| < s}, where |w)| Lf V{w, w). We will say that a smooth mapping
P:W?* — GL(m), w— P, is K-equivariant if

Adi 0Py, 0 Adg-1 = Paq,w onm forall we W keK. (2)

This mapping determines a complex (left) G-invariant subbundle F(P) C T¢(GxW*)
generated by nowhere vanishing on G x W?* (left) G-invariant vector fields L tem
and (£ € TK, ¢ € &, where

59, w) = (§'(9),iPu(£))- (3)

The subbundle F(P) is (right) K-invariant because the mapping P is K-equivariant.

Therefore F(P) & I1.(F(P)) is a well-defined (smooth) complex subbundle of the

complexified tangent bundle T¢(T* M) (K€ C F(P)).
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Consider two (left) G-invariant and (right) K-invariant subbundles 7, 7, of the
tangent bundle 7(G x m) given by

Talg, w) = {(€'(9),0), E€m}, T(g,w)={(0,u), u€m=T,m}.

Put 7 = 73 @®T,. Since T(Gxm) = K&T, the map I, |7(4, ) is an isomorphism of the
spaces T(g.w) and Try(g,w)(TM), in particular, by (right) K-invariance of 7, and 7, the
images 11.(75) and 1L1.(7,) are well-defined subbundles. But the natural projection
p:G = G/K is a locally trivial fiber bundle so that for any g € G there is a (regular)
submanifold D C G such that the restriction p: D — G/K is an embedding. Since
[1 = ¢ om, the restriction IT : D x W* — TM is also an embedding. Denote by Up
the image I1(D x W*). Now using the splitting

TUp =IL.(Ta|D x W*) @ IL.(T | D x W?), (4)
we obtain that the subbundle F(P)|Up is a subbundle of (0, 1)-vectors of the al-

_p-1
most complex tensor J(P)|Up : TUp — TUp, where Ju(guw)(P) = (F[’) };‘” )
) w

(J2(P) = —1). The tensor field J(P) on T(T*M) is smooth because F'(P) is a
well-defined subbundle. J(P) defines a complex structure if the subbundle F(P) is
involutive.

Fix base {W,} in m. Let {ws} be the coordinates in m with respect to the basis
{W,}. For any vector-function 7 : W* — m, r(w) = ), n(w)Ws by 7 we denote

the vector field P &' b n,a . Let P(€), where £ € m, denote the vector-function
P(€) : w > Py(§).

3.1. Proposition. [4] Suppose that M = G/K is a Riemannian symmetric space.
Let F(P) be a complex subbundle of TC(G x W*) defined by a K -equivariant mapping
P W?* = GL(m). Thcn

1) the subbundle F(P) = Il (.T(P)) is involutive on T* M if and only if the Lie bracket

identities [P_S m](w; w, [€,n]] hold on W* for all (fized) §,n € m;

2) the complex structure J(P) surh that o, (F(P)) = F(P) is a Kahler structure with
the Kihler form Q if and only if Py, is a symmetric positive-definite operator for each
w € W* (with respect to the bilinear form (,) on m).

For any G-invariant Kdhler structure (J, F,Q) on T*M for which o.(F) = F there
ezists a unique K -equivariant mapping P : W* — GL(m) such that J = J(P) and
F = F(P).

4. Examples: adapted complex structures. Let J# be a (smooth) complex
structure on some tube 7° M. The complex structure J4 on T* M is called adapt-
ed [3,8] if for every geodesic v in M a map ¥ : C = T(G/K), (z + iy) — yy(z)
is holomorphic on 9~}(T*M). Since the Riemannian manifold M is complete, an
adapted complex structure on T*M is unique (if it exists) [8]. Since the Riemannian
manifold (M, gm) is real-analytic and is also a symmetric space, on some tube 7° M
there exists a real-analytic adapted structure J# [8]. If the Lie group G is compact,
by Corollary 21.1 of [9] (see also [5]) FA = F(P#), where

ad,, cos ady,
sinady, |..’

m

PA.W? = GL(m), w— P2, P2 = wem', s=o0. (5)
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In this case the adapted structure F4 is defined on the whole tangent bundle TM
and (J4, F4,Q) is a Kahler structure.

If G is a noncompact semisimple Lie group and if g = ¥ @ m is the Cartan de-
composition of its Lie algebra g then the (real) Lie algebra t @ im C g€ is compact.
Now it follows easily from Proposition 3.1 that formula (5) defines a Kahler struc-
ture (J(P4), F(P#),Q) on some tube T°M, 0 < s < oco. For this s eigenvalues of
symmetric operators ad’, [m, w € W* are positive.

5. Hypercomplex structures on the cotangent bundles of Hermitian
symmetric spaces. We continue with the previous notations but in this subsection
it is assumed in addition that G/K is an irreducible Hermitian symmetric space (of
the compact or noncompact type).

We will review a few facts about Hermitian symmetric spaces (see Ch.VIII, §§4-
7,{10]). Since G/K is an irreducible Hermitian symmetric space, then g is a simple
Lie algebra and the center ¢ of ¢ is one-dimensional. There exists a unique (up to

sign) element 2o € ¢ C ¢ such that for the operator I = ad,, |[m on m we have I? = —1.
Moreover, taking into account relations (1) and the Jacobi identity, we obtain that
g, In)=1[€,m), I, =[I§(] forall{,n€m, (et (6)

Since the Lie group K is connected, the group Ad(K) commutes elementwise with /
(on m). This endomorphism determines an G-invariant complex structure on M [10].

Now fix some K-equivariant mapping P : W* — GL(m). The mapping P/,

(P df p I is also K-equivariant because the group Ad(K) commutes element-

wise with I. As an application of the proposition above we will prove
5.1. Lemma. If J(P) is a complez structure then so is J(PI).

Proof. Suppose that J(P) is a complex structure, i.e. F(P) is an involutive
subbundle. Since I is independent of w, by the definition of the Lie bracket and from
relations (6) it follows that

il

d
‘&IL:o ((PI)wa‘i”f)w(U(’f‘) - (P")wmmw(n)(&))

d
= EI:—_-D (P“”'“P“(“)Uq) i Pw+th{In)(If))

= [P{&, Pl w)
= —[w, [I¢, In]]
e —[‘w.[ﬁ,?}']]

on W* for any €, n € m. Thus by assertion 1) of Proposition 3.1 the subbundle F(PI)
is involutive, i.e. J(PI) is a complex structure on T'(T* M).

Remark that locally on the open subset Up C T'(7* M) with respect to the splitting
(4) the maps J(P), J(PI) and its product J(P)J(PI) are represented by

g —p= 0 IRt
Jl’](g.w](P) = (Pw Ow ) ’ JH(QJW}(P” e (ow Ow ) ;

i 0
Jii(g,w) (P)Jn(gw)(PI) = ( 0 P ”,_1).
Wt w

[(P1)&), PI)) (w)
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Therefore J(P) and J(PI) is a pair of anticommuting complex structures on 7° M.
Thus we have proved

5.2. Theorem. Let (J(P), F(P),Q) be an arbitrary G-invariant Kahler structure
on T*M such that o.(F(P)) = F(P). Then (T°"M,{Jy = J(P),J2 = J(PI)}) isa
hypercomplex manifold.

5.3. Remark. Using the results of [5,6] we obtain that the constructed above
hypercomplex structure (T* M, {J; = J(P), J, = J(PI)}) is a hyper-Kahler structure
if and only if PI = IP,ie. if P,I = IP, for any w € W*.

5.4. Remark. If G/K is a rank-one symmetric space isomorphic to U(n+1)/(U (1) x
U(n)), n > 2 then each G-invariant Kahler structure J(P) on TM is determined by
the following operator-function P : m — GL(m), w — Py, {4]

Pu(€) = W(r)E + ($(2r) = 9() 72 (Tw,&)Tw + (A(r) = $(r)) ™2 - (w, E)uw,

where w € m, r = |lw|]|'= /=3 Trw?, A\, : [0,400) = R are arbitrary positive
cosha(r) , 1

functions satisfying the relations y(r) = rm, o(r) = X
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TRIPLEABILITY OF THE CATEGORY
OF (STRONGLY) SEMICONVEX COMPACTA
OVER THE CATEGORY OF COMPACTA

Oleg NYKYFORCHYN

Vasyl Stefanyk Precarpathian University,
57 Shevchenka Str. 76000 Ivano-Frankivsk, Ukraine

The notion of (strongly) semiconvex compactum and semiconvex combination gen-
eralizes a notion of convex compactum and convex combination (a “segment” that
connects a point with itself is allowed to be a non-trivial loop). It is proved that a
quotient space of a (strongly) semiconvex compactum for an equivalence relation closed
under semiconvex combination is a (strongly) semiconvex compactum as well. Also
tripleability of the category of (strongly) semiconvex compacta over the category of
compacta is established.

Key words: compactum, (strongly) semiconvex compactum, left adjoint functor,
tripleability.

First recall some definitions and facts from [5]. We use the following terminology
and denotations : [ = [0,1] is a unit segment, a compactum is a (not necessarily
metrizable) (bi)compact Hausdorff topological space. A semiconver compactum is
a compactum X with a continuous ternary operation ¢ : X x X x I = X (we
usually call it semiconvex combination and write A(z, y) instead of ¢(z, y, A)) satisfying
the following axioms:

1)forallz,y€ X, A€ I: Mz,y) = (1 — A)(y, ) (commutative law);

2) forallz,y,z€ X, A, p,vel, A+p+rv=1 p#0:

Ao E5) = B+ (5 ), )

(associative law);

3)forallz,ye X : 1(z,y) = z.

4) there exists a base 3 of a unique uniformity inducing the topology on X [2] such
that B € B3, (z,9),(z,t) € B, A € I implies (A(z, z), A(y,1)) € B.

The last axiom is equivalent to the following :

4’) the topology on X is generated by a saturated family of pseudometrics (2]
(da)aca such that z,y,2,t € X, € > 0, a € A, do(z,y) < ¢, do(z,t) < €, AE I
implies do(A(z, 2), A(y, 1)) < €.

@© Nykyforchyn Oleg, 2003
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Extend the notion of semiconvex combination onto a finite number of elements of
X. Let An_1 = {(Ao,...,An) ER™ 1 Xg,..., 2, 20, Ao+ -+ An = 1} denote the
standard n-dimensional simplex. Given (Ag,...,A,) € Ap, and points zg,...,z, € X
let '

zg, if Ag = 1;

Al(zO)(l_ih!"'I‘]__il;';)(xli"'lxﬂ))] 1f’\0¢1

(Ags o An) (205 - 5 n) ={

If arguments zo, ..., T, of semiconvex combination are permutted simultaneously
with the respective coefficients A, ..., An, the value of semiconvex combinations does
not change.

For any subset A C X the set .

CH(Ags -+ s Xa)(Z0s: s Zn) | D EN, g, .., 80 € A, (Mo;.-32n) € An}

is the least closed subset in X that contains A and is closed under semiconvex com-
bination. It is called the semiconver hull of A.

There exists the largest closed under semiconvex combination closed subset A C X
such that A : A2 — A is surjective for any A € I. It is called the weak center of X and
denoted WCtr(X). The center Ctr(X) of the semiconvex compactum X is a closed
subset consisting of all points b € X such that A(b,b) = b for any A € I. Always
Ctr(X) C WCtr(X), and

Wotr(X) = {(Xo,-- -, An)(20,--12a) | R EN, (Ao, ..., An) € An, Zq,..., 20 € X}
Ctr(X) = {A1,-. - M), 2) [n €N, (Ao, ., An) € An, 2 € X}

The center of X is closed under semiconvex combination and with operation n-
duced becomes a convex compactum. Always Ctr(X) C WCtr(X). If Ctr(X) =
WCtr(X), then X is called a strongly semiconvex compactum. Here is an alter-
native definition : X is a strongly semiconvex compactum if and only if for any
r € X the point (Ag,...,An)(z,....z) converges to a unique point y € X, when
(Ag,.-.,An) € A, and max(Ay,....Ap) = 0. This implies that if f : X — Y is a sur-
jective map of strongly semiconvex compacta that preserves semiconvex combination
(i.e., f(A(z1,22)) = A f(z1), f(z2)) for any z,,2z2 € X, A € I), and X is strongly
semiconvex, then Y is strongly semiconvex as well.

For proofs see [5].

Theorem 1. Let X be a (strongly) semiconvez compactum and “~"C X x X be
a closed equivalence relation that is closed under semiconver combination. If by [z]
the equivalence class that contains ¢ € X, is denoted, then the formula A([z], [z']) =
A(z,2)], z,2' € X, A € I, correctly defines an operationY xY xI Y onY = X/
such that Y is a (strongly) semiconver compactum.

Proof. Since “~” is closed, X/~ is a compactum [2]. Denote by ¢ : X — X/.
the quotient map. Let z; ~ zi{, 23 ~ x4, #1,2],22,25 € X, A € I. Then by
the assumption of the theorem A(z1, z2) ~ A(z}, z5), and the operation is well defined.
Axioms (1)~(3) for Y are easy consequences of (1)—(3) for semiconvex combination in
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X. Since ¢ is a surjective continuous map of compacta, the diagram

semiconvex combination
X X sl y X

7

qxaxlfl lq

(X/o) % (X)) % T _ Xl
new operation
shows that new defined operation is continuous.

Denote by exp Z [3] the set of all nonempty closed subsets of an arbitrary com-
pactum Z. Then the multivalued map ¢~ : Y — exp X is upper semicontinuous, i.e.,
for any open set U C X the set {y € Y | ¢~ *(y) C U} is open. Thus for any closed
FC Xtheset {ycY | ¢ (y) NU # 0B} is closed. It is easy to prove that the map
Q= (x)o(g7" xg71) : Y xY = exp(X x X), Q(y1,¥2) = d™'(y1) x d~ ' (y2), is upper
semicontinuous as well.

Take a saturated family (pa)aea of pseudometrics that generates the topology on
X and satisfies (4’). For any a € A the formula

pal(z1,232), (€3, z4)) = max{pa(21,23), pa(T2, 24)}
defines a continuous pseudometric on X x X. For each € > 0 the set
F& = {(z1,22) € X? | pal(21,22), “~") L €} =
{(z1,22) € X? | 321,22 € X : 21 ~ 22, pa(1,21) < €, pa(Z2,22) < €}
1s closed, as well as the set

Ve = {(y1,12) €Y? | Qyr,v2) NFE # 0} = {(y1,52) €Y?|Fz1 €97 (1),
dz, € q_](yg).ﬂzl,ZQ € X 121 ~ 23, pa(Z1,21) € €, palz2,22) < €}

Since (pa)aca is saturated, the family (F*)aca, >0 is a centered system of
nonempty closed subsets of X x X, and naEA,e)ﬂ F2 = “ ~ 7. Suppose that
(11.92) € Nucaeso Ve Then {Q(y1,32) D FZ | a € Ae > 0} is a centered sys-
tem of nonempty closed subsets of X x X. Thus its intersection is nonempty, and
Q1,¥2) NNacacso FE#0 = Q1) N“~” #0 = y1 = y2. Therefore we
have Naeaeso V" = A ={(y,9) | y € Y}. Obviously V* 5 A for any a € A, ¢ > 0.
Moreover. Int V,* D A for any a € A, ¢ > 0. This follows from the inclusion

VES U2 ={(y1,y2) €Y {3y €Y Vz1 € ¢~ (y1), V22 € ¢~ (v2),
321,22 € ¢ (Wo) : palz1, 21) < €, pa(T2, 22) < €}.

The upper semicontinuity of @ implies the openness of U2. Obviously UZ D A.
Thus (V,%)ae4.e>0 is a base of a unique uniformity that generates the topology on Y.

Suppose that (y1,y2), (¥1,¥5) € V&, A € I. Then there exist
Il:&:Qszl! 22!":,1! I'z;ziazﬁ € X such that Q(Il) =, Q(z:!) =Y2, 21 ~ 22, pa(:!?]_,zl) <
¢, palznz2) € € A(22) = Yo 9(25) = Yo 7 ~ 7, Palzh ) < € paleh 7)) < e
Then pa(A(z1, 20), Mz1,20)) < € Pa(M(22,25), Mz2,24)) < € Ale1,2}) ~ Alza, 7).
As g(A(z1,21)) = My1, ¥1), ¢(M(z2,25)) = A(y2, ¥3), we obtain (AMy1,¥1), Ay2, v5)) €
%,
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Thus (V.*)ae4 ¢>o0 satisfies (4), Y = X /. is a semiconvex compactum and ¢ : X —
X/~ preserves semiconvex combination. Therefore if X is strongly semiconvex, then
Y is strongly semiconvex as well. .

Semiconvex compacta and their continuous mappings which preserve semiconvex
combination form a category denoted by SConv. Strongly semiconvex compacta form
a full subcategory SsConv C SConv.

By Comp the category of compacta is denoted. Let U : SsConv — Comp and
U’ : SConv — Comp be the forgetful functors.

Recall that a functor L : B — C is called left adjoint [1] to a functor R : C - B
if there are given bijections 8(X,Y) between arrows from LX to Y in B and arrows
from X to RY in C for all X € ObC, Y € ObB, and these bijections are natural by
both arguments, i.e., the diagram

BLX,Y) XY c(x,RY)

15(”.9} C(Lﬁg)l

BLx',y") 2EXD, ox' Ry

commutes for any X, X' € ObC,Y, Y € ObB, f: X' -5 X,9:Y -»Y'.
Theorem 2. There exist left adjoints to U and U'.

Proof. An explicit construction of a left adjoint to U was described in [5]. Now
an independent proof suitable for both cases will be given. Due to Freyd General
Adjoint Functor Theoremni [1] for a category B with all limits and a functor R: B — C
the existence of a left adjoint L : C — B is equivalent to the following :

1) R preserves all limits;

2) R satisfies the solution set condition, i.e., for any X € ObC there exists a set
Sc{Y,f) | Y € ObB, f : X — RY} (solution set) such that for any arrow
g: X = RZ, Z € ObB, there is a pair (Y, f) € S and an arrow h: Y — Z in B such
that ¢ = Rho f.

It suffices to check the existence of limits in SConv and SsConv and their preservation
by U’ and U for two partial cases : for products and pairwise equalisers.

If Xo, a € A are (strongly) semiconvex compacta, then their product in SConv
(SsConv) is merely a topological product with semiconvex combination defined by
a formula

/\((1‘0), (yor)) = (’\(1’019‘0))‘ (xa); (ya) € ]:[ Xa,AE I

acA

Clearly it is preserved by the forgetful functor.

If f,g : X = Y is a parallel pair in SConv of SsConv, then its equaliser in Comp is
aset Xo = {z € X | f(z) = g(z)} with the embedding i : Xo — X. This set is closed
in X and closed under semiconvex combination. Therefore X with the restriction of
semiconvex combination from X and i : Xg — X is the equaliser of f,g in SConv
(8sConv) that is preserved by U’ (respectively by U).

Prove that the solution set condition holds. Suppose that Z is a (strongly) semi-
convex compactum, g : X — Z is a continuous map of compacta and |X| < 7, 7 is
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infinite. Then cardinality of the set

{Pas-. s M) (F(20), ..., f(zn)) | NEN, 2o,...,20 € X, (o,...,An) EQ™INA,L)

is not greater than 7. Its closure Y is the semiconvex hull of f(X) in Z, and g = ho f,
h :Y < Z is the embedding, f = g, f : X = Y. Therefore we can put S to be
the set of all continuous maps from X to “representatives” of all (strongly) semiconvex
compacta with density net greater than 7.

Any adjunction between L : C — B any R : B — C is uniquely determined by a pair
of natural transformations [1] n1¢ — RL (the unit of adjunction) and ¢ : LR — 1p
(the counit) such that ReonR = 1g, €Lo Ly = 1. Then the functor T = RL:C - C
and natural transformations 77 and u = ReL : T? — T form a triple T = (T, n, p).
This means that diagrams

TLTQ Tai,.Tz
AR
Tn B Tu 7

commute. Then 7 is called the unit and p the multiplication of T.
For an arbitrary triple T = (7,7, ) in C a pair (X, f), where f : TX — X is a
morphism in C, is called a T-algebra iff the following commute:

X
xXorx mexrx

NE N

X TR = X

An arrow ¢ : X — Y is called a map of algebras (X, f) — (Y, g) if and only if
goTé = o f. Algebras of a triple T in C and their maps form a category CT. There
exists a pair of adjoint functors FT : C — CT and U 0% 4 €, FYX = (TX,pX),
FT¢ = Té, UN(X,f) = X, UT¢ = ¢. The triple T arises from this pair in a way
discribed above as well as from original pair L, R. There exist the unique functor
( Eilenberg-Moore comparison functor) @ : B — CT that makes the diagram

R

B

NI

P S0 ¢
C—nL

commutative. If ® is an equivalence of the categories then B is said to be tripleable [1]
over C (with implicit adjoint functors L and R). T. Swirszcz [4] proved that con-
vex compacta are tripleable over compacta (the left adjoint is a probability measure
functor). Here is a counterpart for (strongly) semiconvex compacta.

Theorem 3. Forgetful functors U’ : SConv — Comp and U : SsConv — Comp are
tripleable.
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Proof. Prove the statement for U’ : SConv — Comp (the case of U : SsConv —
Comp is quite analogous). Due to Beck’s precise tripleability theorem [1] it is sufficient
to prove that ¥
1) U’ has a left adjoint;

2) U’ reflects isomorphisms;

3) SsConv has and U’ preserves coequalizers of U’-contractible coequaliser
pairs [1]. :

(1) is proved above, (2) follows from the fact that isomorphisms in SConv are home-
omorphisms that preserve semiconvex combination. Let us prove (3).

Let fo,fi : X = Y be an U’-contractible coequaliser pair in SsConv, i.e. there
exists an arrow ¢t : Y — X in Comp such that foot = 1y, fioto fo = fioto fi,
and the pair fo, fi has a coequaliser h : Y — Z in Comp: Then h is the quotient
map of the closed equivalence relation : y; ~ yz for y1,y2 € Y if and only if there
exist 1,22 € X such that fo(z1) = fo(z2), 11 = fi(z1), y2 = fi(z2). Moreover
“~” is closed under semiconvex combinations. Suppose y; ~ ¥i, y2 ~ y5, A € I.
Then there exist z;,z}, 22,25 € X such that fo(z1) = fo(21), 11 = filzr), y =
fi(zh), folzz) = fo(zh), y2 = filz2), ¥» = fi(zh). Put z = A(zy,20), 2’ =
Azh,zh), ¥y = My, v2), ¥ = A}, 95). Thus fo(z) = fo(z'), y = filz), ¥ = filz)
implies A(y1,y2) ~ A(yi,v5). By the first theorem X/. is semiconvex, and h is
a coequaliser of fy, fi in SConv.

Remark. In fact we have proved that U’ and U form [1] coequalizers of U’-
contractible (resp. U-contractible) coequaliser pairs. Thus the comparison functors
are 1somorphisms of categories.
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MOHA/JU30BHICTh KATET'OPII (CTPOI'0O) HANIBOIIYKJIUX
KOMITAKTIB HA/ KATETOPI€IO OIIYKJ/JIUX KOMITAKTIB

O.Hukundopunx

Ipuxapnamcexui Haytonasbrnutl ynwisepcumem iment B. Cmedanuxa,
sya. Illesuenxa, 57 76000 Isano-Ppanxiscvr, Yrpaina

[MouarTs (cTporo) HamiBONyKJOro KOMHAKTa 1 HamiBOMykJoi komGiHauii ysa-
FaJbHICIOTh MOHATTA ONYK/JOTO KOMNAKTa Ta ONMykK/aoi kKoMbiHalil (3 pisaunern, wo
“piapiaok”, AKWH 3'€JHYEe TOYKY 3 cobolo, Moxe 6yTH HETPHBIAJILHOIO HETIEO).
JloBeseno, mwo ¢akTop-npocTip (CTPOro) HamiBOMYKJOr'O KOMIaKTa € (cTporo)
HaNiBOIYK/JIMM 3a YMOBM, LIO BiANOBIJHE BIJHOINEHHA eKBIBaJeHTHOCTI 3aMKHeHe
CTOCOBHO (hopMyBaHHA HalBonykanx kombinaniin. Takox JoBeJeHO MOHAAU3OBHICTH
KaTeropil (cTporo) HamiBoOIyKIMX KOMNAKTIB Haj KaTeropi€io KOMNakxTiB.

Kawouost caosa: koMnakT, (CHIBHO) HANIBOMYKIMHA KOMIAKT, JiBHU CHPAXKEHUN
(pyHKTOpP, MOHA JUYHICTE.
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STANDARD FORM OF PAIRS OF MATRICES WITH
RESPECT TO GENERALIZED EQUIVALENCE
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NAS of Ukraine, 3b Naukova Str. 79053 Lviv, Ukraine

Pairs (A4;, A2) and (B;, B2) of matrices over an adequate ring R are called general-
ized equivalent pairs if Ay = UB1Vy, Ay = UB;V; for some invertible matrices U, Vi,
V> over R. A standard form to which a pair of matrices can be reduced by means of
generalized equivalent transformations is established. Conditions under which pairs of
matrices will be generalized equivalent are founded, Classes of pairs of matrices which
have the unique standard form are given.

Key words: pairs of matrices, generalized equivalence, canonical diagonal form, stan-
dard form.

Let R be an adequate ring, i.e. R be domain of integrity in which every finitely
generated ideal is principal and for every a,b € R with a # 0, a can be represented as
a = cd where (c,b) = 1 and (d;, b) # 1 for any non-unit factor d; of d [1]. Further let
M (n. k, R) and M (n, R) be the sets of n x k and n x n matrices over R respectively; dz,
be the greatest common divisor of minors of the order m of the matrix A € M (n, k, R);
DA be the canonical diagonal form (the Smith normal form) of the matrix A, i.e.

DA = UAV = diag(e1, 92, .- - pr,0....,0), o, #0, o1 l@2| - |er

for certain invertible matrices U € GL{(n,R) and V € GL(k,R). Pairs of matri-
ces (A, B;) and (A, By), where Ay, A2 € M(n, k1, R) and By, By € M(n, k2, R)
are called generalized equivalent pairs if A, = UA Vi and By = UB;V; for certain
matrices U € GL(n, R) and U; € GL(k,R),i=1,2.

The reducibility of finite sets and pairs of matrices over polynomial and other
rings by the same transformations to the triangular forms and their applications is
considered in [2-7]. V. Dlab and C. M. Ringel [8] have established the canonical
form of the pairs of complex matrices (Aj, A2) with respect to the transformation
(A1, A2)(Q, P, Pp) = (QAlPl'l, QAsz_l), where @ is a complex invertible matrix,
P, and P, are real invertible matrices.

The problem of the classification up to generalized equivalence of pairs of matrices
over the rings as and the problem of the classification up to equivalence of matrices
and of pairs of matrices, is wild [9]. Therefore such classification of pairs of matrices
is possible only in some cases.

© Petrychkovych Vasyl’, 2003
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In this paper some form to which a pair of matrices can be reduced by means
of generalized equivalent transformations is established. Conditions for generalized
equivalence of pairs of matrices are given.

Lemma 1. Let B € M(n,k,R) and DB = diag(vs,...,¥r,0....,0). Then there
erist an upper unitriangular matriz U € GL(n, R) and an invertible matriz V €
GL(k,R) such that

R 0 0 B e N
by ... 0 0 O e B
UBV =TB =|b,_11%1 ... Yr1 0 0 ... o0,
brl'pl € br,r—ld’r—l brr‘wr 0 v 0
bnld’l - c E»';.1'1.,1"—1."\f"’:\"--1 bnrﬂ’r 0 R 0
where (byr,...,bnr) = 1.
Proof. By Lemma 1 [7] there exists a row matrixu = {|1 wuz ... up||such that
uB=|ley e ... cxl|, where (e1,¢2,...,¢) = d®? = ¢;. Then for the matrix
1 u2 ... us
Ul _— ‘ 0 ]n—l }

where I,,_; is the (n—1) x (n—1) identity matrix, and for some matrix V) € GL(k, R)
we get

B G o B
B BV, = ”21_‘_”1 B =By Baikmi€M(n—1k-LR).
bn1w1

We now carry out similar reasoning on the matrix B,_; -1 etc. In the end we
obtain the matrix B,_1, such that at the lower right corner of B,_; there is a matrix
Bn-(r-1)k—~(r-1) and rank By, _(,_1) k=(r-1) = L.

Then for some matrix V,-; € GL(k — (r — 1), R) we have

brr?,bf 0 e 0
Bn_(,»_l)‘k_f,_l}V,_l =
bﬂru‘)r 0 0
The lemma 1s proved.

Corollary 1. Let B € M(n,k,R), rank B = n. Then there exist an upper uni-
triangular matriz U € GL(n, R) and an invertible matriz V € GL(k, R) such that
UBV = TB = TDB, where T is a lower unitriangular matriz in GL(n, R).

Further by U(R) we denote the group of units of the ring R, by Rs a complete set
of residues modulo 4, and by Rj5 the maximal subset of Rs such that ua # b(mod )
for any a,b € Rj and every u € U(R).
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Theorem 1. Let A € M(n,k1,R), B € M(n,k2,R), n < k1, n < kg, and D4 =
diag(e¢1, ..., ¢r,0....,0), DP = diag(¥;,...,%,,0....,0), r < s < n. Then a pair of
matrices (A, B) is generalized equivalent to the pair (DA, TB), where

(1) if s =r=n, then

T 0 0 0o ... 0
TB — tyqy %2 ... 0 0 ... O
tnl'wl tn2w2 l()n 0 0

pi Yi) .. ey
andti'eR’.,,whemd’":(“s—)! 11}=1!"':n=1>.};
= T\ ¥
(i) if r < s < n, then

(21
ta191 U2
tr11 tras Yy
B tr+1,1wl tr+l,2w2 ik tr-{-i‘rﬁ)r I!’w-l»l
e —=
Ls1¥n lsata tyrtn 0 coi o b,
teg1,1¥1 Lsyy,a¥%s - lsg10%r 0 0 0
tn1Yn tnaWn tﬂr!i’r 0 0 0 0
and t; € R‘éu_, 55 pny By T2 Lo § 559, where
o i
J (f}“-?)' f ij=1ir 1>,
NP Wy
51’_}' = tr",-‘i "
[T’ f i=r+1,...,5 7=1..,7
J
0, # s=E4l. 8 321 P
(ti1) if r = s < n, then
(3 0 0 0 0
t219 0 0 0 0
T Lrpwa (W1 ans Wp-1 0 o ... 01,
t1y R tr,rvlwr&} trrr 0 e 0
tnlwl v tn.r—-ld’r—l tnrwr 0 v 0

(owionns tne) = L and ty € Ry, where &g = (&,E), 7L P, 1B )
" ®i i

Proof. The pair of matrices (A, B) is generalized equivalent to the pair (D4, B),
where DA = PAQ, By = PB for some matrices P € GL(n, R) and Q € GL(k,, R).
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Further we shall reduce the matrix B; to a triangular form by means of admissi-
ble equivalent transformations (U, V), U € GL(n,R) and V € GL(k2, R) such that
UDA = DAV, for some matrix Vi € GL(k;,R). Then the matrix U has a form
I = Hu;‘j”’;, where u;; = ,%;-u‘:-j fotali> . 4.i=100u0:

Let rank B; = rang B = s > r. Then by Lemma 2 there exist an upper unitrian-
gular matrix U; € GL(n, R) and a matrix V; € GK (k2, R) such that

¥ e 0 .. 0
ba1 () e 0 0 cee 0
UyBVi = || butr  bra%z - ¥y 0 - 0 [=B8B
bre11%1 brgr2¥2 o begrs¥r brgretr 0 brgikg
ba1¥1 bnota -+ burty bnrgr 0 bpky

Therefore for some matrices P, € GL(n — r, R) and Qk,—r € GK (ks — 1, R) we
have Py—yBn—s kst Qis—r = didg(¥rg1,..:,¥s,0,...,0), where

5r+1,r+1 B2 br+1.k:
Bisoiliev 2
bn‘r-]-l RS bnk;

Put Us = I, & Pa—y, Vo = I, & Px,—r. Thus U3 ByVs is a lower triangular matrix with
the principal diagonal DF .

Then similarly as in the proof of Theorem 1 [6] we reduce the elements b;; of the
matrix 'TIB modules &;; ¢ = 2,...,n, j = 1,...,7r, j < i. Thus we get a matrix
= UsTE V3 whose (i, j)-element is equal to ¢;;9;, where ¢;; € Rs,,. If ¢ij 7 R:;U.
then there exists ¢;; € R such that ujeij = tij(modd;;) for some u; € U(R). Then
sinnlarly as in the previous case we obtain the matrix 7% = UsTF V4 whose (i, j)-
element is equal to ti;¥;, i = 2,...,n, = 1,...,7r, j < 1, ets. Therefore we get
the matrix T® which is defined in Theorem 1. Since we made admissible equivalent
transformations over matrices B; and T2, i = 1,2,... the pair of matrices (A, B)
is generalized equivalent to the pair of matrices (D4, 7). In cases (i) and (iif) the
proofs are similar. Therefore the proof of the theorem is complete.

Definition 1. The pair (D#, T?) which defined in Theorem 1 is called the standard
form of the pair of matrices (A, B).

We remark that the standard form (D4, T2) of the pair of matrices (A4, B) with
respect to generalized equivalence is uniquely determined only in some cases.

Corollary 2. Let A€ M(n,k;,R), B€ M(n,kq,R), n < ki, n < ks, and (dA,dB) =

1. Then the pair diagonal matrices (D4, DB) is the unique standard form of the pair
of matrices (A, B).

Further we shall establish some conditions for generalized equivalence of pairs of
matrices. Since for any matrix A € M(n,k, R), n < k there exists a matrix V €
GL(k, R) such that AV = ||A; 0}, where A} € M(n, R) it is sufficient to consider
the generalized equivalence of pairs of square n X n-matrices.
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Any pair of matrices is generalized equivalent to the pair of matrices of standard
form. Hence it is sufficient to consider the generalized equivalence of pairs of matrices
of the standard form. .

Theorem 2. Let (D,T)) and (D,T3) be pairs of matrices of standard form, i.e.
D = diag(w1,...,¢n), Yn #0, ¢1 | w2 | -+ | ¢n and Ty, T3 are lower triangular
matrices with the principal diagonal ¥ = diag(yy,...,%s,0,...,0), ¥y | ¥1 | ... ¥s.
Then the pairs of matrices (D,Ty) and (D, T,) are generalized equivalent if and only
if the following condition holds:

(i) the matrices (adj D)T, and (adj D)T5 are equivalent, t.e.

S(adj D)Th = (adj D)T2Q, S,Q € GL(n, R); (1)

(ii) in the set S = {S | S(adj D)T1 = (adj D)T2Q, S,Q € GL(n, R)} the ezists a
matriz

S =|lsi; ]|, such that s;; = %s;j, ij=1,...n, j>i @)

Proof. Necessity. Let be UDVy, = D and UT)} Vo = T, where U, V;,V, €
GL(n, R). The matrix V; = ||vi; ||} has the form (2). Then

(adj D)T2 = (adj V4)(adj D) (adj U)UT, V2 = (adj Vi)(adj DTy Vau,  (3)
v € U(R). Since adjVy = v, V)%, v; € U(R), then the equality (3) implies
V,"'(adj D)7y = {adj D)T>Q, Q € GL(n,R).

Since the matrix V; has a form (2), therefore V;™! has the same form [10].
Sufficiently. Assume the conditions (1) and (2) hold. It is easily to see, that

S(adj D) = (adj D)U, where

p-
U=|lu;lly, wy=—uy,
Yj

S il al P (4)
Then the equality (1) implies (adj D)UT; = (adj D)T2Q or UT; = T2Q. Since the
matrix U has the form (4), then UD = DV. Therefore the pairs of matrix (D, T;)
and (D, T,) are generalized equivalent.

Corollary 3. Let A, B € M(n, R) and A be a nonsingular matriz. Then the pair of
matrices (A, B) 1s generalized equivalent to the pair of diagonal matrices (D#, DB) if
and only if the matrices (adj A)B and (adj DA)D® are equivalent.

Proof. The pair matrices (A, B) is generalized equivalent to the pair of matri-
ces of standard form (D4, T#). The matrix (adj D4)T® is equivalent to the matrix
(adj A)B and hence it is equivalent to (adj DA)D®. Then there exist lower unitrian-
gular matrices S,Q € GL(n, R such that S(adj DA)T2 = (adj DA)DPQ. Therefore
the statement (ii) of Theorem 2 holds for the matrix S. .
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Let (D,T;) and (D, T,) are pairs of matrices of such form: D = diag(1,...,1,¢,),
en # 0,

1 0 0 0
0 Yy oo 0 0
e S A N ES AT N
0 8 s Yno1 0
tiv tis¥a ... lin—1¥n-1 ¥n

i = 1,2. Without loss of generality we may assume that ¢; = 1. Further by d; we
denote the greatest common divisor of elements of the last row of the matrix 7;:

d; = (i1, taaVa, o o s tin=1¥n-1,¥n), t=1,2.

Lemma 3. If the pairs of matrices (D,Ty) and (D, T») are generalized equivalent,
then (dy, ¢n) = (d2, Pn)-

The proof of lemma follows from Theorem 2.

Lemma 4. Let (D, T1) be a pair of matrices of the form (5) and (dy, pn) = 1. Then
the canonical diagonal form of the matriz (adj D)T; is equal to the product of canonical
diagonal forms of the matrices adj D and T3, 1.e.

DA BT = PP ph = disg(L,eathai- - Patba):

Proof. By Cauchy-Binet formula the minors of product of matrices we get that
PP~ 1yq .. .Y, divides every minor of order p of the matrix (adj D)T;. Since (d1, ¢n) =

d}(}adj D)T,

1 we have = @2 4y ... ¢p. This implies the statement of the lemma.

Theorem 3. Let (D,Ty) and (D,T3) be pairs of matrices of form (5). If
(di,¥n) = (d2,¢n) = 1, then the pairs of matrices (D,Ty) and (D, T;) are gener-
alized equivalent.

Proof. By Lemma 4 the canonical diagonal forms of the matrices (ad) D)7} and
(adj D)T; coincide, i.e. the following matrices are equivalent:

S(adj D)1 = (adj D)T2Q, S,Q € GL(n,R), S=|s;l}- (6)

Thus we have @, | sint1;9;, forallj=1,...)n,i=1,...,n—1, where %) =t;, = 1.
Since (dy,®n) = 1 we obtain that ¢, | s;n foralli=1,...,n -1, i.e. statement (ii)
of Theorem 2 holds for the matrix S. Therefore the proof of the theorem is complete.

Corollary 5. Let (D,T)) be a pair of matrices of form (5). If (dy,pn) = 1, then
(D, Ti) is generalized equivalent to the pair (D, TV), where ¥ = diag(1,¥a,...,%n),

In-.-] 0

T=ly 0 .. 0 1

and
foe { 0, if the matrices (adj D)T; and (adj D)¥ are equivalent,

1, otherwise,

Put R} = {a € R | (a,d) # 1 forall a # 1}.
Then Theorems 1 and 3 imply
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Corollary 6. Let A,B € M(n, R),
DA =diag(l,...,1,¢n), D? = diag(1,%2,...,%n), 5

(¢n,%n) = 8, and (Yn-1,0,) = 1. Then the pair of matrices (A, B) is generalized
equivalent to the pair (DA, TD#B), where

1:’31 ta ... th—1 1

“, tjGR", j=1...,n-1.

Theorem 4. Let A;, B; € M(n,R), D4 = D* = diag(1,...,1,¢,), DB = DB =
diag(1l,%¢2,...,%n), i = 1,2. Let (pn,¥n) = p, (¥n-1,p) = 1 and p be a prime element
of the ring R. Then .
(i) the pairs of matrices (A1, By) and (A3, Bz) are generalized equivalent if and only
if the matrices (adj A;)B; and (adj A2)B2 are equtvalent;
(ii) the pair of matrices (Ay, By) is generalized equivalent to the parr (DA, TDBY),

where
2 In_l 0
T‘H: 0 ... 0 1‘
and
g { 0, if the matrices (adj A1)B; and (adj D#1)D?! are equivalent;
~ | 1, otherwise.

Proof. The pair of matrices (4;, B;) (i = 1,2) is generalized equivalent to the pair

(DA',’I;B‘) of form (5) and t;; € Ry, j = 1,...,n—1. Then (di, pn) = 1 if there
exists t;; #0,j=1,...,n—1. Further we use Theorem 3, which completes the proof
of the statement.
Example. Let N = {(A4,B) | A,B € M(2,Z) such that D* = diag(1,25), D? =
diag(1,175)}. Then 6 = (25,175) = 25, Rs = {0,1,...,24}, R; = 10,1,....12F and
RY = {0,1,5,10}. Then the set A is partitioned up to the generalized equivalence on
four disjoint classes with representations

(: 311 3

t 175
The direct verification shows that the pairs of matrices

(o 5115 ) = (o sl b %))

0 25 5 175
are not generalized equivalent.

), t=0,1,56,10.
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n-TRIVIAL KNOTS AND THE ALEXANDER POLYNOMIAL

Leonid PLACHTA

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
NAS of Ukraine, 3b Naukova Str. 79053 Lviv, Ukraine

For each integer n > 1, we construct via the pure braid cofnmutators (2n — 1)-trivial
knots with non-trivial Alexander polynomial. We formulate also a sufficient condition
under which an (n — 1)-trivial knot, n > 2, has trivial Alexander polynomial. As a
particular case, for each n > 1, we describe some class of “geometric” (n — 1)-trivial
knots with trivial Alexander polynomial.

Key words: invariant of finite order, braid commutator, Seifert surface, Alexander
polynomial, trivalent diagram, n-trivial knot.

1. Knots K and L are called V;,-equivalent (n-equivalent) if they cannot be dis-
tinguished by the Vassiliev invariants (additive Vassiliev invariants, respectively) of
order < n, the invariants taking values in any abelian group. Goussarov [6] was the
first who has characterized the relation of n-equivalence on knots in combinatorial
terms. Later on, it turned out that the relations of V,-equivalence and n-equivalence
coincide on the knots in S (see [7,15]). Habiro [7] has characterized n-equivalence of
knots in terms of the so-called Cy,41-moves. Stanford [15] has given a description of
n-equivalent knots in terms of the pure braid (n + 1)-commutators. A knot in S? is
called n-trivial if it is n-equivalent to the trivial one. In [9], Kalfagianni and Lin have
introduced for each n > 2 the classes of “geometric” knots, among other the classes of
n-hyperbolic, n-elliptic and n-parabolic knots, and showed that all they are n-trivial.
Moreover, any n-hyperbolic and n-elliptic knot has the trivial Alexander polynomial
[9]. The latter two classes do not exhaust however all n-trivial knots. Kalfagianni
and Lin showed (Proposition 6.1 of [9]) that for each integer n > 1 there exists an n-
trivial knot with the non-trivial Alexander polynomial. The proof of the proposition
is based on Theorem 1 of [3] (which proves the Melvin-Morton-Rozansky conjecture)
and is rather of existence character. In the present paper, for each integer n > 1 we
indicate in an explicit form the (2n — 1)-trivial knots having non-trivial Alexander
polynomial. Our approach uses in essential way the characterization of n-equivalent
knots in terms of the pure braid commutators (see [14] and [15]).

In [12], H. Murakami and T. Ohtsuki have described the filtration en the vector
space S over the rationals Q spanned by Seifert matrices of knots,

S8 358728
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and related this to the Goussarov-Vassiliev filtration of the vector space spanned
by knots. They showed that a rational Vassiliev invariant of order n comes from the
Alexander polynomial (i.e. can be expressed as a sum of products of the coefficients of
the Alexander-Conway polynomial) if and only if it can be factored through the quo-
tient space §/Sn+1. In this paper, using the above mentioned results of H. Murakami
and T. Ohtsuki (see [12]) and the results of A. Kricker, B. Spence, and I. Aitchison
[10] on the characterization of rational weight systems coming from the Alexander-
Conway polynomial, we obtain a sufficient condition for an n-trivial knot, n > 2,
to have the trivial Alexander polynomial. As a particular case, for each n > 1 we
describe some class of “geometric” n-trivial knots with the trivial Alexander polyno-
mial, where each such “geometric” n-trivial knot is obtained from the trivial one by
inserting in it the “double” pure braid (n + 1)-commutators (see [14] for details).

Now we define some needed notions and review briefly the results on the char-
acterization of n-equivalent knots via pure braid commutators [15] and Cp4;-moves
(7). We shall also review the results of H. Murakami and T. Ohtsuki, and A. Kricker,
B. Spence, and 1. Aitchison on the characterization of the rational Vassiliev invariants
and weight systems coming from the Alexander-Conway polynomial (see [12] and [10]
for details).

Let K denote the free abelian group generated by the classes of equivalent oriented
knots in S® and K, the subgroup of K generated by all n-singular knots, n > 1. Here
an n-singular knot we regard as an element of K so that each double point of this
knot is replaced by a difference of the positive and negative crossings (see Fig. 1).

A X

s

¥

Fig. 1

Let
RakiDHKaDdDKsgD .

be the Vassiliev-Goussarov filtration of K. A Vassiliev invariant of type n, n > 0,
taking values in an abelian group H is a map v:K — H vanishing on the subgroup
K.41. The smallest number m such that v vanishes on K4 is called the order of v.
The Vassiliev invariants are called also the invariants of finite type of knots (or links).

A trivalent diagram D of degree n is a connected graph with 2n vertices all of which
are trivalent. There is a distinguished subgraph which is homeomorphic to a circle,
called the external one. Each vertex of D which lies on the external circle is called
external, otherwise it is internal. At each internal vertex a of a trivalent diagram one
of two possible cyclic ordering of the edges around this vertex (the orientation at a) is
chosen. The subgraph of D having the same vertex set as D and the edge set of which
consists of all edges of D which do not lie on the external circle is called the internal
graph of D. An orientation of the external circle is chosen and the other edges of D are
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taken to be non-oriented. All trivalent diagrams are considered up to an isomorphism
of distinguished graphs that respects the above structures on them. Every trivalent
diagram D is pictured in the plane in such a way that each its interndl vertex has
the counterclockwise orientation. If a trivalent diagram has no internal vertices it is
called a chord diagram. Denote by D and D, the collections of all trivalent diagrams
and trivalent diagrams of degree n, respectively.

Define A, and A to be the quotient groups, A, = ZD,/{all STU relations} and
A = ZD/{all STU relations}, where STU is the homogeneous relation on ZD indi-
cated in Fig. 2.

t

STU - \/ = .

Fig. 2

Note that the graded abelian group A is naturally isomorphic to the graded abelian
group A°, the quotient of the group freely generated by chords diagrams via 4T-
relations (see [2]). A trivalent diagram D is called a tree diagram, if its internal graph
is a tree. A trivalent diagram T is called a one-branch tree diagram of degree n, if
its internal graph is isomorphic to the standard n-tree. There is a natural one-to-one
correspondence between the permutations of the symmetric group S, and the one-
branch tree diagrams of degree n. For a given permutation ¢ € S,, denote by To
the one-branch trivalent diagram of degree n corresponding to o (see [11]). Note that
A® Q has an algebra structure with respect to the connected sum of external circles
of trivalent diagrams (the product of trivalent diagrams) [2]. The co-product V on
A ® Q is defined in a natural way (see [2]). With respect to these operations, A® Q
is a commutative and co-commutative Hopf algebra and is generated by the primitive
elements of A ® Q [2]. The primitive subspace P of A ® Q is generated (as a graded
vector space) by the primitive trivalent diagrams, i.e. the trivalent diagrams with the
connected internal graph. It is known (see [5]) that the primitive space Pq,d > 1,
is generated by the trivalent diagrams of the two types. The first type of generators
consists of the primitive trivalent diagrams whose internal graph has the negative
Euler characteristic (see [8]). The second type (only for even d = 2n) consists of
the so-called ”wheel” ws, (see Fig. 3). Therefore, for odd d > 1 the primitive space
P, is generated by the primitive trivalent diagrams of the first type. The space Py
is one-dimensional and is generated by a chord diagram D; with a single chord. It
follows that as an algebra, A®Q is generated by D, the primitive trivalent diagrams
with negative Euler characteristic and the “wheels” wan,n 2 1.

An (unframed) Q-valued weight system of degree n is a map w: A, — Q which
vanishes on each trivalent (chord) diagram of degree n having an isolated chord. A
split diagram is a diagram which can be decomposed into a product of diagrams of
lower order. By Kontsevich’s integral, each Q-valued weight system of degree n can
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be integrated (in a non-unique way) to a Q-valued Vassiliev invariant of order n [2].
A rational-valued Vasiliev invariant v of order n is called canonical if it is determined
uniquely by its weight system w(v), of the same degree n [3]. Under the Alexander-
Conway polynomial we shall mean a canonical Vassiliev power series C satisfying the
following two axioms Al and A2:

) Wy Wsg

Fig. 3

Al (the skein-relation). C(K4) — C(K-) = (e"? — e~"/?)C(K,),
for any link diagrams K, K_ and Ky which are the same outside some small disc
in the plane where they look as positive crossing, negative crossing and smoothing,
respectively; .

A2 (the initial data). C(c-component unlink)=1if ¢ = 1 and 0, otherwise.

Therefore the Alexander-Conway polynomial is a renormalized and reparametrized
version of both the Alexander and Conway polynomials. Bar-Natan and Garoufalidis
described the Conway weight systems w: A° — Z in terms of intersection graphs of
chord diagrams (Theorem 3 of {3]) and the universal immanants of such intersection
graphs (Theorem 5 of [3]). Chmutov [5] has calculated the Alexander-Conway weight
systems on the generators of the space P4, d > 1. In particular, he showed that every
(framed or unframed) Alexander-Conway weight system of degree n > 1 vanishes on
primitive trivalent diagrams with the internal graph of negative Euler characteristic
(see also [10]). Basing on the results of the paper [10], Kricker (Lemma 2.11 of [8])
has described the algebra of (framed) Alexander-Conway weight systems (see also
Lemma 2.1 of [12]). We formulate its unframed version as follows.

1.1. Lemma. Ifan (unframed)Q-valued weight system w vanishes on every trivalent
diagram, the internal graph of which has a component with the negative Euler char-
acteristic, then it can be represented as a sum of products of weight systems coming
from the coefficients of the Alezander-Conway polynomial.

Let By be the braid group on k strands and Py its subgroup of pure braids. For
0<i<j<k—1letp;;€ P be the braid that links the ith and jth strands behind
the others (see Fig. 4). It is known [4] that the collection of braids {pi;}ogi<jgk-1
represents the standard generators of the group Pg.

By a tangle diagram we shall mean a knot diagram K with a single S L_boundary
which intersects each of the strands in the diagram transversely. To put it in another
words, K is the closure of an oriented tangle T with domT = codomT which is
positioned in R2 outside of a disc D, the latter being bounded by S*. As in [16], for a
fixed k by a tangle map T: P — {knot types} with domT = codomT = k, we shall
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mean a canonical way of putting a pure braid p € Py into a tangle diagram to get an
oriented knot T'(p) (see also [14] for details).

Let LCSn(Px) denote the nth subgroup of the lower central series 6f the group
Px. For each ¢ € S, denote by p, € LCSn(Pn+1), the pure braid n-commutator of
the following form ps = [...[Po,0(n), Po,o(n-1)]; - - -], Po,0(1)], and let p, € LC S, (Pn41)
be the pure braid n-commutator pn = [Pn—1,n, [Pn-2,n-1,-..,{P1,2,P0,1] ...]. In [14],
it is shown that each one-branch simple C,-move on a knot, defined by Habiro [7],
where n > 2, is equivalent to the insertion (in the non-oriented setting) in this knot
via some tangle map of the pure braid n-commmutator p,.

0 i Ho k1
LI
o m

Fig. 4

The operation on oriented knots, inverse to the insertion, is called the deletion (of
the pure braids) in knots. As discussed in [14], for each n > 2 the insertions of the
coloured pure braid n-commutator p,, in a knot via the tangle maps can be considered
as a topological realization of one-branch tree diagrams of degree n. Similarly, the
closure p, of the braid p, via the permutation (1,2,...,n), where o € S,, gives a
topological realization of the one-branch tree diagram T .

Let K’ denote the vector space over Q spanned by all knot types in S and let

K* 2K 3 K588 Dix

be the Vassiliev-Goussarov filtration of £’. A rational Vassiliev invariant of type n is
amap K'/K],,, = Q.

Let M be the set of integer matrices of even size such that M — M* is unimodular.
Denote by [M] the S-equivalence class of matrices in M which contains M. Let
S be the vector space over Q spanned by the S-equivalence classes of matrices in
M. H. Murakami and T: Ohtsuki [12] have defined a filtration of S in the following
way. For a matrix M € M of the size m x m and the integers ¢1,12,...,1,, Where
ij < n,1 < j < m, define the alternating sum

Z [_1)€1+-,-+£n[M + 51Ei1='1 + -4 S“E,-“,-“] = S,

Elltq,.‘.,tnzﬂ,l

where E;; is the matrix of the size m x m with (¢, 7)-entry 1 and the others 0. There isa
natural linear map s: K’ — S which takes a knot to the S-equivalence class of a Seifert
matrix for this knot. The map s respects the filtrations of both the vector spaces K’
and § and so, induces a map K'/K},,; = §/Sn+1, denoted also by s. We shall say
that a Vassiliev invariant v:K’//K, ., = Q comes from Seifert matrices if v can be
factored through the map s. H.Murakami and T.Ohtsuki [12] showed that a rational
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Vassiliev invariant v: K'/K}, . ; = Q comes from the Alexander-Conway polynomial if
and only if it comes from Seifert matrices. As a consequence, any rational Vassiliev
invariant of knots coming from Seifert matrices is equal to a linear sum of products
of coefficients of Alexander-Conway polynomial.

Now let us recall some needed notions and facts from Habiro’s clasper theory [7].
Let K be a knot in S3. A clasper G for K is a framed uni-trivalent graph embedded in
5?3 so that all its univalent vertices (and only they) are positioned on K and all possible
intersections between the edges of G and K are transversal. We use the blackboard
framing for description of claspers G. The degree deg(G) of the clasper G is the half
of the number of its vertices. Any pair (K, G), where K is a knot and G is a clasper
on it, defines a surgery of S2 and S® surgered will be always a three sphere. Denote
by K¢ a knot obtained from the knot K by surgery of S? defined by the pair (X, G).
Let G, be the vector space over Q spanned by all the pairs (K, G) with deg(G) = n.
Habiro (7] has defined for each n > 1 a natural surjective map e:G, — K;,. Let
~:Gn = An®Q be the map forgetting the embedding, ¢: A, ®Q — K}, /K], ., the map
which replaces chords by double points and let p: K, — K, /K; ., be the canonical
projection. Because of Kontsevich’s integral over Q, the map ¢ is an isomorphism [2].
Habiro actually showed [7] that the equality p-e = ¢ -7 holds. As a consequence, the
claspers on knots can be considered as topological realization of trivalent diagrams of
the same degree.

2. C,-moves and the Alexander-Conway polynomial.

2.1. Proposition. Let a pair (K,G), where K is a trivial knot in S® and G is a
clasper on K of degree 2n, be a topological realization of the wheel wan,n > 1, and
let K¢ be the knot obtained by surgery of S defined by the pair (K,G). Then K¢ 1s
(2n — 1)-trunal knot with the non-trivial Alezander polynomial.

Proof. The proof of the proposition follows from Habiro’s clasper theory and the
characterization of weight systems coming from the Alexander-Conway polynomial.
Indeed, the knot K¢ is obtained from the trivial knot K by Cs,-move defined by the
pair (K,G). By Theorem 6.18 of [7], K¢ is (2n — 1)-trivial knot. Let w: A, ® Q —
Q be the rational weight system of degree 2n defined as follows: w(w2,) = 1 and
w(D) = 0 for any trivalent diagram of degree 2n, the internal graph of which has the
negative Euler characteristic. By Kontsevich’s integral over Q, w can be integrated
to a canonical Q-valued Vassiliev invariant of order 2n [2]. By the definition of the
topological realization of trivalent diagram, we have then v(Kg)—v(K) = tv(wen) =
+w(wsn) = +1. Therefore, by Lemma 1.1, v is a non-trivial Vassiliev invariant of
order 2n coming from the coefficients of the Alexander polynomial. It follows that
the Alexander polynomial of K¢ is non-trivial.

Now, for each n > 1 we indicate explicitly the (2n — 1)-trivial knots with the
non-trivial Alexander polynomial. For this, consider two the following pure braid 2n-
commutators: py, and ps,, where o1 = (1)(2)(3)...(2n) and o2 = (1,2,3,...,2n).
Let § denote the closure of the braid ¢ € LCSzn(Pans1) with the strands
Ug, Uy, U2, ...,y
usy, via the permutation (0,1,2,...,2n) and let K be a trivial knot. Set p = po, gzl
Then the knot Kz, = p is the desired knot. Indeed, the knots K and Kj, are
LC Son(Pan+1)-equivalent. Then, by Theorem 0.2 of [15], they are (2n—1)-equivalent.
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It follows that K, is (2n — 1)-trivial. On the other hand, by Lemma 1.11 of [11}, for
each Vassiliev invariant v of order 2n we have v(K3,) = v(K) % (v(T5,) — v(Ts,)) =
+(v(To,) — v(Ty,)). Note that in Az, ® Q we have T, — T, = w2p, 50 K2n — K is a
topological realization of the wheel wy,. Then the same reasoning as in the proof of

the Proposition 2.1 shows that K,, has the non-trivial Alexander polynomial.

2.2. Proposition. Suppose that knots K and L in S are related by a sequence
of Cn-moves M;,n > 3, and possibly isotopies, K = Ko =+ K; = --- = K; = L,
with the following properties. Each move M;,1 2 1 2 |, is determined by the pair
(Ki-1,Gi-1), where G;_, is a clasper on the knot K;_ such that the internal graph
of the trivalent diagram y(G;-1) is connected and has a negative Euler characteristic.
Then K and L are (n — 1)-equivalent and have the same Alezander polynomial.

Proof. The fact that K and L are (n — 1)-equivalent fo]lows directly from Theorem
6.18 of [7). Therefore, we have only to show that the knots K and L share the
same Alexander polynomial. The proof of the last assertion is by induction on the
number . Suppose that K and K;, where i < I — 1, have the same Alexander
polynomial, Ag(t) = Ak,(t). We now proceed as in the proof of Theorem 1.2 of
[12]. Let H; be the intérnal graph of the trivalent diagram D; = (K, G;i). By
the assumption, H; is a connected graph having the negative Euler characteristic. It
follows that there exists an internal vertex u of D; which is not connected to any
external vertex of D;. It follows from the proof of Theorem 1.2 of [12], that the
knots K;;+1 and K; have S-equivalent Seifert matrices. Since the Alexander-Conway
polynomial of a knot is determined by the S-class of its Seifert matrix, the knots
Kiy1 and K; have the same Alexander polynomial, Ak,,,(t) = Ak,(t). Therefore,
Ag(t) = Ak,,,(t). The induction step completes the proof. Note that the diagram
D= Zi:l D;, regarded in A, ® Q, is an integral linear combination of trivalent
diagrams, the internal graphs of which have the negative Euler characteristic, i.e. the
generators of A, ® Q of the first type. Then for each Vassiliev invariant v of order
< n we have v(L) — v(K) = Zi-:l v(D;) = v():izl D;).

2.1. Corollary. Under the assumptions of Proposition 2.2, if the knot K 1s (n—1)-
trivial and has the trivial Alezander polynomial, then L is also (n — 1)-trivial and has
the trivial Alexander polynomial.

2.1 Remark. The restriction n > 3 in Proposition 2.2 is essential. Indeed, there are
no trivalent diagram of degree 1 and 2, the internal graph of which has the negative
Euler characteristic. On the other hand, it is well known that any two knots A and
L in S3 are related by a sequence of simple one-branch Ca-moves (Cz-move is also
called the A-unknotting operation, see [13]). On the level of the vector space A, ®Q,
each A-operation on knots contributes the value +(1/2)w; to the total sum Zizl D;
of trivalent diagrams D;. It follows that if for a Vassiliev invariant v, of order 2 there
holds va(K) — v2(L) = 0, then [ must be even.

2.2. Remark. Recently Traczyk [17] has proved that for any integer n > 3 the
Alexander (Conway) polynomial of oriented links is not changed by the rotation op-
eration of Anstee, Przytycki and Rolfsen [1] of order n. Rotants (the pairs of links
obtained via rotation operation) are known to share the same Homply polynomial for
n < 4 and the same Kauffman polynomial for n < 3 [17]. In this context, it would be
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interesting to know whether the n-rotants of knots are m-equivalent for appropriate
m (depending on n), and if this is the case, whether one can pass from a knot of
the pair of rotants to another one of this pair via the particular C,4+;-moves just
indicated in Proposition 2.2.

3. Band equivalence of knots. In the study of geometric properties of knot
invariants of finite order, Kalfagianni and Lin [9] have introduced for each n > 2
several classes of knots, called n-hyperbolic, n-elliptic and n-parabolic. All these
knots are characterized by the property that they bound in S® the regular Seifert
surfaces having certain geometric properties and called n-hyperbolic, n-elliptic and
n-parabolic surfaces, respectively. Thus Vassiliev invariants can be thought of the
obstructions for knots to bound the regular Seifert surface of the corresponding type.
One of the main result of Kalfagianni and Lin in [9] is that all n-hyperbolic, n-elliptic
and n-parabolic knots are n-trivial. Kalfagianni and Lin proved also [9] that for each
n > 2 all n-hyperbolic and n-elliptic knots have trivial Alexander polynomial, so
they do not exhaust entirely the class of n-trivial knots. For example, there exists a
2-parabolic knot with the non-trivial Alexander polynomial. It is unknown likely if
n-hyperbolic, n-elliptic and n-parabolic knots exhaust all the class of n-trivial knots.
In the present paper, we consider Seifert surfaces for knots (not necessarily regular)
in S° represented in the disc-band form and some specific moves on them, the band-
analogues of insertions in knots of pure braids commutators.

Let K be a knot in R® ~ R2 x R and S a Seifert surface for K given in the
disc-band form in the projection to the plane F = R? x {0}. Suppose that in some
disc D? = I x I C F the projection of S looks like the geometric trivial braid
1,, with each strand s;, i = 1,...,m, being replaced by a thin band b; (see Fig.
5,a). Each band b;, i = 1,...,m, is bounded by two strands uz;—1 and u; (with
opposite orientations). All the strands u;,1 < j € 2m, taken together with the ap-
propriate orientations, give a diagram of the trivial braid 13,, € By, positioned in
a disc D? C R3. Let p be a geometric pure braid representing an element of the
group LCSp(Pm), where m > 3. We can also thicken the strands s;, i=1,...,m
of the braid p, replacing s! with a thin band b}, respecting all under-crossings and
over-crossings of the strands s! of p. Now we can replace the part of the projection
of Seifert surface S contained in the disc D? and consisting of m separate bands
bi,i=1,...,m (the “thickened” braid 13,,) with the “thickened” braid p consisting
of m band-strands b.,7 = 1,..., m. To this operation on Seifert surfaces represented
in the disc-band form there corresponds the operation of insertion of the "doubles”
of pure braids in a knot diagram K [14]. The orientation of the boundary compo-
nents uh;_, and ub; of b} is inherited from the orientation of the surface S (see Fig.
5,b). Denote by K, and.S,, respectively, the surgered knot and the Seifert surface
bounded it in R3. We shall say that S, is obtained from S by inserting the thickened
pure braid p or the “double” of p in it. The inverse move on the Seifert surfaces,
represented in the disc-band form, and on the knots bounded by them, consists in
replacement the ”"double” of the pure braid p € LCSna(Pn), m 2> 3, with the "dou-
ble” of the trivial one with the same number of strands. Both the moves on Seifert
surfaces for knots are called n-elementary moves with m bands, where m > 3. Any
two knots K and L are called LCS,(Pn)-band-equivalent, where m > 3, if there
is a sequence of knots K = K, K»,...,Ki-1,K; = L and pairs of Seifert surfaces
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51,851,582, 85,...,581-1,5/_1,S:, where S; and S} bound the knot K;, such that each
Seifert surface S;4; is obtained from S; by an n-elementary move with m bands or
an isotopy. It follows from Proposition 2.3 of [14] that any two LCS,{Bnm)-band-
equivalent knots are LC'Sy, (P )-equivalent. The converse implication does not hold,
of cause.

3.1. Proposition. If the knots K and L are LCS,(Pp)-band-equivalent for some
n > 2 and m > 3, then they share the same Alezander polynomial.

Proof. Suppose that K and L are LCS,(Pnm)-band-equivalent for some n > 2
and m > 3. The Alexander polynomial of any knot K’ in S® is determined by S-
equivalence class of Seifert matrices for K’. Let S be any Seifert matrix for K’,
represented in the disc-band form. It is easy to see that an n-elementary move with
m strands on S does not affect its Seifert matrix M. On the other hand, passing from
any Seifert surface of K’ to an other one, for a knot of ‘the same knot type as K’
does not also change the S-equivalence class of M. It follows that K and L have the
S-equivalent Seifert matrices, completing the proof.

3.1. Corollary. If a knot K is LCS,(Pr)-band-equivalent to a trivial one for some
m > 3, wheren > 2, then K is (n—1)-trivial and has the trivial Alezander polynomial.

Therefore, all the knots which are LCS;,(Pm)-band-equivalent to a trivial one for
some m > 3, form a class of “geometric” (n — 1)-trivial knots with trivial Alexander
polynomial. Suppose that two knots K and L are related via an n-elementary band
move. By Proposition 2.3 of [14], L— K, considered modulo K7, can be represented
as some integral linear combination of n-singular knots ) ; A;K;. Since the map
¢ A, ® Q = K. /KL, is an isomorphism of vector spaces (see [2]), the diagram
D = ¢~ Y3, MiK;) in A, ®Q is determined uniquely. Then it is not difficult to check
directly that in A, ® Q the diagram D is a sum of trivalent diagrams, the internal
graphs of which have the negative Euler characteristic.

I l-nl

&) b)

Sy 8; §

Fig. 5

Question. How does the class of ” geometric” n-trivial knots described by Corollary
3.1 relate to the classes of n-hyperbolic and n-elliptic knots?
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ON TOTALLY BOUNDED SEMIGROUPS
OF CONTINUOUS MAPPINGS

Igor PROTASOV

Kyiv Taras Shevchenko National University,
64 Volodymyrska Str. 01038 Kyiv, Ukraine

A semigroup S with the identity e endowed with a topology is called left (right)
totally bounded if, for every neighborhood U of e, there exists a finite subset F' such
that S = FU (S = UF). For a topological space X, denote by C(X) the semigroup
of all continuous selfmappings of X with the topology of pointwise convergence. We
give some sufficient conditions on X under which C(X) is either left or right totally
bounded.

Key words: totally bounded semigroup, distal group, homogeneous space.

For a topological space X, let C(X) and H(X) be the semigroup of all continuous
selfmappings of X and a group of all homeomorphisms of X with the topology of
pointwise convergence (i.e. the topology inherited from the Tychonov product X -
Every subgroup of H(X) is called a group of homeomorphisms of X. It is well known
[1] that C(X) is a semitopological semigroup (i.e. all shifts z > sz, z = zs, 5 € C(X)
are continuous).

A semigroup S with the identity e endowed with a topology is called left (right)
totally bounded if, for every neighborhood U of e, there exists a finite subset F* such
that 8= FIU(S = UF)

We give some sufficient conditions on X under which C(X) is left or right totally
bounded. In particular, we show that C(X) is left and right totally bounded for a
Cantor cube X of any weight. Under the Cantor cube of weight o we understand the
product {0,1}® of a copies of the discrete space {0,1}. On the other hand, H(X) is
neither left nor right totally bounded for every Cantor cube X of infinite weight.

Theorem 1. Let X, Y be compact spaces such that X admits a base of the topology
consisting of clopen subsets homeomorphic to Y. Then C(X) is left totally bounded.

Proof. Choose any distinct elements a;,as,...,a, € X and neighborhoods
A, Aa oo Ay OF @y, 8500 00 00 Put

S={seC(X):s(a;) € A; for i < n}.

It suffices to find a finite subset K C C(X) such that C(X) = KS.
For every element z = (z1,Z2,...,%n) € X", choose clopen neighborhoods
Vi,Va,...,Va of 21,29,...,%,, homeomorphic to Y. We may suppose that X is

© Protasov Igor, 2003
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infinite, so pick pair-wise disjoint clopen subsets V{, V3, ...V, homeomorphic to Y
such that

V/CV; and {ay,a3,...,a,} NV =0

for every i < n. Then choose pair-wise disjoint clopen neighborhoods Uy, Us, ... U,
of a1, a9, ... ,a, homeomorphic to Y such that U; C A;, U C Ay, ..., U, C A, and

Uy Ul U---ul)N VUV U...UV))=0.

Fix any homeomorphisms h; : U; = V;, t; : V! = U;, i < n, and define the mapping
gz € C(X) letting
h,-(a), if a € U;,
gz(a) = { ti(a), ifa€Vf,
a, otherwise. |,

Put Vo = Vi x Vo x -+« x V,, consider the clopen cover {V; : z € X"} of X"
and choose its finite subcover {V; : z € F}. Put K = {g, : ¢ € F} and show that
CiX)=KS.

Let f be an arbitrary element of C(X). Choose z = (z1,z2,...,2,) € F with
(f(ay), f(as),..., f(an)) € Vz. Show that f = grs for some element s € S.

For every i < n choose a clopen neighborhood W; of a; such that f(W;) C V;
and W; C U;. First define the mapping s on Wy, UWy U ---UW,. If a € W;, put
s(a) = h; ' f(a). Then f(a) = g-(s(a)) and s(a;) € U; C A;.

To extend the mapping s onto X consider three cases in whicha ¢ W UW,U---U
Wh.
Case 1. f(a) ¢ (U WU U---UUL)U(VWUV3U...UVy). Put s(a) = f(a) and
note that f(a) = gz(s(a)).

Case 2. f(a) € Uy WU U ---UUy,. If f(a) € Ui, put s(a) = ti‘lf(a). Then
f(a) = gz(s(a)).

Case 3. fla) € V/UVJU...UV/.. If f(a) € V/, put s(a) = h*f(a). Then
fla) = gz(s(a))'

By the construction f =g,sand s€ S. U

Question 1. Is the semigroup C(X) left totally bounded for every zero-dimensional
compact homogeneous space?

A topological space X is called homogeneous if, for any points z1,z € X, there
exists a homeomorphism h of X with h(z,) = z».

Theorem 2. Let X be a topological space such that every point of X has a base of
clopen neighborhoods homeomorphic to X. Then C(X) is right totally bounded.

Proof. Take any distinct points 1, z3,...,z, € X, choose disjoint open neighbor-
hoods Uy,Us, ... ,Un of z1,22,... ,2, and put

S ={seC(X):s(zi) € U; for i < n}.

Take a clopen subset V' C U; homeomorphic to Y with z; ¢ V. Fix any homeomor-
phism f : X = V and shaw that C(X) = Sf. Take any mapping h € C(X) and define
a continuous mapping s’ : V — X such that h = §'f. Since X is zero-dimensional, s’
can be extended to a mapping s € C(X)NS. Hence, h =sf. O
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Question 2. s the semigroup C(X) right totally bounded for every zero-dimensional
homogeneous space X ?

Theorem 3. A semigroup C(X) is left and right totally bounded for the Cantor cube
X of any weight.

Proof. Apply Theorems 1, 2. 0

Let X be a topological space and let H be a group of homeomorphisms of X. The
pair of distinct points 1,22 € X is called H-prorimal, if there exists a point z € X
such that, for every neigliborhood V of z there is h € H with h(z;) € V, h(z;) € V.
If there are no H-proximal points in X, then H is called distal.

Theorem 4. Let X be a topological space, H be a group of homeomorphisms of X
which acts transitively on X. If H is left totally bounded then H 1s distal.

Proof. Assume the converse. Since H acts transitively on X, there exist two
distinct points z1,z9 € X such that, for every nonempty open subset U of X, there
is a homeomorphism h € H with h(z,) € U, h(zz) € U. Choose disjoint open
neighborhoods Uy, U; of z1, z2 and put

S ={s€H:s(zx,) € Ur,s(x2) € Ua}.

By assumption, there exists a finite subset F' = {f1, f2,... , fn} of H such that
H=FS§ Put V] = f({/l) If V; nfg(Ul) -'f-' ] put Vg = V1 ﬂfz(Ul), otherwise,
Vo = Vi. If Va1 f3(Uy) # 0 put Va = Vo N f3(U), otherwise, V3 = Va. After n steps
put V = Vj,. By the construction, the subset V' has the following property

(x) if VN fu(U;) # 0 then V C fi(Uh), k € {1,2,...,n}.

Since H is not distal, there exists h € H such that h(z1) € V, h(z2) € V. Choose
f € Fand s € S with h = fs. Taking into account that h(zy) = f(s(z1)) and
h(z1) € V, s(z1) € U we conclude that V N f(U1) # f. By the condition (x),
V C f(U1). Since h(z2) = f(s(z2)) and h(z2) € V, s(z2) € Uz we get VnfUs) #9,
a contradiction with f(U;) N f(Uz) =@ and V C f(U1). O

Question 3. Let X be a compact space and let H be a distal group of homeomor-
phisms of X which acts transitively on X. Is H left totally bounded?

Theorem 5. Let X be an infinite topological space and let H be a group of home-
omorphisms which acts n-transitively on X for every natural number n. Then H is
not right totally bounded.

Proof. Fix any point # € X and choose a neighborhood U of z such that the subset
X\ U is infinite. Put S = {s € H : s(z) € U} and suppose that there exists a finite
subset F of H such that H = SF. Let F~'(z) = {y1,¥2, ...,y }. Take any distinct
point z1,22,...,2x € X \U. Choose h € H such that

h(n) = 21, h(y2) = 22, - - B(Ye) = 2.

Since H = SF, there exists f € F such that h = sf and thus hf-! € S. Since
f~Yz) € {v1,¥2,--- , ¥k} we get a contradiction: hf-1¢S. O
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Theorem 6. The group H(X) of all homeomorphisms of a Cantor cube X of infinite
weight 1s neither left nor right totally bounded.

Proof. Apply Theorems 4, 5. 0O

Theorem 7. Let X be an infinite discrete space. Then C(X) is right totally bounded,
H(X) is neither left nor right totally bounded.

Proof. Take any element z € X and put S = {s € C(X) : s(z) = z}. Take
any finite subset F C C(X). Since FS(z) = F(z) and the subset F(z) is finite, we
get C(X) # FS so C(X) is not left totally bounded. Put &' = SN H. The same
argument shows that S’ is a subgroup of infinite index in H(X) so H(X) is neither
left nor right totally bounded. ,

To show that the semigroup C(X) is right totally bounded, take any distinct
elements z1,22,...,%, € X and put S = {s € C(X) : s(z;) = z; for i < n}. Fix any
bijection f: X = X \ {z1,22,...,2n}. Clearly, C(X) =Sf. O

Theorem 8. Let X be an infinite discrete space, BX be the Stone-Cech compactifi-
cation of X. Then C(BX) 1s right but not left totally bounded, H(BX) 1s neither left
nor right totally bounded.

Proof. We prove only that C(5X) is right totally bounded. Identify 83X with the
set of all ultrafilters on X. Given any subset A C X, put A = {p € 8X : A € p}. Then
the family {4 : A € p} is a base of neighborhoods of p. Take any distinct element
pi,P2,---,Pn € BX and pick pairwise disjoint subsets Py € p1, P €p2, ..., Pa €Epn
such that | X\ (PiUP,U- - -UP,)| = |X|. Put S = {s € C(BX) : s(pi) € P; for i < n}.

Fix any bijection f: X = X \ (P,UP,U---U P,) and denote by f the extension
of fto BX. Then, C(6X)=Sf. O

Added in Proofs. Recently, T. Banakh and O. Hryniv answered Questions 1
and 2 in negative: they proved that the semigroup C(X) of the paratopological
first-countable zero-dimensional homogeneous compactum X constructed by E. van

Douwen [2] is neither left nor right totally bounded; moreover, the homeomorhism
group H(X) of X is neither left nor left totally bounded in C(X).

1. Ellis R. Lectures on topological dynamics. — New York, 1969.

9. van Douwen E. A compact space with a measure that knows which sets are home-
omorphic // Adv. in Math. - 1984. - 52. - P. 1-33.
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IMPO IIJIKOM OBME2KEHI HAIIIBI'PYIIN
HEITEPEPBHHX BIJOBPA2KEHD

I. IIpoTacos

Ruiscoxuti nayionaavnut ynisepcumem iment Tapaca Ilesuenxa,
eya. Boaodumupcera, 64 01033 Kuie, Yxpaina

Hanisrpyna S 3 oguHHUEIO €, HaJlJeHa TOMOJOTIEI0, HA3UBAETHCH YIAKOM OOMEdICE-
How (3aiea) cnpasa, AKWIO A1A KOXHOro okony U oAMHHUI € iCHY€ TaKa CKIHYEHHa
nigmuoxusa F, mo S = -FU (S = UF). Yepes C(X) nossayumMo HamiBrpymy Bcix
HenepepBHUX Bigo6paxeHb TomoaorivHoro npocropy X B cebe, HalieHy TONOAOTIEIO
[OTOYKOBOI 36iKHOCTI. 3HaMl/JeHO JOCTATHI YMOBH Ha TOMOJOTIYHMEU npocTip X, npu
axux pamiprpyna C(X) uinkom o6MexeHa 3JiBa M CIpaBa.

Kanouost caoea: miakoM obMexeHa HamiBrpyma, AMCTalbHa pyna, OXHODIAHMM
IpOCTIp.
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ON H-CLOSED PARATOPOLOGICAL GROUPS

Oleksandr RAVSKY
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

A Hausdorfl paratopological group is H-closed if it is closed in every Hausdorff
paratopological group tontaining it as a paratopological subgtoup. We give a crite-
rion of the H-closedness of an abelian topological group for some classes of abelian
paratopological groups are obtained simple criteria of the H-closedness.

Key words: paratopological group, minimal topological group, absolutely closed
topological group.

All topological spaces considered in this paper are Hausdorff, if the opposite is not
stated. We shall use the following notations. Let A be a subset of a group and n be
an integer. Put A" = {ajaz - -an : a; € A} and nA = {a" : a € A}. For a group
topology T the closure of a set A is denoted by A" and B, stands for a neighborhood
base of the unit.

A topological space X is C-closed in a class C of topological spaces provided X
is closed in any space Y € C containing X as a subspace. It is well known that
when C is the class of Tychonoff spaces, then the C-closedness coincides with the
compactness. For the class of Hausdorff spaces the following conditions for a space
X are equivalent [1, 3.12.5]:

1) The space X is H-closed;

2) If V is a centered family of open subsets of X then MV :VeV}+#e;

3) Every ultrafilter in the family of all open subsets of X is convergent;

4) Every cover U of the space X contains a finite subfamily V such that U{V- :
VeVl=X.

The group G with a topology 7 is called a paratopological group if the multiplication
on the group G is continuous. If the inversion on the group G is continuous, then (G, 1)
is a topological group. A group (G, ) is paratopological if and only if the following
conditions (known as Pontrjagin conditions) are satisfied for a neighborhood base B
at unit e of G [4,5]:

(H{UU-1:.U e B} = {e};

. (VU,VeB(BWeB):WcCUNV;

. (YU € B)(3V € B) : V2 C U;

(YU € B)Vu e U)(3V € B) :uV C U,

. (VWU eB)(YgeG)EVERB) :g-'VgCU.

The paratopological group G is a topological group if and only if
6. (VU eB)(3VeB):VIcCU.

o

[

© Ravsky Oleksandr, 2003
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A topological group is absolutely closed if it is closed in every Hausdorff topological
group containing it as a topological subgroup. A topological group G is closed in the
class of topological groups if and only if it is Rajkov-complete, that is complete with
respect to the upper uniformity which is defined as the least upper bound £V R of
the left and the right uniformities on G. Recall that the sets {(z,y) : 7'y € U},
where U runs over a base at unit of G, constitute a base of entourages for the left
uniformity £ on G. In the case of the right uniformity R, the condition ™'y € U
is replaced by yz~=! € U. The Rajkov completion G of a topological group G is the
completion of G with respect to the upper uniformity £V R. For every topological
group G the space G has a natural structure of a topological group. The group G can
be defined as a unique (up to an isomorphism) Rajkov complete group containing G
as a dense subgroup.

A paratopological group is H-closed if it is closed in every Hausdorff paratopological
group containing it as a subgroup. In the present section we shall consider H-closed
paratopological groups.

Question. Let G be a regular paratopological group which is closed in every regular
paratopological group containing it as a subgroup. Is G H-closed?

1. Lemma. Let (G, ) be a paratopological group. If there ezxists a paratopology o on
the group G x Z such that o|G C 7 and e € (G,1) then (G, ) is not H-closed.

Proof. We shall build the paratopology p on the group G x Z such that p|G = 7 and
G’ # G. Determine a base of unit B, as follows. Let S = {(z,n) :z € G,n > 0}. For
every neighborhoods U, € 7, U; € o such that U, C U; put (U, Uz) = U, u(U2nS).
Put B, = {(U1,U2) : Uy € B;,U; € B,}. Verify that B, satisfies the Pontrjagin
conditions.

1. It is satisfied since (Uy, Us) C Us.

2. It is satisfied since (U; N V4, U2NV3) C (U, Uz2) N (W1, V2).

3. Select V5 € B, and V; € B, such that Vf C U,, Vﬁ C U; and V; C V. Let
y1,y2 € (V1, V2). The following cases are possible

A.yi,y2 € V1. Then y1y; € Vi € (U1, U2).

B.y1 € Vi,y2 € VaNS. Then iy € V¢ € Up. Since y; € G and y2 € S, we get
y1y2 € S and hence y1y2 € U2 N S.

C.y1 € VoN S, y2 € V is similar to the case B.

D. y1,y2 € Vo NS. Since S is a semigroup, y1y2 € U2 N S.

4. Let y € (U1,Us). There exist V» € B, and V; € B, such that yV, C U; and
Vi C Vo. The following cases are possible:

A. y € U;. We may suppose that yV; C U;. Since y € G, y(VaNS) C U2NS.

B.ye U;NS. Since V; C G then yV; € U N S. Since S is a semigroup and y € S
then y(Va N S) C Us N S. Therefore y(Vy, V2) C (U1, U2).

5 Let (¢,n) € G x Z. There exist V2 € B, and V; € B, such that V; C V;,
g-Wig C U, and g~'Vag C Uz. Then (g,n)"}(V1,V2)(g,n) = g~ (W1, Va)g =
g~ (ViU (Van S)g C U, U (U2 S) = (U1, U2).

Therefore (H, p) is a paratopological group. Taking into account that (Uy, U2)NG =
U, we get p|G = .

Since e € (G, 1) , for every U; € B, there exists g € G such that (9,1) € Uz. Then
g € (e,~1)(U2 N S) and therefore (e, ~1) € G. O
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A group topology 7 on the group G is called complementable if there exist a
nondiscrete group topology 7 on G and neighborhoods U; € 7; such that Uy NU, =
{e}. In this case we say that 7 is a complement to 7;. Proposition 1.4 froni [1] implies
that in this case the topology m A 72 is Hausdorff.

A Banach measure is a real function y defined on the family of all subsets of a
group G and satisfies the following conditions:

a) p(G) =1

b)if A, BCG and AN B = @ then pu(AU B) = p(A) + u(B);

c¢) u(gA) = p(A) for every element g € G and for every subset A C G.

2. Lemma. [3, p.37]. Let G be an abelian group and let i be a Banach measure
on G. Let T be a group topology on G. Suppose that the set nG is U-unbounded
for some natural number n and for some neighborhood U of zero in (G,7). Then
p({z € G : nz € gW}) = 0 for every element g € G and for every neighborhood W of
zero satisfying WW -1 C-U.

Let U be a neighborhood of zero in a topological group (G,7). We say that a
subset A C G is U-unbounded if A ¢ KU for every finite subset K C G.
Given any elements ag, a1, .. ., a, of an abelian group G put

Y(ag, 05, ..48n) = {agtai* a1 0€ 2, € i+ 1,i € n,Zx? > 0},

Xidg by «liy) = {0300 -l sl e m <+ 1,ig u).
Then X(ag,ai,...,an) = Y(ag,ay,. N 4 1 T S o

3. Lemma. Let (G, 1) be an abelian paratopological group of infinite ezponent. If
there erists a ncighborhood U € B, such that the group nG is UU ™! -unbounded for
every natural number n, then the paratopological group (G, 1) is not H-closed.

Proof. Define a seminorm | - | on the group G such that |zy| < || + [y] for all
z,y € G. Suppose that there exists a non periodic element zo € G. Determine a map
o : (zo) — Z putting ¢o(z]) = n. Since Q is a divisible group, the map ¢, can be
extended to a homomorphism ¢ : G = Q. Put |z| = |¢(z)| for every element z € G.
If G is periodic, then put |e] = 0 and |¢| = [Inord(z)] + 1, where ord(x) denotes the
order of the element z.

Fix a neighborhood V € B, such that V2 C U and put W = VV~!. We shall
construct a sequence {a,} such that

a) lap| > n;

b) WnN X(ao,a1,...,an) = {e};

c) Y(ag,a1,...,8n) P €;

d) if —n < k < n, k # 0 then aj; & 2X(ao,a1,...,8n-1).

Take any element ap & W. Suppose that the elements ao, ..., a, have been chosen
to satisfy conditions (a) and (b). Put

B, = {r € G: (Vg € X(a0,a1,...,an-1))(Yk € Z\{0} : —e"*! <k < ") : kz & gW)

If the group G is periodic, then |z| > n for every element z € B,. Lemma 2
implies that u(B,) = 1. If the group G is not periodic, then the construction of the
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seminorm | - | implies that p({z € G : |z| < n}) = p(¢~[—n;n]) = 0. In both cases
there exists an element a, € B, such that |a,| > n. Then WNX(ag,ay,...,a,) = 2.
Considering a subsequence and applying condition (a) we can satisfy conditions (c)
and (d) also.

Define a base B,(4,} at the unit of group topology 7{a.} on the group G x Z as
follows. Put A} = {(e,0)} N {(ak,1) : k > n}. For every increasing sequence {nj}

put Afni] = U Af ---Af . Put Br(q,) = {A[nk]}. We claim that (G x Z,7{a,}) is
leN
a zero dimensional paratopological group.

Put F = |J X(ao,a1,...,8n). Let A[ni] € Br(a,},(z,nz) € Aln]. If z ¢ F, then

new
(z,nz)A[n] N Alng] = @. Let z € X(ao,a1,...,a8m). Put mg = m + k. Suppose that
(z,nz)A[mg] N A[ng] # @. Select the minimal k such that (z,n;)(Af, - A%, )N
A[nk] # @. Let

(*) (z, n%)(ah 1) (ayy,, 1) = (al',‘ s '(G!L,! 1)

and for all 7,4 holds m; < I; < Ly, nf < U, < Ii,;;. Remark that a member g,
occurs in each part of the equality (¥x) no more than ¢ times. If [, > I}, then if we
move all members which are not equal to (a;,,1) from the left side of the equality
(*) to the right one, we obtain contradiction to condition (d). The case [y < I}, is
considered similarly. Therefore [y = [,, a contradiction with the choice of k as a
minimal number satisfying the equality (*). It is showed similarly that if z # ¢ and
me = m+ k+ 1, then (z,n;) € Almg]. If ¢ = e and n; # 0, then the condition
(c) implies that A[n] # (z.n.). Hence Pontrjagin condition 1 for Br(,,} is satisfied.
Since A[nqx)? C Alni]. Pontrjagin condition 3 is satisfied. All the other Pontrjagin
conditions are obvious.

Condition (b) implies that A[n]A[r]"2NVV~1 = {(e,0)}. Therefore the topology
7{an}, is a complement to the topology (7 X {0})4, where 7 x {0} is the product
topology on the group (G,7) x Z. Therefore the topology ¢ = 7{a.}(r x {0}) is

——r{a

Hausdorff. Since (e,0) € (G,1) x C (G,1) we can apply Lemma 1 to show that
(G, ) is not H-closed. O
We shall need the following lemma.

4. Lemma. Let G be a paratopological group and H be a normal subgroup of G. If
H and G/H are topological groups then so is the group G.

Proof. Let U be an arbitrary neighborhood of the unit. There exist neighborhoods
V. W of the unit such that V c U, (V- 1)2’NnH CcUand W C V, W= C VH.
If £ € W1, then there exist elements v € V,h € H such that z = vh. Then
h=vlz e V''W-'NH CU. Therefore z € VU C U?. Hence G is a topological
group. O

The following criterion was suggested by T. Banakh.

5. Theorem. An abelian topological group (G, 1) is H-closed if and only if (G, T) 1s
Rajkov complete and for every group topology ¢ C T on G the quotient group G/G 1s
periodic, where G is the Rajkov completion of the group (G, o).

Proof. Suppose that there exists a group topology ¢ C 7 on G such that the
quotient group G/G is not periodic, where G is the Rajkov completion of the group
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(G, o). Select a non periodic element z € G such that (z)NG = {e}. Then G x (z) is
naturally isomorphic to the group G x Z and Lemma 1 implies that the group (G, 1)
is not H-closed.

Let a paratopological group (H, ') contains (G, 1) as non closed subgroup. Since
G is abelian, G is an abelian semigroup. Choose an arbitrary element ¢ € G\G.
Then the group hull F = (G, z) with the topology 7'|F is an abelian paratopological
group. Then the group G is dense in (F,7'y). Since the Rajkov completion F' of the
topological group (F,r'|Fy) is periodic, there exists a natural number n such that
z" € G. Therefore F* C G. Lemma 4 implies that F is a topological group and
therefore G is closed in (£, 7'g), a contradiction. O

6. Corollary. A Rajkov completion of a isomorphic condensation of H-closed abelian
topological group 1s H-closed.

7. Proposition. Let G be a Rajkov complete topological group, H be H-closed
paratopological subgroup of the group G. If a group G/H has finite exponent then
G 1s an H-closed paratopological group.

Proof. Select a number n such that ¢" € H for every element ¢ € G. Let F D G
be a paratopological group. Since H is closed in F then for every element g € G we
get g" € H. Denote the continuous maps ¢ : G > G as ¢(g) =¢"'and v : G = H
as ¥(g) = (g")~!. Then for every element g € G we get g~! = ¢(g)¥(g) and hence
the inversion on the group G is continuous. Since G is a topological group and G is

Rajkov complete, G=G. O

8. Proposition. Let G be a paratopological group and K be a compact normal
subgroup of the group G. If the group G/K is H-closed then the group G 1s H-closed.

Proof. Suppose that there exists a paratopological group F' containing the group
G such that G # G. Since K is compact then F/K is a Hausdorff paratopological
group by Proposition 1.13 from [4]. Let 7 : F' — F//K be the quotient homomorphism
map. Then G/K D n(r~1(G/K)) D n(G) # n(G) = G/K. This implies that the
group G/K is not H-closed, a contradiction. [

Let G be a topological group, N be a closed normal subgroup of the group G. If N
and G/N are Rajkov complete, then so is the group G [5]. This suggests the following

9. Question. Let G be a paratopological group, N be a closed normal subgroup of
the group G and the groups N and G/N are H-closed. Is the group G H-closed?

Let (G, 7) be a paratopological group. Then there exists the finest group topology
T4 coarser than 7 (see [2]), which is called the group reflection of the topology 7.

10. Proposition. Let (G,7) be an abelian paratopological group. If (G,74) is H-
closed then (G,7) is H-closed. If (G,r) is H-closed and (G, ) is Rajkov complete
then (G, 1g) 1s H-closed.

Proof. Suppose that the group (G,7y) is H-closed and (G, ) is not. Suppose
a paratopological group (H,7) contains (G, ) as a non closed subgroup. Without
loss of generality we may suppose that there exists an element z € H \G such that
H = (G, z) and the group H is abelian. Let 7, be the group reflection of the topology
#. Since 74|G C 74, Theorem 5 implies that the group H/G is periodic. Without loss
of generality we may suppose that zP € G for some prime p.
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Denote by B; the family of neighborhoods at unit in the topology r. Let U € B;.
If UNzG = @ then there exists a neighborhood V' of unit such that V? C U and thus
V C G and G is open in (H,7). Therefore a set F = {"'(zGNU):U € B,}isa
filter. Let U € B7. There exists V € B; such that V? C U. Then (zGNV)? C U. Let
zg € (xGNV). Then z- (zGNV) Cz7}((zg)!"P(zGNV)P)NG C 2~ Pg!~P(UNG)
and hence F is a Cauchy filter in the group (G, 75). Let h € G be a limit of the filter F
on the group (G, 7y). But then for every neighborhood of the unit U in the topology
7q we get UNzhU D U Nzh(UNG) # @ and therefore (H, 7,) is not Hausdorff, a
contradiction.

Let (G, 74) is Rajkov complete and (G, 75) is not H-closed. Then Theorem 5 implies
that there exists a group topology o C 7 on G such that the quotient group G/G of
the Rajkov completion G of the group (G, ¢) is not periodic. Then Lemma 1 implies
that a group (G, 7) is not H-closed. O

11. Lemma. Let topological group (H,op) be a closed subgroup of an abelian topo-
logical group (G, ) and oy C 7|H. Then there exists a group topology o C T on the
group G such that o|H = op.

Proof. Let B; and B,y be bases of unit of (G, 7) and (H, oy) respectively.

Put B, = {U Uz : Uy € B;,Us € Byu}. Verify that the family B, satisfies the
Pontrjagin conditions.

2. It is satisfied since (U; NV1)(Ua N Vo) C U U NV Vs,

3. Select Vo € B,y and Vi € B, such that V2 C Us, V2 C Ur. Then (ViVa)? C
UL U».

4. Let y € U1U,. Then there exist points y; € Uy and y; € U, such that y = y192.
Therefore there exist a neighborhoods V) € B, and V, € B, g such that y,V; C Us.
Then yVi Vo C U, Us.

5. It is satisfied since G is abelian.

6. (L C ot

1. Since all others Pontrjagin conditions are satisfied, it suffices to show that
Bs ={e}. Let z€Gandz#£e Iz € H then there exists Us € B,y such that
U# # « and Uy € B, such that Uy N H C Uz. Then U Uz N {z} =UU2n{z}NHC
Uin{z}=o. If ¢ ¢ H then (G\zH)H 3 z.

Therefore (G, o) is a topological group. Since UyUsNH = (UyNH)U», we conclude
O’lH =0H. O

12. Proposition. A closed subgroup of an H-closed abelian topological group s H-
closed.

Proof. Let H be a closed subgroup of an H-closed abelian group (G, 7). Then G
and H are Rajkov complete. Let oy C 7|H be a group topology on the group H.
Lemma 11 implies that there exists a group topology ¢ on the group G such that
o|H = oy. Let (G.5) be the Rajkov completion of the group (G, ). Then a closure
H° of the group H in the group (G, &) is a Rajkov completion of the group (H,ox).
Let z € H’. Theorem 5 implies that there exists n > 0 such that " € G. Since
H° NG = H then z" € H. Therefore Theorem 5 implies that H is H-closed. O
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13. Proposition. Let G be a H-closed abelian topological group. Then K =
NnennG is compact and for each neighborhood U of zero in G there e:r:sts a nat-
ural n with nG C KU.

Proof. Let ® be the filter on G generated by base {nG : n € N}, and ¥ be an
arbitrary ultrafilter on G with ¥ D ®. Let U be a closed neighborhood of the unit in
G. Lemma 2 implies that there exists a number n such that the set nG is U-bounded.
Since nG € ® and ¥ is an ultrafilter, there exists ¢ € G with gU € ¥. Hence
¥ is a Cauchy filter on G. By the completeness of G, ¥ is convergent. Therefore
each ultrafilter ¥ on G with ¥ D & converges. In particular each ultrafilter on K is
convergent, and since A is closed, K is compact.

To show that there exists a number n with nG C KU, it suffices to prove that
KU € ®. Assume that KU ¢ ®. Then there exists an ultrafilter ¥ D ® with
G\RKU € V. As we have proved, ¥ is convergent. Clearly im¥ € K. Therefore
KU € ¥ which is a contradiction. Hence KU € &, and this completes the proof. O

14. Corollary. A divisible abelian H-closed topological group is compact. O

15. Proposition. Every H-closed abelian topological group is a union of compact
groups.

Proof. Let G be such a group. It suffice to show that every element z € G
is contained in a compact subgroup. Let X be the smallest closed subgroup of G
containing the element z. Then X = |J;_,(kz + nX) for every natural n. Let U be
an arbitrary neighborhood of the zero. By Lemma 15 there exists a natural number
n such that nG is U-bounded. Then X is also U-bounded. Hence X is a precompact
group. Since X is Rajkov complete then X is compact. O

16. Conjecture. An abelian topological group G is H-closed if and only if G is
Rajkov complete and nG is precompact for some natural n.

17. Proposition. The Conjecture 16 is true provided the group (G, ) satisfies the
following two conditions:

1) There erists a o-compact subgroup L of G such that G/L is periodic.

2) There erists a group topology " C T such that the Ragkov completion G of the
group (G, ') is Baire.

Proof. Let G be such a group and L = |Jy¢n Lk be a union of compact subsets
L. Put G(n,k) = {x € G : nz € Ly} for every natural n and k. Then every set
G(n, k) is closed. By Theorem 5 G = |/, kenG(n, k). Since G is Baire, t.here exist
natural numbers n and k such that int G(n k) # @. Then F = G(n,k) — G(n,k)
is a neighborhood of the zero. By Corollary 6 the group G is H-closed. Put K =
MNnen nG. By Proposition 13 there exists a natural m such that mG C F + K. Then
mnG C mnG C Lx — Ly + K and hence the group mnG is precompact. O

1. Engelking R. General topology. ~ Monografie Matematyczne. — Vol. 60. — Polish
Scientific Publ. - Warsaw, 1977.

2. Graev M. I. Theory of topological groups // UMN, 1950 (in Russian).
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ELEMENTARY ROW TRANSFORMATIONS
OVER RINGS OF STABLE RANK <2

Oleh ROMANIV

Ivan Franko National Unwersity of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

v

It is proved that for a ring R of stable rank < 2 any row (a,b,c) € R? with aR +
bR+cR = R can be reduced to (1,0,0) by elementary transformations. Also it is shown
that for a right Bezout ring R of stable rank < 2 any row (a,b,¢) € R3 can be reduced
to (a, 3,0), @, 8 € R, by means of elementary transformations.

Key words: stable rank, Bezout ring, elementary transformations.

In [1] B.V. Zabavsky has posed a problem of a complete description of the rings over
which any matrix can be reduced to the diagonal form by elementary transformations.
In this note we consider elementary transformations of rows over rings of stable rank
1 and 2.

Throughout this paper R will denote an associative ring with 1 ).

Let us introduce the necessary definitions.

An elementary matriz with entries from a ring R is a square matrix of one of the
following three types [2]: a diagonal matrix with invertible elements on the diagonal;
a matrix differing from the identity matrix by a unique nonzero element outside of the
main diagonal; permutation matrix, i.e., the identity matrix with its rows or columns
permuted arbitrarily.

Denote by GE,(R) the group generated by elementary (n x n) matrices.

A ring R is called a right Bezout ring [3] if any finitely generated right ideal in R
is principal.

A row (a1, as, ..., ay) of elements of a ring R is a right untmodular row if there are
clements z; € R, 1 <i < n, with a;z; +asza+ - -+anx, = 1. A positive integer d is
called a the stable rank [4] of R if for any unimodular row (a;,as,...,an) with n > d,
there are elements b;, 1 < i < n—1 such that the row (a; +anb1,...,an_1+anba_1)
is again right unimodular.

Theorem 1. Let R be a ring of stable rank 1. Then for any elements a,b € R with
aR + bR = R there is a matriz M € GE2(R) such that

(a,b)M = (1,0).
Proof. Since R is a ring of stable rank 1, there are elements ¢,w € R such that

(a+bt)w = 1.

© Romaniv Oleh, 2003
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(e 1) ") Gl 1) (o) =0

The proof in complete.

Then

Theorem 2. Let R be a ring of stable rank 2. Then for any elements a,b,c € R with
aR+ bR+ cR = R there is a matriz M € GE3(R) such that

(a,b,¢)M = (1,0,0).
Proof. Since R is a ring of a stable rank < 2, there exist z,y,p, ¢ € R such that
(a+cz)p+ (b+cy)g = 1.
Then
1 0 0
(a,b,c){ 0 1 0] =(a+ez,b+cy,c)
y 1

x

and

1 0 p{l—¢

(a+cz,b+cy,c)|{ 0 1 g(l-c) | =(atcz,btcyl).
0 0 1

It is clear that the row {(a+cz, b+cy, 1) can be transformed into (1, 0, 0) by elementary
transformations.
The proof in complete.

Corollary 1. Let R be a ring of stable rank 1. Then for any elements a,b,c € R
with aR 4+ bR 4+ ¢R = R there is a matriz M € GE3s(R) such that

(a,b,c)M = (1,0,0).
Theorem 3. Let R be a right Bezout ring of stable rank 1. Then for any elements
a,b € R there 1s a mairiz M € GE3(R) such that
(a,b)M = (,0), a€R.

Proof. Since R is a right Bezout ring, the ideal aR+ bR is principal and thus equal
to dR for some d € R. Then a = dag, b = dby, au + bv = d, ag,bp,u,v € R. Let
eg = 1 — apu — bov. Then deg = 0 and agR+ boR = R.

Since R is a ring of stable rank 1, there are elements t, w € Rsuch that (ao+bot)w =
1. Then :

d(ag + bot)w = (a + bt)w = d.

(a,b)(i ‘1’) ({1) ‘”(11“"“))((1} _lw)_—.(a+bt,0).

which finishes the proof.

Thus
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Theorem 4. Let R be a right Bezout ring of stable rank 2. Then for any elements
a,b,c € R there is a matrizr M € GE3(R) such that

(a,b,e)M = (a,$,0), a,B€R.

Proof. Let aR+ bR+ cR = dR,d € R. Then a = dag, b = dby, ¢ = dcg,
au + bv + cw = d, ag, bg, co, u,v,w € R. Let eg = 1 — agu — bov — cow. Then deg =0
and agR + bgR+ coR = R.

Since R is a ring of stable rank 2, there exist z,y,p, ¢ € R such that

(a0 + coz)p + (bo + coy)g = 1.

Then
d(ag -+ C(}&':)p + d(q’)g + ng)q =
:(a+cx]p+(b+cy)q=ap+bq+c(a:p'+yq)::d.
Thus
1 00
(a,0,¢) |0 1 0] =(a+cz,b+cy,c),
x y 1/
1 0 p(l—Cg)
(a+cx,b+ecyc) |0 1 g(l=co) | =(a+ecz,b+cy,d)
0 0 1
and
1 0 —p
(a+czx,b+ecy,d)| 0 1 —¢ = (a+cz,b+cy,0),
0 0 1

which finishes the proof.

Corollary 2. Let R be a right Bezout ring of stable rank 1. Then for any elements
a,b.c € R there is a matriz M € GE3(R) such that

(a,b,c)M = (o, 8,0), a,B€ER.
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EJJEMEHTAPHI IEPETBOPEHHA PAAKIB
HAA KIJIbIOAMU CTABIJIBHOT'O PAHTY <2

O. Pomanins

JIveiacbruti nHaylonaavHul yHieepcumem isment leana Ppanxa,
eya. Ynieepcumemcvxa, 1 79000 Jvete, Yxpaina

JloBeneHo, mo Haj KiabneM R ctablibHoro panry < 2 JoBiabHUM pAJoK (a,b, c) €
R? rakmit, wo aR + bR + cR = R, eleMeHTApDHUMM NEPETBOPEHHAMH 3BOAUTHLCA JO
puraaay (1,0,0). Tokasaro, mo Haj npasuM Kinenem Besy R crabiibaoro panry < 2
noBiabEmE pagok (a, b, c) € R 3a gonoMoroio ereMeHTapHEX NEPETBOPEHb 3BOJUTHCH
ao suraaay (a,B,0), a,B € R.

Katwouost caosa: cTablibHUM paHr, Kiasle Beay, ereMenTapHa peaykiia.
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ON DECOMPOSITION OF COMPLETE LINEAR
GROUP INTO PRODUCT OF SOME ITS SUBGROUPS

Volodymyr SHCHEDRYK

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
NAS of Ukraine, 3b Naukova Str. 79053 Lviv, Ukraine

The group Ge of invertible matrices quasicommuting with the diagonal matrix ®
is considered. It is shown that the complete linear group over some Bezout domain
decomposes into the product of G, lower, and upper unitriangulars groups. Nessesary
and suffisient conditions for the equolity GL(n, R} = G?;Gq,, where T denotes the
transposition, are obtained. Some applications of these results are considered.

Key words: complete linear group, decomposition, subgroup, divisor of matrices.

Let R be a commutative Bezout domain in which for all a, b, ¢ € R with (a,b,¢) = 1,
¢ # 0, there exists element » € R, such that (a 4+ rb,¢) = 1. As an example of such
rings one can consider the Euclidean rings, principal ideal rings, adequate rings. Let
® = diag(g1,... ,¥n) be a nonsingular d-matrix, i.e. a matrix in which ¢; | @i,
i=1,...,n—1. We will consider a group of matrices

Gp = {H € GL.(R) | H® = S, S € GLn,R)},

which consist of all invertible matrices of the form ||hi;||7, where h;; = 3’—‘_!:,-3,-, § &=

p .j=1,...,n—1,1> j. In the papers [1, 2, 3] it was shown that the group
Go play the main role in the description of the nonassociative divisors of matrices.
This paper is devoted to an investigation of this group. Let Uyp(n, R) and Uy (n, R)
be groups of upper and lower n x n unitriangular matrices over R, respectively.

Theorem 1. GL(n, R) = GeUy (n, R)Uyp(n, R).

In order to prove this Theorem we establish a series of facts.

Lemma 1. Let A€ GL(n—1,R), a=|la; ... @n-1 |[T then there exists a column
p=lldy oo Bl ||T such that
0 1 0
n 1 |0 A 0 A En.,l ‘
Proof. It is easy to see that z = A~ 'a. 0

© Shchedryk Volodymyr, 2003
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Lemma 2. Let ¢ # 0 be any fized element of R, (a1,...,a,) =1, (a1,¢) = 1. Then

the row ||ay ... an]|| can be complemented to an invertible matrir of the form

ay as das e g An-1 On
0 I B ees 0 Up
0 0 1 L
o = (1)
: : i 0 ug
0 0 0 1 us

wup 0 0 ... 0 Uy

Proof. Observe that (a1, pay, ... ,pa,) = 1 and use results of paper [4], which without
loss of generality can be extended to our ring, complement the row ||a; ... an||
to an invertible matrix of form (1). a

We will consider a group of matrices

GL ={H e GL,(R) | ®H = S®, S € GLn(R)},

which consists of all invertible matrices of the form {|h;;||T, where h;; = E{—k,»j, i=
Lee i o= L FED ceayil $00,
Lemma 3. Let (ay,...,a,)=1,n2>2 and (01.%:—62, - ,E‘I‘—an) = 4. Then in the
groups G, Gg there exist matrices H, L such that
llay oo dpllH=l0 = ... %[,
' T T
Lila ... aal®=06 * ... *IF.
Proof. There are elements uy, ..., un sush that
auy + ﬂagug + it {P—“anun =4,
P Y1

By property 4 from [4] the element u; can be chosen so that (ul, 5‘-’-'1) = 1. Hence,

¥
(ul, &(‘uz‘--- ,ﬁn)) =1
#1

e P | Pa g — e2 Pn en P | s
Since = | or 1= 2,...,n, then (ul, Tiug,. .., mun) | (u1, U2y mu") 1.
Consequently

(ulzﬁauzv" !'(p_nuﬂ) =1
L1 PL .

By a Theorem from [5] in the group Gg there exists a matrix H with the first row

l] U] %uz ‘o %un ||T . The second part of our assertion can be proved by anal-
ogy. a
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Lemma 4. Let A be a k x| matriz and a the greatest common divisor of all elements
of this matriz. If A 1s a submatriz of the n x n matriz B and k+1 2 n+ 1 than
o | det B.

Proof. Without loss of generality we can suppose that the matrix A is in left lower
corner of the matrix B = ||b;;|[T. Hence

bsl v bsl

bnl o bnl

where s =n—k+1. Since k4+1>n+1, we obtainl > n—k + 1 = s. It means that
the diagonal element by, is an element of the first row of the matrix A. By Lemma
from [3], a | det B. . a

Proof of Theorem 1. Let be A € GL(2, R). Then det A =« € U(R). In the group Gs

there exists a matrix H; = diag(1,e~!). Denote H1A = ||a,-_,,-[|f. Since (@11, a21) = 1,
there exist elements uy, us such that

ujay; + uzaz = 1.
For each element r € R we have
(u; +anr)ay; + (u2 —anr)az = 1.

Since (uy,as) = 1 we see that (ul,azl, %11) = 1. Thus there exists rg such that

(ul + an 1o, E) 2=,
Y1

We denote by %; = uj + a170, U2 = u2 + a1170. Then
(Ela'@ﬁ?) = 1:
Y1

Ty — Dz = 1.
®1

It means that in the group G there exists 2 matrix

so there exist x,y such that

U Us
HZ = 3
il
Then ’ T
¥k e afn _ a
H””A“Mb efl ~ ‘b 1“ ’0 1
Therefore . alls
a
B g lb 1o 1’
where H = (H3H))™' € Gg. Hence the result holds for n = 2. Let n > 3, and
suppose that the result is established for k¥ < n. Since (a11,...,an1) = 1, 1t follows
that there exist elements uy,..., un such that

U811+ ...+ Unlay =1,
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where the element u, satisfies the condition
(U1, ﬁ) = 1.
£1
By Lemma 2 the row ||u; ... wugn|| is complementable to an invertible matrix of
form (1), where ¢ = £2. 1t is obvious that H € Gg. Then
froob It o flr o |Iy1
el A b P | B | e |

a=|lay ... ana|", b =1bs ... ba-1|l, Ba-1 € GLin — 1,R). By the in-

duction hypothesis B,y = H,_1UV, where H,_, € Gs,, ®1 = diag(e2,...,¢n),
U € Uw(n = 1,R), V € Uyp(n — 1,R). By Lemma 1 there exists column z =
lzi ... za_1||” such that

1 0 1 0 11 0 1 0
a En_y 0 Hn |0 Hp z Eqa|l’
Then
1 0 1 0 1 0 1 0 1 b )_
wi=lo m J (s salls oD (o vllo &Ll)-
_ %l 0 1 0 1 b
- Hﬂ—l i U 0 V '
Hence,
_ 111 0 1 0 1 &
a= (s wi e ollo vl
1 0

Taking into account that’

€ Gg, we see that our statement is true. [J
0 Hn-l

Let A be an n X n matrix over R. Since R is a commutative elementary divisor
domain {6], there exist invertible matrices P and @ such that

PAQ = diag(ey,... ,en) = ¥,

which is a d-matrix. The matrix ¥ is named canonical diagonal form of the matrix
A. Denote by K (f) the set of representatives of the conjugate class of the factor-ring
R/Rf, where f € R. Let

V(¥,®) ={V = |lvi;||I] € U(n,R) | vij = (T,.Iﬁe}j"‘i"‘ii c K ((qo.v,sj))},

¥j
f =Bl d S L=, 42 1

Corollary 1. (V(¥,®)Uyp(n, R)P)™' ® is the set of left divisors of the matriz A
which contain all left nonassociative by right divisors of this matriz with canonical
diagonal form ®.

Proof. We define
L(¥,®) = {L € GL(n,R) | L¥ = ®S, S € M(n,R)}.
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By Corollary 3 from [3] the set L(¥,®) consists of all invertible matrices of the form
;7 . where l;; = (T;?Eﬁkfi’ i=2,...,n,=1,...,n=1,1>j. From Proposition

from [3] it follows that the set (L(¥, ®)P)~" @ is the set of left divisors of the matrix
A which contain all left nonassociative by right divisors of this matrix with canonical
diagonal form ®. Let 7' € V(¥,®), N € Uyp(n, R). Since Uyp(n, R) C Gy, we have

TNY =T¥S, = $5,5;,5; € GL(TI,R),SQ € M(R,R),

Therefore V(¥,®)Uyp(n, R) C L(¥,®). Consequently, (V (¥, ®)Uyp [1@,1‘%)}"')*l ® is
the set of left divisors of the matrix A with canonical diagonal form ®. We will show
that this set is contain all left nonassociative by right divisors of the matrix A with
canonical diagonal form ®.

Let L € L(¥, ®), it means that the matrix B = (LP)_I‘@ is the left divisor of the
matrix A. By Theorem 1, L = HUV, where H € Gg, U € Ujw(n, R). V € Uyp(n, R).
Hence, U = H='LV~!. Since V! € Gy, it follows that

UV =H 'LV~ = H'LYS, = H™'$5,5;, = ®(535:51).

Thus U € L(¥,®). By Lemma 3 from [7] in the group G¢ there exists a matrix H,
such that H,U = Ty € L(¥,®). Consequently,

B=(LP)'®=(HUVP) ' &= (HH;\(H,U)VP) ™' ®=
= (WP ' (HiH"Y) ' &= (TyVP)™' &S = B,§,

S € GL(n,R) where B, = (TyVP)™' @S € (V(¥,®)Uup(n, R)P)™" ®. It means
that every left divisor of the matrix A with canonical diagonal form ® in the set
(V(¥, ®)Up(n, R)P)™' ® have associative by right matrix. The proof of the Corol-
lary is complete. O

Theorem 2. Let ® = diag(¢i1,...,¢n) and ¥ = diag(e1,...,€x) be nonsingular
d-matrices. In order that GL(n,R) = G%Gg, it is necessary and sufficient that

det =&, det ¥} = 1.
(det 3@, det 2 ¥)

Proof. Necessity. Let (det ;};(I),det é\?) = § and ¢,, ¢, are the first diagonal el-
ements of the matrices ®, ¥ with the property 6|%§-, Jl%-:—, 2 < r,s <n. Then J|i§f,
i=s,s+1,...,nand Jg,j = r,r+1,...,n. Consequently, in the lower left corner of
every matrix of the group G there is an (n — s + 1) x (s — 1) submatrix all elements
of which are divisible by 6. And in the upper right corner every matrix of the group
GYT is (r— 1) x (n — r + 1) submatrix all elements of which are divisible by §. Since
GL(n,R) = G Gg then

0 1

LH = —4 4
1 0

where L € GL, H € Gg. Thus, L = TH™'. Therefore, in the left upper corner of
the matrix L there is an (n — s+ 1) x (s — 1) submatrix all elements of which are
divisible by é. Taking into account structure of elements of the group Gg we come to
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the conclusion that s < r, otherwise all elements of first row of the matrix L would
be divisible by é. Possible cases:

l.n—s+1< r—1. Then the matrix L has (n—s+1) x ((s = 1)+ (n — r+ 1))
submatrix all elements of which are divisible by §. Since,

m—s+)+(-1)+(rn-r+l)=n+1)+(n-r)2n+1

by Lemma 4, §|det L € U(R). Therefore § = 1.
2. n—s+1> r—1. Then the matrix L contains an (r—1) x ((s — 1) + (n — r + 1))
submatrix all elements of which are divisible by 4. Since,

(r=1)+(=-1)+@n-r+)=n+s-1=(n+1)+(s-2)2n+1,
as above § = 1. "

Sufficiency. Let A = Haijllf € GL(2,R) and (au, -:f-au) = 4. By Lemma 3 there

exists H € Gg such that
§ byg

AH =
ba1 b2z

Since (5’—"‘ 5-1) = 1 and 4|£2, it follows that (5, %T) = 1. Therefore, there exists

erl e

L € G¥ such that det LAH = 1 and
1 a 1 0}ljjl a
A i o B[t
Consequently,

e

1 0 1l a -
sl (o 17)
Hence the result holds for n = 2.

Let n > 3, and suppose that the result is established for k < n. Let A = ||a;||} €
GL(n, R). By analogy we can find matrices L € G§, H € Gg such that

1 0
0 An—l

LAH =

By the induction hypothesis A,_1 = Lp_1Hn-1, where L, € G’f;l, H,.1 € Gg,,
¥, = diag(ea, ... ,en), ®1 = diag(ypa,...,pn). Hence,

1 0 1 0

= -1 -1

a= (o s ) (o wl]m):

Since - . € GT and : 4 € Ga, the proof of our statement is com-
= 0 Ln—I % 0 Hn—l d

plete. O

Corollary 2. Let A,B be matrices with the canonical diagonal form ¥ =
diag(ey, ... ,€n), ® = diag(p1,...,¥n), respectively. If (det ;};@,det :—I\Il) = 1 then
the matriz AB has the canonical diagonal form ¥®.

Proof. Since,A = P;'¥Q3;", B = P5'®Q5", where P4,Qa, Pp,Qp € GL(n, R), we
have AB = P; ¥ (Q3P5') ®Q5'. By Theorem 2, Q' P5' = UV, where U € G,
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V € Gg. Consequently,

AB = P (WU) (VR®)Qp' = (P1'S)) ¥@ (S:Qp') ~ ¥&.
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ON 2-TORSION OF BRAUER GROUPS OF
HYPERELLIPTIC CURVES OVER PSEUDOLOCAL FIELDS

Ludmyla STAKHIV
Ivan Franko National University of Lviv, 1 Universitetska Str. 79000 Lviv, Ukraine

It is proved an analogue of the Yanchevskii and Margolin's theorem about the 2-
torsion of the Brauer group of hyperelliptic curve over a complete discretely valued field
with pseudofinite residue field.

Key words: hyperelliptic curve, Brauer group, local field, pseudofinite field.

By a pseudolocal field K we mean a complete with respect to a discrete valution
field with pseudofinite [1] residue fields k. Recall that an infinite field is called pseudo-
finite if it is perfect, pseudoalgebraically closed and possesses exactly one extension of
each degree. If K, is a separable closure of a field K, let Gk = Gal(K,/K) be its Ga-
lois group. Then H'(K, M) denotes the Galois cohomology group of Gx-module M.
C, and C/nC stand for the kernel and cokernel of multiplication by n in an abelian
group C. For an abelian variety A defined over K by A(K) (respectively K(A)) we
denote the group of K-rational points of A (respectively the function field on A).

Consider the homomorphism u : K(A)* — Div(A), which sends a function from
K{A)* to its divisor. The map p induces the corresponding homomorphism in Galois
cohomology

u. : H3(G, K (A)*) — H*(G, Div(A)).

The kernel of g. called the Brauer group of A, is denoted by BrA. It is known [1],
that the group BrA consists of the classes of similar central simple K -algebras, which
are unramified at all the valutions v of K.

Recall that two central simple K-algebras Cy, Cy are similar if there exist two
natural numbers m, n such that C; ® M,(K) and C2 ® Mn(K) are isomorphic.
Recall also that a generalized quaternion algebra (%}—b) over a field K is a K-algebra,

generated by 1, z, y, z € K*, where 22 = a, y? = b, 2 = —ab, and zy = —yz,
Tz = —22, Y7 = —2z2. [EK'E] is the element of BrK with the representative (%7).

The 2-torsion part of the Brauer group of an elliptic or hyperelliptic curve over a
local field was described by V.I.Yanchevskii and G.L.Margolin [2]. In their description
every element of (BrA), is represented by a quaternion algebra over K(A). It turns
out that the analogous results remain true for hyperelliptic curves over a pseudolocal
field.

Let K be a pseudolocal field. Denote by Ok the ring of integer of K. Let 7 be
an uniformizing element of K, a be a unit of K which is not a square, n be a prime
number, n # chark and |A| denote the order of finite set A.

© Stakhiv Ludmyla, 2003
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Let A be a hyperelliptic curve over a preudolocal field K, that is a curve defined
by the equation y? = f(z), f(z) = Bfo(z), where fo(z) € Ok is a monic polynomial,
m = degf(z), B € {1,a,7}. :

Theorem 1. Let A be either an elliptic or a hyperelliptic curve with good reduction

defined over a pseudolocal field K with a pseudofinite residue field K, charK # 2,
m # 0(mod4). Then (BrA), consists of the folowing pairwise distinct elements:

G ) ElliCplt

(i) if m is odd then g(z) runs over all monic divisors of f(z) of degree less than
m/2.

(ii) if m is even then g(x) runs over all monic divisor$ of f(z) of even degree less
than m/2.

To prove this result we need some preliminary statements which are of interest by
its own right.
First, we will need the following three lemmas from [2}.

Lemma 1. Let g(z) be a divisor of f(z) and let either m be odd or deg g(z) even.
Then the quaternion algebra (%%%)-) is unramified over K(A) for any B € K*.

Lemma 2. Let 3 be either 1 or a, g = Bgo, B either 1 or and go € Oklz] be a
monic divisor of f(z), fo = godo. If §o & K[z]?, go & K(z]?, where K is residue field
of K, §o and Jo are polinomial go and go, regarded over the residue field K. Then

(%) 21
Lemma 3. Let K be a general local field and A has good reduction. If (1;(3) 18 the

quaternion division algebra over K, then (; j‘;)) is a division algebra.

Note, that the statements and the proofs of these three results remain true for any
complete discretely valued field.

Lemma 4. Let K be a pseudolocal field, A be an abelian variety defined over K.
Suppose that A has good reduction. Then |A(K)/nA(K)| = |A(K)a| for any n,
(n,charK) = 1.

For local fields this was proved by V. I. Yanchevskii and G. L. Margolin [2]. The
case of elliptic curves over pseudolocal fields was considered in [5]. The case of abelian
variety with good reduction was investigated by V. I. Andrijchuk {3].

For completeness sake we sketch briefly the corresponding arguments. Any princi-
pal homogeneous space for A over K has a K-rational point, so H'(k, A) = 0. Thus
the Kummer exact sequence corresponding to multiplication by n yields the isomor-
phism of the groups A(k)/nA(k) and H'(K, Ap). Besides, since the absolute Galois
group of k is isomorphic to Z, we obtain |H'(k, An)| = |[H°(k, An)| (see [6] for more
details). Thus we have |A(k)/nA(k)| = |A(k)n|. To finish the proof it is sufficient to
use the reduction exact sequence and the snake lemma together with the fact that
the kernel of the reduction map is uniquelly divisible by n.
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Lemma 5. Let A be an abelian variety with good reduction, defined over a pseudolocal
field K, A be its dual variety. Then for any n, (n,chark) = 1 the Tate-Shafarevich
pairing induces a nondegenerate pairing A(K)/nA(K) ® H (K, A)n — Z/nZ. If A
is an elliptic curve with bad reduction, then the last pairing is nondegenerate in the
case of general local field.

For an elliptic curve this was proved in [4]. According to (3] this fact remains true
for an abelian variety of any dimention with good reduction.

To prove that the pairing A(K)/nA(K)® H'(K, A,) — Z/nZis non-degenerate,
we consider the commutative diagram

HYK, An) xHYK,Ar) —— Q/Z

" |
A(K)/nA(K)x H'(K, A), —— Q/Z,

where i, and j, are the homomorphisms from the Kummer exact sequences for A,
W is induced by the Weil pairing, and T is induced by the Tate-Shafarevich pair-
ing. The homomorphis i, is injective and it is known that the pairing W 1s non-
degenerate. Since i, is a monomorphism and j, is an epimorphism, it follows that
T is nondegenerate on the left. To prove that it is a duality, it suffices to prove
that JA(K)/nA(K)| = |H'(K, A,)|. But this follows from the equalities |A(K)n| =
|A(K)al, |H (K, An)| = |HO(K, An)| x |[H*(K, Ag)| and |H (K, An)| = |HY(K, An)),
which hold for any complete discretely valued field with quasifinite residue fields (the
first of them holds for any field).

Proof of Theorem 1. We denote by PicA (respectively Pic®A) the Picard group
(respectively its subgroup of divisor classes of degree zero). As in [2], we begin by
considering the following exact sequence

0 — PicA — HY(K, PicA) = BrK — BrA — H'(K, PicA) —» H>(K,K7). (1)

In this sequence H3(K, K?) = 0, since the cohomological dimension of K is 2, as it
is follows from [6, Prop.12, p.105]). Since A has a K-rational point, the index of A
is equal 1. Thus the homomorphism Pic’A — HO(K, Pic®A) is surjective, and we
obtain the exact sequence

0 — BrK —— BrA —— H'(K, PicA) —— 0. (2)

Using BrK = Q/Z for any general local field K and passing to n-torsion in the
exact sequence (1) we obtain the following equality:

|(BrA),| = n|H'(K, PicA)|. (3)

Since the period of A divides the index of A, it is 1, so passing to cohomology 1n the
exact sequence

0 ——» Pic®A ——— PicA —— Z — 0,

we obtain the isomorphism H* (K, PiEOA) — HY(K, PicA) which induces the isomor-
phism H'(K, Pic°A), = H'(K, PicA),
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Now, Lemma 5 implies, that |[H(K, Pic°A)| = |A(K)/nA(K)|, and by the equality
(3), |(BrA)s| = n|HY(K, Pik%A)| = n|Pic®A/nPic’A| = n|(Pic°A),|. Here the last
equality follows from Lemma 4. )

The order of (BrA); is 2|Pic’(A)2|. But, by [2, Corol. 4, p.19], there is bijective
correspondence between elements of (Pic®A), and monic divisors of f(z) defined over
K of degree less than m/2 in the case of odd m and monic divisors of f(z) defined
over K of even degree less than m/2 in the case of even m. Thus, to finish the proof,
it remains to show that all algebras from the statement of Theorem 1 are nontrivial,
unramified and pairwise not isomorphic. But this follows from Lemmas 1, 2, 3 and
from the fact that the tensor products of two such algebras js similar to an algebra of

the same form.
L}
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ZERO-KNOWLEDGE PROOFS OF THE
CONJUGACY FOR PERMUTATION GROUPS

Oleg VERBITSKY

Ky Taras Shevchenko National University,
64 Volodymyrska Str. 01038 Ryiv, Ukraine

We design a perfect zero-knowledge proof system for recognition if two permutation
groups are conjugate. It follows, answering a question posed by O. G. Ganyushkin,
that this recognition problem is not NP-complete unless the polynomial-time hierarchy
collapses.

Key words: interactive proof system, zero-knowledge proof, NP-completeness, per-
mutation group, conjugacy.

1. Let S, be a symmetric group of order m. We suppose that an element of
Sm, a permutation of the set {1,2,...,m}, is encoded by a binary string of length
[ = [log, m!], m(log, m—0(1)) <! < mlogy m. Givenv € Spm, y € Sm,and Y C Sy,
we denote y* = v~ lyv and YV = {y* : y € Y}. Two subgroups G and H of S, are
similar if their actions on {1,2,...,m} are isomorphic or, equivalently, if G = H"
for some v € Sm. If X C Sy, let (X) denote the group generated by elements of X.

We address the following algorithmic problem.

SIMILITUDE OF PERMUTATION GROUPS
Given: Ag, Ay C Sm.
Recognaize if: Ag and A; are similar.

Note that the EquaLiTy oF PERMUTATION Groups problem, that is, recognition if
(Ag) = (A;) reduces to recognition, given X C S, and y € Si, if y € (X). Since the
latter problem is known to be solvable in time bounded by a polynomial of the input
length [20, 10], so is EQUALITY oF PERMUTATION GROUPS. As a consequence, SIMILITUDE
oF PERMUTATION Groups belongs to NP, the class of decision problems whose yes-
instances have polynomial-time verifiable certificates. The similitude of (4g) and
(A1) is certified by a permutation v such that (4:) = (Ag).

Another problem, IsomorpHISM OF PERMUTATION GROUPs, is to recognize if (Ag) and
(A;) are isomorphic. This problem also belongs to NP (E. Luks, see [5, Corollary
4.11]). Furthermore, it is announced [7] that IsoMORPHISM OF PERMUTATION GROUPS
belongs to the complexity class coAM (see Section 2 for the definition). By [8]
this implies that IsoMorpHisM oF PERMUTATION Groups is not NP-complete unless the
polynomial-time hierarchy collapses to its second level (for the background on com-
putational complexity theory the reader is referred to [12}).

© Verbitsky Oleg, 2003
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O. G. Ganyushkin [11] posed a question if a similar non-completeness result can be
obtained for SimiLiTubE oF PERMUTATION Groups. In this paper we answer this question
in affirmative. We actually prove a stronger result of independent interést, namely,
that SiMILITUDE oF PERMUTATION Groups has a perfect zero-knowledge interactive proof
system. It follows from [1] that SimiLiTupe oF PERMuTATION GrOUPs belongs to coAM
and is therefore not NP-complete unless the polynomial-time hierarchy collapses.

Informally speaking, a zero-knowledge proof system for a recognition problem of a
language L is a protocol for two parties, the prover and the verifier, that allows the
prover to convince the verifier that a given input belongs to L, with high confidence
but without communicating the verifier any information (the rigorous definitions are
in Section 2). Our zero-knowledge proof system for SimiLiTuDE OF PERMUTATION GROUPS
uses the underlying ideas of the zero-knowledge proof systeins designed in [16] for the
Quabratic Resipvosity and in [14] for the Grapu Isomorphism problem. In particular,
instead of direct proving something about the input groups (Ao) and (A;), the prover
prefers to deal with their conjugates (Ao)* and (A;)" via a random permutation w.
The crucial point is that these random groups are indistinguishable by the verifier
because they are identically distributed, provided (Ag) and (A;) are similar. However,
we here encounter a complication: the verifier may actually be able to distinguish
between (Ap)* and (A;)” based on particular representations of these groups by
their generators. Overcoming this complication, which does not arise in [16, 14],is a
novel ingredient of our proof system.

Our result holds true even for a more general problem of recognizing if (Ao) and
(Ay) are conjugated via an element of the group generated by a given set U C S,,.
We furthermore observe that a similar perfect zero-knowledge proof system works also
for the ELEMENT Consucacy problem of recognizing, given ag,a; € Sm and U C S, if
a; = a} for some v € (U). A version of this problem where ag,a; € (U) was proved
to be in coAM in [5, Corollary 12.3 (i)]. Note that the proof system deveioped in [5]
uses different techniques and is not zero-knowledge.

2. Preliminaries. Every decision problem under consideration can be represented
through a suitable encoding as a recognition problem for a language L over the binary
alphabet. We denote the length of a binary word w by |w|.

An interactive proof system {V, P}, further on abbreviated as IPS, consists of two
probabilistic Turing machines, a polynomial-time verifier V and a computationally
unlimited prover P. The input tape is common for the verifier and the prover. The
verifier and the prover also share a communication tape which allows message ex-
change between them. The system works as follows. First both the machines V' and
P are given an input w and each of them is given an individual random string, rv for
V and rp for P. Then P and V alternatingly write messages to one another in the
communication tape. V computes its i-th message a; to P based on the input w, the
random string rv, and all previous messages from P to V. P computes its i-th mes-
sage b; to V based on the input w, the random string rp, and all previous messages
from V to P. After a number of message exchanges V terminates interaction and
computes an output based on w, ry, and all b;. The output is denoted by {V, P }(w).
Note that, for a fixed w, {V, P}(w) is a random variable depending on both random
strings ry and rp.

Let ¢(n) be a function of a natural argument taking on positive real values. We say
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that {V, P} is an IPS for.a language L with error e(n) if the following two conditions
are fulfilled.

Completeness. If w € L, then {V, P}(w) = 1 with probability at least 1 — ¢(|w]).
Soundness. If w ¢ L, then, for an arbitrary interacting probabilistic Turing machine
P*, {V, P*}(w) = 1 with probability at most €(|w}).

We will call any prover P* interacting with P on input w ¢ L cheating. If in the
completeness condition we have {V, P}(w) = 1 with probability 1, we say that {V, P}
has one-sided error €(n).

An IPS is public-coin if the concatenation a; ...ax of the verifier’s messages is a
prefix of his random string ry. A round is sending one message from the verifier to
the prover or from the prover to the verifier. The class AM consists of those languages
having IPSs with error 1/3 and with number of rounds bounded by a constant for all
inputs. A language L belongs to the class coAM iff its complement {0,1}"\ L belongs
to AM.

2.1. Proposition (Goldwasser-Sipser [17]). Every IPS for a language L can be
converted into a public-coin IPS for L with the same error at cost of increasing the
number of rounds in 2.

Given an IPS {V, P} and an input w, let viewy p(w) = (ry,,a1,b1,... ,ak, bx)
where r{, is a part of ry scanned by V during work on w and ay,b;,...,ak, b are all
messages from P to V and from V to P (a; may be empty if the first message is sent
by P). Note that the verifier’s messages ay, ... ,ax could be excluded because they
are efficiently computable from the other components. For a fixed w, viewy p(w) is a
random variable depending on ry and rp.

An IPS {V, P} is perfect zero-knowledge on L if for every interacting polynomial-
time probabilistic Turing machine V* there is a probabilistic Turing machine My.,
called a simulator, that on every input w € L runs in expected polynomial time and
produces output My.(w) which, if considered as a random variable depending on
a random string of My., is distributed identically with viewy. p(w). This notion
formalizes the claim that the verifier gets no information during interaction with the
prover: everything that the verifier gets he can get without the prover by running the
simulator. According to the definition, the verifier learns nothing even if he deviates
from the original program and follows an arbitrary probabilistic polynomial-time pro-
gram V*. We will call the verifier V honest and all other verifiers V* cheating. If, for
all V*, My. is implemented by the same simulator M running V* as a subroutine,
we say that {V, P} is black-boz simulation zero-knowledge.

We call €(n) negligible if ¢(n) < n~¢ for every c and all n starting from some no(c).
The class of languages L having IPSs that are perfect zero-knowledge on L and have
negligible error is denoted by PZK.

2.2. Proposition (Aiello-Hastad [1]). PZK C coAM.

The k(n)-fold sequential composition of an IPS {V, P} is the IPS {V’, P’} in which
v’ and P’ on input w execute the programs of V and P sequentially k(|w|) times, each
time with independent choice of random strings rv and rp. At the end of interaction
V' outputs 1 iff {V, P}(w) = 1 in all k(Jw|) executions. The initial system {V, P} is
called atomic.
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2.3. Proposition.
DIf {V', P'} is the k(n)-fold sequential composition of {V, P}, then

max P [{V', P}(w) = 1] = (n}ﬁxp {V, P*}(w) = 1])”“‘"”.

Consequently, if {V, P} is an IPS for a language L with one-sided constant error ¢,
then {V', P'} is an IPS for L with one-sided error ¢*().

2) (Goldreich-Oren [15], see also [13, Lemma 6.19]) If in addition {V, P} is black-bozx
simulation perfect zero-knowledge on L, then {V', P'} is perfect zero-knowledge on L.

In the k(n)-fold parallel composition {V", P"} of {V, P}, the program of {V, P}
is executed k(|w|) times in parallel, that is, in each round all k(|w|) versions of a
message are sent from one machine to another at once ag a long single message. In
every parallel execution V” and P” use independent copies of rv and rp. At the end
of interaction V" outputs 1 iff {V, P}{(w) = 1 in all k(Jw|) executions.

2.4. Proposition. If {V", P"} is the k(n)-fold parallel composition of {V, P}, then

maxP [{V", P }(w) = 1] = (maxP {V, P"}(v) = i

3. Group Conjugacy. We consider the following extension of SimiLiTupE oF
PERMUTATION GROUPS.

Group CONIJUGACY
Given: Ag, A1,U C Sn.
Recognize if: (A;y) = (Ag)? for some v € (U).

3.1. Theorem. Group CoNiucacy 15 in PZK.

Designing a perfect zero-knowledge interactive proof system for Grour Conyucacy,
we will make use of the following facts due to Sims [20,10].
1) There is a polynomial-time algorithm that, given X C Sp, and y € Sm, recognizes if
y € (X). As a consequence, there is a polynomial-time algorithm that, given X C Sen
and Y C S, recognizes if (X) = (Y).
2) There is a probabilistic polynomial-time algorithm that, given X C S, outputs a
random element of (X). Here and further on, by a random element of a finite set Z
we mean a random variable uniformly distributed over Z.

Given A C S,, and a number k, define

G(A,k):{(:z:l,... ,:Bk) : .’E,’ESm,(w;,... ,zk}=(A)}.

In the sequel, the length of the binary encoding of an input Ag, A1, U C S will be
denoted by n. We set k = 4m. On input (Aq, A1, U), the IPS we design is the n-fold
sequential repetition of the following 3-round system. We will say that the verifier V
accepts if {V, P}(Ao, A1,U) =1 and rejects otherwise.

If (A, A1, U) is yes-instance of Grour CoNiucacy, P finds an element v € (U) such
that (A;) = (A4g)".

1st round.
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P generates a random element u € (U), computes A = A}, chooses a random element
(ai,...,ax) in G(A, k), and sends (ay,...,ax) to V. V checks if all a; € S, and, if
not (this is possible in the case of a cheating prover), halts and rejects.

2nd round.
V' chooses a random bit § € {0, 1} and sends it to P.

3rd round.

Case 3 = 1. P sends V the permutation w = u. V checks if w € (U) and if
(a1, ... ;8x) = {AT).
Case 3 # 1 (this includes the possibility of a message 3 ¢ {0,1} produced by a
cheating verifier). P computes w = vu and sends w to V. V checks if w € (U) and if
(B o B = (AT )

V halts and accepts if the conditions are checked successfully and rejects otherwise.

We now need to prove that this system is indeed an IPS for Grour Coniucacy and,
moreover, that it is perfect zero-knowledge.

Completeness. To show that the prover is able to follow the above protocol, we
have to check that G(A,k) # @ for k = 4m. The latter is true by the fact that
every subgroup of S, can be generated by at most m — 1 elements [18]. 1f (4¢) and
(A;) are conjugate via an element of (U) and the prover and the verifier follow the
protocol, then (ay,...,ax) = (A) = (A}) = (A§*). Therefore, the verifier accepts
with probability 1 both in the atomic and the composed systems.

Soundness. Assume that (Ag) and (A;) are not conjugate via an element of (U) and
consider an arbitrary cheating prover P*. Observe that if both (ai,...,ax) = (A})
and (a1,...,ak) = (A¥) with u,w € (U), then (4;) = (Ao)“*™". It follows that V
rejects for at least one value of 3 and, therefore, in the atomic system V' accepts with
probability at most 1/2. By Proposition 2.3 (1), in the composed system V' accepts
with probability at most 27".

Zero-knowledge. We will need the following fact.

3.2. Lemma. Let G be a subgroup of Sy, and ay,...,ar be random independent
elements of G.

1) If k = 4m, then {(ay,....ax) = G with probability more than 1/2.

2) If k = 8m, then (ay,...,ax) = G with probability more than 1 —27™.

Proof. We will estimate from above the probability that {ay,...,ax) # G. This
inequality is equivalent with the condition that all (a1), (a1,a2), ..., (a1, ... ,ax) are
proper subgroups of G. Assume that this condition is true. Since every subgroup
chain in S, has length less than 2m (see [3, 9]), less than 2m — 1 inclusions among

(a;) C {ay,a3) C -+ C {(a1,...,ax) are proper. In other words, less than 2m — 1 of
the events as ¢ (a1), a3 € (a1,a2), ..., ax € (@1, ... ,ax—1) occur. Equivalently, there
occur more than k—2m of the events as € {(a1), as € (a1,a2), ..., ax € (a1,...,ak-1).

Let p = |H|/|G| be the maximum density of a proper subgroup H of G. Given
ai,...,a; € G, define E(ay,...,a;) to be an arbitrary subset of G fixed so that
(i) E(ay,...,a;) has density p in G, and
(ii) E(ay,...,a;) contains (a1, ... ,a;) if the latter is a proper subgroup of G.
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If (a1, ... ,ax) # G, there must occur more than k — 2m of the events
a; € E(ar), a3 € E(a1,a2),...,ax € E(ay,...,ak-1). . (1)

It suffices to show that the probability of so many occurrences in (1) is small enough.
Set Xi(ai,...,ax) to be equal to 1 if ajy; € E(ay,...,q;) and to 0 otherwise. In
these terms, we have to estimate the probability that

k-1
Y Xi>k—2m. (2)

i=1

It is easy to calculate that an arbitrary set of ! events in (1) occurs with probability

p'. Hence events (1) as well as the random variables X;,..., Xx_-1 are mutually
independent, and Xy, ..., Xx—1 are successive Bernoulli trails with success probability
p

If k = 4m, inequality (2) implies that strictly more than a half of all the trails are
successful. Since p € 1/2, this happens with probability less than 1/2 and item 1 of
the lemma follows.

If k = 8m, inequality (2) implies

k—

[

1

% -1+ Xi>p+e

1

-
1l

-1
bound [2, Theorem A.4], this happens with probability less than exp (—2€%(k - 1))
= exp(—m + ) < 2~™. This proves item 2 of the lemma. O

By Proposition 2.3 (2) it suffices to show that the atomic system is black-box
simulation perfect zero-knowledge. We describe a probabilistic simulator M that uses
the program of V* as a subroutine and, for each V*, runs in expected polynomial
time. Assume that the running time of V* is bounded by a polynomial ¢ in the input
size. On input (Ao, A;,U) of length n, M will run the program of V* on the same
input with random string r, where r is the prefix of M’s random string of length g(n).
In all other cases of randomization, M will use the remaining part of its random
string.

Having received an input (Ao, A1, U), the simulator M chooses a random element
w € (U) and a random bit a € {0,1}. Then M randomly and independently chooses
elements ay,...,ax in (A%) and checks if

(ala'” =ak) = (A:f> (3)

If (3) is not true, M repeats the choice of aj,...,ax again and again until (3) is
fulfilled. By Lemma 3.2 (1), M succeeds in at most 2 attempts on average. The re-
sulting sequence (ay, . .. , ax) is uniformly distributed on G(Ay , k). Then M computes
B = V*(Ao, A1,U,r,ay,...,ax), the message that V* sends P in the 2-nd round after
receiving P’s message ay,...,ax. If # and a are simultaneously equal to or different
from 1, M halts and outputs (r’, ai,...,ax, 3, w), where 7’ is the prefix of r that V*
actually uses after reading the input (Ag, A1, U) and the prover’s message ay, . .. , ak.
If exactly one of § and « is equal to 1, then M restarts the same program from the

with deviation e = 1/4 from the mean value p=E [E‘L’ Zfz_ll X,-]. By the Chernoff
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very beginning with another independent choice of w, a, and aj,...,ax. Notice that
it might happen that in unsuccessful attempts V* used a prefix of r longer than »'.

We first check that, for each V*, the simulator M terminates in expected polyno-
mial time whenever Ag and A; are conjugated via an element of (U). Since V* is
polynomial-time, one attempt to pass the body of M’s program takes time bounded
by a polynomial of n. Observe that a and (r,ay,...,ax) are independent. Really,
independently of whether @ = 0 or @ = 1, r is a random string of length ¢g(n) and
{(ai,...,ax) is a random element of G(A, k), where A itself is a random element of
the orbit { AY : w € (U)} = { AY : w € (U)} under the conjugating action of (U) on
subsets of Sp,. It follows that « and @ are independent and therefore an execution
of the body of M’s program is successful with probability 1/2. We conclude that on
average M’s program is executed twice and this takes expected polynomial time.

We- finally need to check that, whenever Ag and A; are conjugated via an ele-
ment of (U), for each V* the output M (Ao, A;,U) is distributed identically with
viewy. p(Ag, A1,U). Notice that both the random variables depend on V*’s random
string r. It therefore suffices to show that the distributions are identical when condi-
tioned on an arbitrary fixed r. Dencte these conditional distributions by Dps (Ao, A1,
U,r) and Dy- p(Ag, A1,U,r). We will show that they are both uniform on the set

§= {(al,... Jak, B,w) + we(U), B=V"(Ao,ALU,ra1,. .., a),

(av,... ,ax) € G(A¥g k) },

where &(8) is equal to 1 if 3 = 1 and to 0 otherwise.

Let v € (U), such that (4;) = (Ao)”, be chosen by the prover P on input
(Ag, A1, U). Given zy,...,2x € G(A1,k) and u € (U), define ¢(z;,...,2k,u) =
(ai,...,ax,B,w) by a; = ¥ for all i < k, 8 = V*(40,A1,U,r.04,... ,ax), and
w = v~y As easily seen, ¢(zy,...,2zk,u) € S. :

Claim. The map ¢ : G(A1, k) x (U) = S is one-to-one.

Proof. Define ¥(ay,....ax, 8, w) = (z1,...,2x,4) by u = v*® 1w and z; = a?_l
for all i < k. It is not hard to check that the map ¥ is the inverse of ¢. [J

Observe now that if (z1, ... ,zk, u) is chosen at random uniformly in G(A;, k) x(U),
then ¢(z1,...,zk, u) has distribution Dy. p(Ao, A1,U,r). By Claim we conclude that
Dy. p(Ag, A1, U,r) 1s uniform on S.

As a yet another consequence of Claim, observe that if a random tuple (ay, ... ,ak,
3, w) is uniformly distributed on S, then its prefix (a1, ..., ax) is a random element of

G(A, k), where A is a random element of the orbit { A} : w € (U)} = {AY : we (U)}
under the conjugating action of (U) on subsets of Sp,. This suggests the following
way of generating a random element of S. Choose uniformly at random o € {0,1},
w € (U), (ay,...,ax) € G(AZ,k) and, if

J(V'(Aa,Al,U,r,al,...,ak))=a, (4)

output (aj,...,ax, V*(Ao, A1,U,r,a1,... ,ax), w); otherwise repeat the same proce-
dure once again independently. Under the condition that (4) is fulfilled for the first
time in the i-th repetition, the output is uniformly distributed on S. Notice now that
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this sampling procedure coincides with the description of Dps(Ap, Ay,U,7). It fol-
lows that Dy (Ao, A1, U, r) is uniform on S. The proof of the perfect zero-knowledge
property of our proof system for Grour Coniucacy is complete. )

The following corollary immediately follows from Theorem 3.1 by Proposition 2.2
and the result of [8].

3.3. Corollary. Group Consucacy is in coAM and is therefore not NP-complete
unless the polynomial-time hierarchy collapses.

We also give an alternative proof of this corollary that consists in direct designing
a two-round IPS {V, P} with error 1/4 for the complement of Grour Consucacy and
applying Proposition 2.1. More precisely, we deal with the Grour Non-Consugacy
problem of recognizing, given Ag, A;,U C Sn, if there is no v € (U) such that
(A1) = (Ao)". ‘

Set k = 8m. The below IPS is composed twice in parallel.

Ist round.
V chooses a random bit o € {0,1}, a random element u € (U), and a sequence of
random independent elements a;,...,ax € (A4%). Then V sends (ai,...,ax) to P.
2nd round.
P determines 3 such that (a;,...,ax) and (Ag) are conjugate via an element of (U)

and sends 3 to V.

V accepts if 8 = a and rejects otherwise.

Completeness. By Lemma 3.2 (2), (a1,...,ax) = (Ay) with probability at least
1 — 2™ If this happens and if (Ao) and (A;) are not conjugated via (U), the group
(ay,...,ax) is conjugated via (U) with precisely one of (Ao) and (A1). In this case P
is able to determine o« correctly. Therefore V accepts with probability at least 1 -2"™
in the atomic system and with probability at least 1 —2~™%! in the composed system.

Soundness. If (Ag) and (A;) are conjugated via (U), then for both values a = 0
and a = 1, the vector (ay,...,ax) has the same distribution, namely, it 1s a ran-
dom element of A¥, where A is a random element of the orbit { Af : w € (U)} =
{ AY : w € (U)} under the conjugating action of (U) on subsets of Sp. It follows
that, irrespective of his program, P guesses the true value of a with probability 1/2.
With the same probability V accepts in the atomic system. By Proposition 2.4, in
the composed system V accepts with probability 1/4.

Note that {V, P} is perfect zero-knowledge only for the honest verifier but may
reveal a non-trivial information for a cheating verifier.

4. Element Conjugacy. This section is devoted to the following problem.

ELEMENT CONJUGACY
Given: ag,a; € Sm, U C Sm.
Recognize if: a; = af for some v € (U).

L. Babai [5] considers a version of this problem with ag,a; € (U) and proves that
it belongs to coAM. His result holds true not only for permutation groups but also
for arbitrary finite groups with efficiently performable group operations, in particular,
for matrix groups over finite fields. It is easy to see that Theorem 3.1 carries over to
ELEMENT CONJUGACY.
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4.1. Theorem. ELeMeNT Coniucacy 1§ in PZK.

The proof system designed in the preceding section for Grour Coniucacy applies
to ELEMENT Conjucacy as well. Moreover, the proof system for ELemenT Consucacy
is considerably simpler. In place of groups (A}) and (A}) we now deal with single
elements aff and a} and there is no complication with representation of (A§) and (AY)
by generating sets. _

We now notice relations of ELement Coniucacy with the following problem consid-
ered by E. Luks [19] (see also [6, Section 6.5]). Given £ € Sp,, let C(z) denote the
centralizer of z in S,,.

CENTRALIZER AND COSET INTERSECTION
Given: 2,9 € Sy U C Sen.
Recognize if: C(z) N (U)y # 0.

Since, given a permutation z, one can efficiently find a list of generators for C(z), this
is a particular case of the CoseT INTERsEcTION problem of recognizing, given A, B C S,
and s,t € S, if the cosets (A)s and (B)t intersect.

4.2. Proposition. ELEMENT ConiuGacy and CENTRALIZER AND COSET INTERSECTION are
equivalent with respect to the polynomial-time many-one reducibility.

Proof. We first reduce ELEMENT ConJuGACY t0 CENTRALIZER AND COSET INTERSECTION.
Given permutations ag and ay, it is easy to recognize if they are conjugate in S, and,
if so, to find an s such that a; = aj. The set of all z € S, such that a, = af is the
coset C'(ag)s. It follows that (U) contains v such that a; = af iff C'(ao) and (U)s~1
intersect.

A reduction from CENTRALIZER AND COSET INTERSECTION tO ELEMENT CONJUGACY IS
based on the fact that C(z) and (U)y intersect iff z and yzy~' are conjugated via an
element of (U). 0O

Note that, while the reduction we described from ELEMENT ConJjuGacy to CENTRAL-
1ZER AND CoseT InTERsecTion works only for permutation groups, the reduction in the
other direction works equally well for arbitrary finite groups with efficiently per-
formable group operations, in particular, for matrix groups over finite fields.

We now have three different ways to prove that ELement Coniucacy is in coAM and
is therefore not NP-complete unless the polynomial-time hierarchy collapses. First,
this fact follows from Theorem 4.1 by Proposition 2.2. Second, one can use Proposition
4.2 and the result of [5, Corollary 12.2 (d)] that Coset InTERsECTION is in coAM. Finally,
one can design a constant-round IPS for the complement of ELemenT Coniucacy as it
is done in the preceding section for the complement of Grour Constcacy.

We conclude with two questions.

4.3. Question. Is there any reduction between Grour Conjucacy and COSET INTER-
secTion? We are not able to prove an analog of Proposition 4.2 for groups because,
given Ag, A; C Sm, such .that (A;) = (Aq)” for some v € Sp,, we cannot efficiently
find any v with this property (otherwise we could efficiently recognize the SimiLiTupe
oF PERMUTATION GROUPS).

4.4. Question. Does ELEmenT Conucacy reduce to Grour Conyucacy? Whereas
Corollary 3.3 gives us an evidence that Grour Consuaacy is not NP-complete, we
have no formal evidence supporting our feeling that Group Coniucacy is not solvable
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efficiently. A reduction from ELement Consucacy could be considered such an evidence
as ELEMENT ConJuGacy is not expected to be solvable in polynomial time [4, page 1483].

Note that the conjugacy of permutations ag and a; via an element of a group (U)
does not reduce to the conjugacy of the cyclic groups (ap) and (a;) via (U) because
(ap) and (a;) can be conjugated by conjugation of another pair of their generators,
while such a new conjugation may be not necessary via (U). For example, despite the
groups ((123)) and ((456)) are conjugated via ((14)(26)(35)), the permutations (123)
and (456) are not. :
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DIAGONALIZATION OF MATRICES OVER
RING WITH FINITE STABLE RANK
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In the present work we construct a theory of diagonalizability for matrices over rings
with finite stable rank. We prove that if R is a regular ring, then every m x k and k xm
matrices, where m > bsr(R) + 2, admits a diagonal reduction. If R is a directly finite
regular ring, then Ry, is directly finite for all n 2> bsr(R) + 2. We obtain an affirmative
answer in greater generality to the question of Henriksen: if R is a right Bezout ring
and R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to
this question implies that a commutative Bezout ring is an elementary divisor ring if
and only if R/J(R) is an elementary divisor ring.

Key words: stable rank, Bezout ring, elementary transformations, Hermite ring.

1. The aim of this paper is to study the question of diagonalizability for matrices
over ring. In [1] Henriksen proved that if R is a unit regular ring, then every matrix
over R admits diagonal reduction. The diagonalizability question for matrices was
answered by Menal and Moncasi [2, Theorem 7}, they showed that all matrices over
regular ring R admit diagonal reductions if only if R is Hermite. Further, the stable
rank (in the sense of K-theory) of a regular ring satisfying the above condition is at
most 2 [2, Proposition 8].

We construct a theory .of diagonalizability for matrices over rings with finite stable
rank. We provide that if R is a regular ring with finite stable rank bsr(R), then every
k x m and m x k matrices over R, where m > bsr(R) + 2, admit diagonal reduction.
We provide an answer to a question in [4]: if R is a directly finite regular ring, is R,
directly finite? We prove that if R is directly finite regular ring with finite stable rank
bsr(R), then R, is directly finite for all n > bsr(R) +2. We also obtain an affirmative
answer 1o a question of Henriksen [6, Question 2]: if R is an right Bezout ring and
R/J(R) is a right Hermite ring, then R is right Hermite. An affirmative answer to
this question implies that a commutative Bezout ring is an elementary divisor ring if
and only if R/J(R) is an elementary divisor ring.

All rings we consider are supposed to be associative with 1 # 0. By a right Bezout
ring we will mean a ring in which all finitely generated right ideals are principal, and
by a Bezout ring a ring which is both right and left Bezout. We recall that a module
is uniserial if its lattice of submodules forms a chain. A ring is right serial if as a right
module over itself, it is a direct sum of uniserial modules. A ring is serial if it both
right ad left serial [5].

We shall call two matrices A and B over a ring R equivalent, if there exist invertible
matrices P,Q such that B = PAQ. An matrix A admits diagonal reduction if A is

© Zabavsky Bohdan, 2003 ‘
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equivalent to a diagonal matrix. If every 1 x n (n x 1) matrix over R admits diagonal
reduction, then R is n-right (left) Hermite. A right (left) Hermite ring is a ring which
is n-right (left) Hermite, for any n > 1. A ring which is both right and left Hermite is
an Hermite ring. Obviously a right Hermite ring is right Bezout. A ring R is said to be
regular if for every a € R there exists z € R such that aza = a. It is easy to see that a
regular ring is Bezout [4]. A row (ai,...,a,) over aring R is called right unimodular,
ifaiR+---+a, R = R. If (a1,...,a,) is a right unimodular n-row over a ring R, then
we say that (ai,...,ay) if reducible if there exists an (n — 1)-row (b;,...,bs—;) such
that the (n — 1)-row (ay +anby,...,@8n-1+anbn_1) is a right unimodular (n — 1)-row.
A ring R is said to have stable rank n 2> 1, if n is the least positive integer such that
every right unimodular (n + 1)-row is reducible. This number is denoted by bsr(R).
A ring R is directly finite if zy = 1 implies yz = 1 for all z,y € R.

We denote by R, the ring of all n x n matrices over R, and by GL,(R) its group
of unities. We write GE,.(R) for the subgroup of GL,(R) generated by elementary
matrices. The Jacobson radical of a ring R will be denoted by J(R). Denote by U(R)
the group of unities of R.

2. Diagonalization of matrices over ring with finite stable rank.

Proposition 1. Let R be a right Bezout ring with finite stable rank bsr(R). Then
any right unimodular row of length m over R, where m 2> bsr(R)+1, can be completed
to an tnvertible matriz in GE,, (R).

Proof. If a3 R+ - - - + an41 R = R, then there exists an m-row (ci,...,¢m) With
(a1 -+ am+161)R e R o (am + @mpiem )R = K.
There exist uy, ..., un € R such that

(@1 + ams1c1)ur + -+ (@m + Gm416m)um = 1.

Set
1 0 ... 0 O
9 1 ... B B8
=l - : £ 2 € GEm41(R),

Cii 85 ses G

I B o 0 U](l—am+1)

0 1 ... 0 wull—uwmga)

Py = _ € GEm+1(R).
(O[T 1 um(lﬂamﬂ)
0 .. B 1|

We see that for a row (ay,...,am+1) Py P2 there exists a matrix P3 € GEp41(R)
such that (ai,...,am41)P1P2Ps = (1,0,...,0). Thus we obtain a matrix P €
GEm41(R) such that (a1,...,em+1)P = (1,0,...,0). Then (aj,...,am41) is the
first row of the matrix P~!. For any right unimodular row of length > m 4 1 the
result follows by induction.
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Proposition 2. Let R be a right Bezout ring with finite stable rank bsr(R), then R
s an m-right Hermite ring, for any m 2 bsr(R) + 1.

Procf. Since R is a right Bezout ring, then for any a,,...,a,, € R there exists
d € R such that ajR+ -+ amR = dR. Say ayju; + -+ - + amum = d, a1 = dby,

. @m = db,,. From these relations we get d(bju; + - -+ by, — 1) = 0 so that
byR+ - -+ bm R+ cR = R for some ¢ € R such that dc = 0. Since m 2> bsr(R) + 1,
we have (by +cz1)R+ -+ (b +czm)R = R, where z;,...,2, € R. By Proposition
1, we can find an invertible matrix P € GEn,(R) of the form

};:(61+cz1, — bm+czm).

*

Ll

Clearly (aj,...,am)P~1 = (d,0,...,0), some R is m-right Hermite.
Now we are ready to prove a result which characterizes the regular rings which
have finite stable rank.

Theorem 1. Let R be a regular ring with finite stable rank bsr(R). Then for every
k x m (m x k) matrices A over R, where m > bsr(R) + 2, there exist invertible
matrices P € GEx(R) (P € GEn(R)), Q € GEn(R) (Q € GEx(R)) such that PAQ

15 a diagonal matriz.

Proof. In order to prove that A admits diagonal reduction, we proceed by induction
on k. If k = 1, the result follows by Proposition 2. If k > 1 it follows similarly as the
proof of Theorem 9 [2].

Thus we provide an answer to Henriksen’s question [1], whether a regular ring can
be an elementary divisor ring without being unit regular.

Theorem 2. Let R be a directly finite ring. If every n x n matriz over R 1s equivalent
to a diagonal matriz, then R, is a directly finite ring.

Proof. Let A, B € R, and AB = E, the identity n-matrix. If

€1 0 0

0 = 0
PAQ=1 . . s | =5

G 0 ... Ea

where P,Q € GLn(R), then PAQQ 'BP~! = eQ~'BP~! = E. Since R is directly
finite, we see that ® = Q" !BP~! is a diagonal matrix. Since R is directly finite, we
obtain ®¢ = ¢® = E and € € GL,(R). Thus A= P~'¢Q~' € GLn,(R) and BA=E
and hence R, is directly finite.

Theorem 3. Let R be a directly finite regqular ring with finite stable rank bsr(R).
Then R,, is directly finite for every m 2 bsr(R) + 2.

This theorem follows from Theorem 1 and Theorem 2.
Theorem 2.5 in [3] provides a large class of regular rings over which all square
matrices are diagonalizable, these rings are separative regular rings. Then we have



DIAGONALIZATION OF MATRICES OVER RING WITH FINITE STABLE RANK 209

Theorem 4. Let R be directly finite separative regular ring. Then R,, 1s directly
finite for all n.

Levy in [5] proved that all square matrices over serial rings are diagonalizable.
Then we have

Theorem 5. Let R be a directly finite serial ring. Then R, 1s directly finite for all
n.

We obtain an affirmative answer to a question of Henriksen [6, Question 2.

Theorem 6. Let R be a right Bezout ring, and R/J(R) is a right Hermite ring.
Then R 1s right Hermate.

Proof. We show first that any right unimodular row over R can be completed to
an invertible matrix. Set R = R/J(R). Let aR+ bR = R, then R+ bR = R. Since
R is a right Hermite ring, the right unimodular row (@, b) over R can be completed
to an invertible matrix

Thus AC=CA =E. Let

Ql
i
T —
Q. ol
<| 8l
ST

Then ac + bd = 1 + ji, az + by = ja, uc + vd = j3, ur + vy = 1+ ja, for any
jl:j21j3:j46J(R)- Set

then

Since 1+ j; € U(R), then J € GLy(R) and A € GLa(R).

Now we prove that R is right Hermite ring. Suppose that we are given a,b € R,
then aR + bR = dR, say a = dag, b = dbg, d = au + bv. From these relations we get
d(aou + bov — 1) = 0, so agR + boR + coR = R for some co € R such that deg = 0.
Since R is a right Hermite ring, then bsr(R) < 2 [2, Proposition 8). Since for the
ring R the following assertion hold: u € U(R) if and only if u+ J(R) € U(R), then
bsr(R) < 2. Thus (ag + coz)R + (bo + coy)R = R, where z,y € R. By the above
argument, we can find an invertible matrix of the form

P = (ao+cgm bg+c0y>'

* *
Clearly (a,b)P~! = (d,0), so R is right Hermite.

Theorem 7. A commutative Bezout ring is an elementary divisor ring if and only
if R/J(R) is an elementary divisor ring.

Proof. Obviously, every homomorphic image of an elementary divisor ring is an
elementary divisor ring, so we have only to prove the sufficiency. Let R/J(R) be an
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elementary divisor ring, then by Theorem 6, R is Hermite. By [6, Theorem 3] R is
an elementary divisor ring.
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ASYMPTOTIC CATEGORY AND
SPACES OF PROBABILITY MEASURES
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An example is provided of a proper metric space whose space of probability measures
is not an absolute extensor for the asymptotic category in the sense of Dranishnikov.
Key words: asymptotic category, probability measures.

The functor of probability measures P in the asymptotic topology was first con-
sidered by A. Dranishnikov [D]. It is remarked in [D] that the space P(X) is an
absolute extensor for the class of asymptotically Lipschitz maps defined on the prop-
er metric spaces of finite asymptotic dimension and, more generally, of slow di-
mension growth. Here a metric space X is said to be of slow dimension growth if
limg, 00 m(L)/L = 0; by m(L) the minimal multiplicity of a uniformly bounded cov-
er of X with the Lebesgue number > L is denoted. The problem whether the space
P(X) is an absolute extensor for the category of all proper metric spaces and asymp-
totically Lipschitz maps was formulated in [D] (Problem 12). As remarked in [D],
an affirmative solution of this problem would allow to prove a homotopy extension
theorem in the asymptotic category in full generality. In this paper we provide a
negative solution of this problem (see Section 3).

In Section 4 we consider another problem mentioned in [D], namely that of rela-
tionship between the cone (in the sense of Dranishnikov) of a proper metric space X
and the join X * R, It turns out that these objects are not always isomorphic as
objects of the asymptotic category (see the definition below).

This paper was finished when the author visited the University of Florida.

1. Preliminaries A typical metric will be denoted by d. A map f: X — Y between
metric spaces is called (A, €)- Lipschitz for A > 0, € > 0if d(f(z), f(z')) < Ad(z,z') +¢
for every z,z' € X. A map is called asymptotically Lipschitz if it is (A,€)-Lipschitz
for some A, g > 0.

The (1, 0)-Lipschitz maps are also called Lipschitz or short. By Lip(X) we denote
the set of all Lipschitz functions on X.

A metric space X is called proper if every closed ball in X is compact.

The asymptotic category A is introduced by A. Dranishnikov [D]. The objects of
A are proper metric spaces and the morphisms are proper asymptotically Lipschitz
maps.

We also need a notion of asymptotic Lipschitz equivalence, which is a weaker
notion than that of isomorphism in .A. Two proper metric spaces, X and Y, are

© Zarichnyi Mykhailo, 2003
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asymptotically Lipschitz equivalent if there exist proper asymptotically Lipshchitz
maps f: X — Y and ¢g:Y — X such that the compositions ¢f and fg are of finite
distance (in the sup-metric) from the corresponding identity maps.

A metric space X is said to be an absolute extensor (AE) for A if for every proper
asymptotically Lipshitz map f: A — X defined on a closed subset A of a proper metric
space Y there is a proper asymptotically Lipshitz extension f:Y — X.

A metric space is called C-connected, for C > 0 if for every z,y € X there exists a
sequence T = 2p,21,...,2k—1, 2k = Y such that d(z;_1,2;)  Cforevery i =1,... k.

Lemma. Suppose that f: X — Y is an asymptotically Lipschitz map of proper metric
spaces and X is a C-connected space, for some C > 0. Then there exists C' > 0 such
that the space Y is C'-connected.

Proof. 1t is easy to see that Y is C’-connected with C’,= CX + s.

A metric space X is said to be a geodesic metric space if for every two points
z,y € X there is an isometric embedding j: [0, d(z,y)] & X (the segment [0, d(z, y)]
is endowed with the euclidean metric) such that j(0) = z and j(d(z,y) = v.

The following proposition is a version of Proposition 1.4 from [D] (see also [R]).

Proposition. Let f: X — Y be a map of metric spaces. If X is a geodesic metric
space and there exists C > 0 such that d(f(z), f(y)) < C for any z,y € X with
d(z,y) € 1, then f is asymptotically Lipschitz.

Proof. The proof of Proposition 1.4 from [D] also works in our situation.

1.1. Spaces of probability measures. For a metric space X let P(X) denote
the space of probability measures on X with compact supports. We identify the
measures with the corresponding functionals on the set C(X) of continuous real-
valued functions on X. For ¢ € X by 4, we denote the Dirac measure concentrated
at X. There are different metrizations of the space of probability measures (see, e.
g., [H, S, Z]). Following [H] we endow the space P(X) with the following metric:

d(p, v) = sup{|p(p) — v(¢)|: ¢ € Lip(X)}.

In general, the metric space P(X) is not locally compact for a proper metric space
X. We complete it with respect to the defined metric and preserve the denotation
P(X) for the completed space. However, even this complete space is not, in general,
proper, as the following example shows. Let X = {0} UN, with the standard metric.
For every n € N denote by p, the probability measure (1—27")dp -+ 27 "4~ .For every
m € N denote by ¢,, the function defined by the formula ¢, (z) = max{0, z - 2™}.

Then

d(pn,d0) = sup{27"|p(0) - ¢(2")| | ¢ € Lip(X)} = 1.

On the other hand, if m,n € N, m < n, then

(m, #n) 2127 = 27")em(0) + 27 em (27) — 27" em (27)]
=l i A ]
and therefore the set {,un | n € N} is a 1/2-discrete infinite subset of the 1-ball in
P(X) centered at dp.

This example also demonstrates that the spaces P,(X) of probability measures
with supports of cardinality < n are not objects of the category A.
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Note that this lack of local compactness for the spaces of probability measures
causes some difficulties in defining the notion of convexity in the asymptotic category.

Suppose pu € P(R"), p = Zle a;ibs,. Put b(p) = Yor_, oiz;.
1.1. Lemma. Let f: X — Y be a short map. Then the map P(f) defined by the

formula Pf(}::.':l aiag) = me a;if(z;) is a short map from the set of probability
measures with finite supports on X to P(Y).

Proof. Obvious.
The lemma allows us to extend the map P(f) to a short map of P(X) into P(Y).
We preserve the notation P(f) for this extended map.

1.2. Lemma. The map b is a short map from the set of all probability measures on
R™ with finite supports into R™.

Proof. Suppose p = Zi-‘:l Gl = Z;-:l B;éy; € P(R") and b(p) # b(v). Denote
by p: R® — R the orthogonal projection onto the direction of the vector b(p) — b(v).
Then

k !
116(12) = (W) || =Ip(b(w)) ~ P =D cin(@i) = D Bip(y;)
=1

=lu(p) — v(p)| < d(p,v),

because p € Lip(X).

Lemma 1.2 allows us to extend the map b to a short map from P(R") to R". This
extended map will be also denoted by b. The map b is called the barycenter map.

3. Space of probability measures which is not an absolute extensor. For
every n, the euclidean space R™ is naturally identified with the subspace {(z:) | z; =
0 for all j > n} of the space £? of square-summable sequences.

We endow the subspace X = |J,¢n{n} x R® C R x £ with the metric

d(n, (2:), (m, (%)) = (Im = n[> + l(z:) — @)I})2.

Obviously, X is a proper metric space. For every n we denote by p,: X — R" a map
defined by the formula p,(m, (z;)) = (z1,...,2,). Clearly, p, is a short map.

We are going to show that the space P(X) is not an absolute extensor in the
category A.

It is shown in [L] (see Theorem 1.5 therein) that for any n > 2 there exists a metric
space extension X, of the euclidean space R™ such that there is no (A, £)-Lipschitz
retraction from X, onto R™ with A < n!/4. For the sake of completeness we provide
the details of the construction. Following [L], for every natural k and natural n 2> 2
we define graphs G, x as follows: the set of vertices V(Gn ) is the union of I(Gn )
and T(Gy, k), where

I(Gnx) ={z = (21,...,%a) € R™:|z;| = k for all 7},
T(Gn.k) :{I = (xll e -13:71) E Rn: |$|’| = 2k fOI‘ a.ll i};

the set of edges E(Gn k) is defined by the condition: {z,y} € E(Gn ) if and only if
z,y € V(Gn k) and either ||z — y|| = 2k or y = 2z (we suppose that the spaces R" are
endowed with the Euclidean metric).
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The set V(Gp, k) is equipped with the metric d = dy ,

d(z,y) =inf { Z Nzia1.2ill: (2 = 20,21, ++ - 2t = ¥) 18 2 path in G.,.,k}.

i=1

Denote by Y the metric space defined as follows. Put

= (xo (0 grem)) /-

where the equivalence relation ~ is defined by identification of every z € T(Gp x) with
z € R". The metric on Y is the maximal metric that agrees with the initial metric
on X and the metric dn x on every V(Gy k). It easily follows from the construction
that Y is a proper metric space, i.e. an object of the category A.

Let f:Y — P(X) be the map that sends z € X to §; € P(X). The map f is
an isometric embedding and we are going to show that there is no asymptotically
Lipschitz extension of f onto Y. Assume the contrary and let f:Y — P(X) be such
an extension. Then there are A > 0 and € > 0 such that

d(f(2), J(2') < Ad(z,z') +¢

foralle, 2’ €Y.

Let n > A*. Since the maps P(p,) and b: P(R™) — R" are short, we conclude that
the map bo P(pn) o f| X, is a (A, €)-Lipschitz retraction from X, onto R", which gives
us a contradiction.

4. Cone and join. The cone construction is of importance in the asymptotic
topology as it allows to apply asymptotic methods for investigation of topological and
metric properties of spaces. The open cone construction of compact metric spaces 1s
considered in [R].

In the case of noncompact spaces, the following construction of cone is proposed
by A. Dranishnikov [D]. Let X be a proper metric space with base point z,.

Denote by CX the quotient space of the subspace

{(z,t) € X xR:|t| < d(z,z0)} CX xR

with respect to the following equivalence relation ~: (z1,t;) ~ (z2,12) if and only if
either (zy,t;) = (22,t2) or t; = —d(zy, zo) = —d(23, zo) = t2. Denote by [z,t] € CX
the equivalence class of X that contains (z,t). We endow CX with the quotient
metric g,

k
o{[zy, 1], [x2,12]) = inf{z d((yai, 52i), (Y2i41, S2i41)):

1i=0
(z1,t1) = (Yo, 50), (*2,%2) = (Y2k+1, 52k +1)
and (yok—1,826-1) ~ (Y2x,52%), 1 =1,...,k}.

The obtained metric space (C'X, ) is called the cone of X.
Given two proper metric spaces X,Y with base points o, yo respectively we define
their wedge X VY as the quotient space (X UY)/{zo, 0} endowed with the maximal
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metric that makes the natural embeddings X - X VY, Y — X VY to be isometric
embeddings. The subspace

X*Y = {té; + (1 — t)éy:d(z,z0) = d(y,w), t € [0,1]}
of P(X VY) is called the join of X and Y.

Proposition. The space X xR, up to asymptotically Lipschitz equivalence, does not
depend on the choice of base point.

Proof. Let z1,z9 € X be base point. Hereafter, X V; R} and X *; Ry denote
respectively the wedge and the join with respect to the base point z;, i = 1,2. Denote
by ¢; the distance function to the point z;, i = 1,2. Define a map f: X ) Ry —
X %9 R4 by the formula

f(tﬁt -+ (1 - t)é'w;{,) =10, + (1 - 1)6{‘,2(3).

Obviously, f is a bijective map and it is sufficient to show that the maps f and f~!
are asymptotically Lipschitz. Because of similarity, we prove this only for f.
Suppose that z,y € X, t6; + (1 — )8, (z), 80y + (1 = 5)dy,(y) € X x1 R4 and

d(td; + (1 — 1)y, (z), 58y + (1 —8)dy,(y)) = K.
There exists a short function aq: X VR4 — R such that

ltay (z) + (1 = t)ar(pi(z)) = sa1(y) — (1 - s)ea(p1 (V)] = K.

Define a function ag: X V Ry — R by the conditions az|X = a; and ay(r) = ai(r) —
a(zy) + ay{zy) for r € Ry (we identify X and Ry with the subspaces of X Vi Ry
along the natural embeddings). Then a is a short function and we obtain

d(f(td= + _(1 = t)wa(x)): f(sdy + (1 — 5)‘5*,91{;;)))
Kltaa(z) + (1 — t)az(pa(x)) — saa(y) = (1= s)az(p2(y))]
<Jten(z) + (1 — e (pr(z)) = sar(y) — (1~ s)ar(p1(y))]
+|s = t]lai(z2) — a1 (z1)| + (1 = t)|er(p2(2)) — ar(p1(2))]
+(1 = 8)|ai(p2(y)) — ar(er ()]
<K +4d(zy, 7).

This means that f is (1,4d(zs, r1))-Lipschitz.

A. Dranishnikov asked in [D] whether the spaces CX and X * R, are asymptot-
ically Lipschitz equivalent for every proper metric space X. The following example
demonstrates that this is not the case.

Example. Let X = w (the set of all finite ordinals) with base point 0. We endow
w with a metric d defined as follows: d(i,j) = max{i,j} whenever i # j. Then
CX = {(i,t) e w xR | |t| € i}. Let A; = {i} x [—i,1], because the equivalence
relation ~ in this case is trivial. Note that d(A4;, Cw \ A;) 2 1.

We are going to show that there is no proper asymptotically Lipschitz map from
w * Ry to Cw. Note first that the space w * Ry is obviously 1-connected. Suppose
that there exists a proper (A, €)-Lipschitz map f:w xRy — Cw, where A,¢ > 0. Then
the image f(w * Ry) is a A + ¢ + l-connected set. Suppose that f(w *Ry) N A; # 0
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for some i € w, then f(w *R;)N A; = 0 for all j > max{A+ s,i}. Therefore, the set
flw x R,) is compact, which contradicts to the properness of f.

Nevertheless, in some cases the cone C'X and the space X * R, are iS5omorphic as
objects of the category A. The following proposition is a counterpart of Lemma 2.4
from [D].

P}roposition. The space R™ x Ry 1s isomorphic to Ri’“ = (Bt Bagi | Bags 2
0}.

Proof. Let i:R™V R4 — R}*! be the map acting by the formula: i(z) = (z,0),

i(t) = (0,t), where z € R" t € R4. Denote by f:R™ * Ry — R}*! the restriction of

the composition

P(R"VR,) 25

b "
(]Ri-H) 5 ]I?iﬂ
onto the subspace R™ x R. Obviously, F is a short bijective map and therefore it
is sufficient to prove that the map g = f~! is asymptotically Lipschitz. The explicit
formula for g is
ll=ll

t
t) = 7O+
0= el * T+ et

where r € R", t € Ry, T = iy llz|| + t); if ||z]| = O, then g(z,t) = &;. Note that it is
easy to verify that g is a continuous function.

Given (z,1), (y.s) € RT" with [|(z,) — (y,5)|| < 1, we suppose, without loss of
generality, that 0 < ||z||+t < |[yl[+s. Let h:]R’J_+1 — R%}*! be the homothety map cen-
tered at 0 and with coefficient (||yl|+s)/(|lz]|+1). Obviously, (h|supp(g(z,t)),id) < 1
and therefore d(Pa(h)(g(z,1)), g(z,t)) = d(g(h(z,1)),9(z,t)) < 1.

Put (z1,t1) = h(z,t): we have ]+t = ||yl| + s.

We are going to estimate the distance between g(z1,t;) and g(y,s). Note that
l(z1.t1) — (y,8)l] < 2. Without loss of generality we may assume that ||z;]| < [|yl|.
Denote by (y1,1;) the unique point that satisfies the conditions: [jy1|| = [|z1]], s1 = 11,
y and y; are collinear. Note that | |[yl| = [[sall | < | llyll = llz1l} | € 2 and therefore
l(y1.81) = (z1,11))ll £ 2. Then

— bz +

“ylll ”

W 1~—y1|| <2

d(g(y1,51),9(z1,t1)) <

Let us estimate d(g(y1,51),9(y, s)). Put
C = sup{d(g(z,1),9(y,5) | lI(z,8) = (5, )l < 2, I(y, )l € 1

Since g is continuous, we see that C < co. Then

d(g(y1,1),9(y. )

a1 llya 5 Iyl )
:d J 1 + 5 4 5 6
(uyuwsl o T+ s e s ¥ Tl +s e

_ eup [ |S12(01) — s2(y) R " o
=oup { 22002220 |4 € Lip(Rr v R), oyl + 9 0}

2(ljwall +s <340
llyll + s
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Finally, we obtain

d(g[r,t), (y,s)) gd(g(xit):g(‘rl;tl)) +d(g(1‘1,t1),g(y1,sl) + d(g[ylisl):g(yvs}]
<1+24+34+C=6+0C.

Since R is a geodesic metric space, it follows from Proposition 1.4 from [D] that
the map g is asymptotically Lipschitz.

5. Remarks. The example from Section 4 demonstrates that the notion of a cone
needs a slight modification in order to be more closely related to the “join with R,”
construction. Namely, given a metric space (X, d), define its modified cone CX as
follows. As a set, CX coincides with CX. The metric on CX is the maximal metric
¢ < p satisfying the following condition:

¢ ([z1, —d(z1, 20)], [€2, —d(z3, Z0)]) = |d(21, 20) — d(z2, z0)]|

for all z;,29 € X. }
In a forthcoming publication we are going to consider some relations between C'X

and CX.
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Mpuceauyembca nas'ami sudamxozo aazebpucma
A. I. 3atyesa, axomy ¢ 2002 p. sunoexuaoca 6 60 poxie

HapegeHo orasj pe3yibTaTiB npo rpynu, 6araTi HopMaasHumn (BignosigHo cy6-
HOPMAJbHUMH, HIALTIOTEHTHAMH) MIACPYNaMyu Ta 6AU3bKi K0 HMX TPYN#, OTPUMaHI 33
ocTaHHI AecATUPIYYA.

Kawucsi capcsa: MiHiMaabHe He X-rpyna, ymoBa MiHiMaibHocTi g8 X-nigrpyn, ymo-
pa MakcumanbHocTi gas X-nigrpyn.

0. Hexait v - gesika BJAACTHBICTb, AKY MOXYTb MaTH miarpynu. lla BracrusicTs Mo-
xe¢ 6yTH BHYTPIIEBOIO (Hanpukiaaj, v= 6yTH HOpMatbHOO (norm), cCy6HOPMalbHOKO
(sn), Maite HOpMaabHOIO (an), NepecTaBHOI (perm) NiArpynowo a6o mMArpynomw, wo
vac fonoBHeHHs (comp) i T.1.), i 30BHINIEBOIO, TO6TO y IbOMY BHIIAJKY V O3Ha4ae Oy-
TH T ACPY OO, 11O HATEXKUTH A0 Aedkoro Kiacy rpyn X (ckopodero 6yTu X-rpynomw).
HaiiBaXIMBILMME 3 LAX Kiaacis € Kiaac 2 Bcix abensoBux rpyn (v = ab), Bcix rpym, ski
vaioTh ckingennnit komyTanT (v = BFC), Bcix FC-rpyn (v = FC), M Bcix Hiabno-
tenTHuX rpyn cryness k (v = nil(k)), N seix viapnoTenTHMX rpyn (v = nil), Beix
rinepuenTpaasaux rpym (v = hyp), &4 Beix poas’asnux rpyn kracy d (v = sol(d)), &
BCiX pos3s’a3Hux rpyn (v = sol), § Bcix ckindennux rpyn (v = fin), BCiX cKiHYeHHO TIO-
poaxenux rpyn (v = fg). fAxmo G - rpyna, To 4epea Lnony (G) (Bignosigno L,(G))
[103HAYMMO CHCTEMY BCiX THX niArpyn iz G, ki He MaIOTh BJIACTUBOCTI V {BIANOBILHO
MaioTh BiAactuBicTs v). OjHa 3 mepumx 3ajad Teopii rpynm, fka 36epirac CBOE 3Ha-
qeHHA 1 JI0 LLOTO 4Yacy, NOJATAE y BUBYEHHI BILIMBY Ha 6yjoBy rpymu cuctem L, (G)
Ta Lnony (G) A4A HalBaXIMBIKX NMPUPOAHMX BracTusocTen v. Ilepumm xpokom y
ubOMy HampsiMi cTana kaacudna craTta P. Jejekinga [25], B Akii BUBYEHO CKiHYe-
HHI CpynH, BCi MACPYNM AKMX HOPMaJibHi, TO6TO rpynH, B AKUX cucTeMa Lnorm(G),
36iracThCA 3 CACTEMOIO yciX migrpyn abo, mo piBHOCHIBHO, cncTeMa Lion-norm(G)
nopoxua. Jani 6yan npaui I'. Miaepa Ta X. Mopexo [56], B Akiil BuBYa1u cKiHYeHH]
rpynu, BCl BAachi migrpynu Axux abeaboBi, TO6TO cucTeMa Lnon-ab(G) ckragaeThen
3 ycix BAACHHX MiArpyn afo, mo piBHOCHIBHO, Lnon-ab(G) = {G}. Baxausoio 6yra
npana O. IO. UIMigra [139], B AKIM BHBYAIM CKIHYEHHI IpymH, BCi BIAacHI MIATPYNH
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AKMX HIIBNOTEHTH], To6TO cucteMa Ly (G) ckragaeThes 3 ycix BIacHUX miarpyn a6o,
wo pissocuabHo, Lni(G) = {G}. Ilicas unx npaup 11o4yany BABYATH IPYNH, CKIHYEHH]
| HECKIHY€HH], BCl BJAacH] MArpyNd AKHX MAIOTh JesiKy BaXXJWBY BIaCTHBICTH v. Ba-
XJIUBY POJib AJf PO3BUTKY Teopli HeCKIHYeHHUX rpymn Bigirpana npobiema lmigra
11po HeCcKiHYeHHI rpynu, Bcl BAACH] MACpynd AKUX CKiHYeHHi (AMB., Hanpukiaaj, [134]
Ta [100]). Bix noyaB BHBYEHHA CKIHYEHHUX CPYM, Y AKAX cHCTeMa miArpyn Lyon. (G)
e “nocuTh Manow” (abo “aocuTh Beaukow” )y geskomy cenci. ¥ mpaui [140] Bik oTpu-
MaB ONUC CKIHYEHHUX TPYM, Y AKHX BCi MACPYNH 3 MHOXAHH Lnon-norm(G) copsixeni,
a B [141] onucas ckinveHH] rpynu, B AKMX MHOXHUHA Lyon-norm(G) ckIagaeThes 3 ABOX
kaacip cnpsxenux nmiarpyn. llo osnadae “GyTn AocuTh MaauM”’ A HECKIHYeHHUX
rpyn? OTpuMyeMo AOCHTH BEIMKMH OPOCTIp JiA pisHuX nmiaxogis. Omnu 3 Taxkux
miaxoznis 3anoyarkysa C. M. YepHikoB, AKUil 3alpONOHYBAB PO3LIAAATH TPYIH, B
skux cucTeMa Lyon. (G) 3a40BobHAE JeAKy YMOBY CKIHYeHHOCTI; 30KpeMa Takl KJa-
CHYEI YMOBM CKiHYEHHOCTI, K YMOBM MiHIMaZbHOCTI Ta MakcuMaipsHocTi. Y [131]
PO3rAAHYTO T'PYNH, B AKMX MHOXHHA Lnon.ab(G) 3a40BONBHAE YMOBY MiHiMalbHOC-
Ti, a y [132] poarnsryTO rpyny, y AKX MHOXHHA Lnonnorm(G) CK1afaeThes TiAbKH
31 ckimvennux miarpyn. el miaxig BUABHBCA AyXe IIKaBUM Ta pe3yibTaTHBHUM.
MeTa cTaTTi — 3pO6GUTH OrIAA Pe3yabTaTiB, AKI OJepXKaHO y Wil raiyai 3a ocTaHHi
fecATHpiu4A. My He MOXeMO HaBeCTH BCi pe3yJbTaTH, TOMY IO iX JOCHTH GaraTo.
My 06MeXuMOCh BaX/AWBUMH BAACTMBOCTAME, HaNpHKIaJ, HOPMaJbHICTh, Cy6HOD-
MAadbHICTb, MaiiXke HOPMAaJBbHICTh, abelbOBICTh Ta 1X y3arajlbHeHHs.
Bci TepMiHN, AiKi MY BUKOPMCTOBYBAJIH, MOXHa 3HaUTH B (69)].

1. Ppynu 3 “manumu” cMcTeMaMd HEHOPMANLHUX MiArpPyH

My BXe 3a3Havaiy, IO CKiHYeHHI TPynH, BCI MiACPYNH AKAX HOPMAaJbHI, ONACAB IIe
P. leseking [25). Moro peayasraTn nownpns nisuime P. Bep na posiapni rpynu [13].
Taxki rpynu ToMy ¥ OTpMMaJN Ha3By JefeKinjosuX. Bonu MaioThk gocuTh NpocTy Gy-
[0BY: JejeKiHgoBa rpynd abo abeaboBa abo Ma€ BULIAL A X B x @, ne A — abennoBa
nepiognuna 2'-rpyna, B - eremenTapHa abenboBa 2-Tpyna, () — rpyna KBaTEDHIOHIB.
C. M. Yepnikos [132] posrasanye rpyms, BCi HeCKiHYeHHI MIArPYNH AKUX HOPMalb-
Hi, To6T0 cucTeMa Lyon-norm(G) BCIX HEHOPMABHUX MiArPYI CKAaJa€ThCA TIIBKH 31
ckinvennux marpyn. Takux rpyn gemio Giablie.

Hezati G ~ HECKIHYENHA 2pYyna, 6CT NECKINUEHHT Ni02pYynu AKOI HopMaabHi. Axuyo
G neabeavosa, mo eona nepioduuna; axwo G A0KAALHO CKIHUENH@, MmO 60Ha abo
dedexindosa, abo micmums Maxy HopMaabny Keaziyuxaiuny nidepyny K, wo G/K
~ exinuenna dedexindosa zpyna. (C. M. Yepnikos [132]).
Ocranuiit peayapTar orpumas C. M. YepHikoB 3a yMOBH ICHYBaHHA HECKIHYEHHOI
abeanoBoi i Arpynu; misniue orpumas Teopemy B. I1. Illynkos [142], aka 3a6esneynna
iCHyBaHHA TakKol MATPYNH. YMOBa JIOKaAbHOI CKIHYEHHOCTI HE € 3aiBOIO, OCKIITbKH
iCHYIOTB HeCKiHYeHHi mepioM4Hi CPYMH, BCI BAACHI MArpyny Akux ckindenni. [Tpux-
naan Takux rpyn nobyaysas O. KO. Oavmancexuit [121, §28]. I'pynu, B axux cucrema
Lnon-norm(G) 3a10BOIBLHAE YMOBY MiHIMATBHOCTI (PPYNH 3 YMOBOIO Min-(non-norm)),
takoxk poaraagas C. M. Yepnikos. 3 pesyabTaTis oro npaui [136] BunamsaioTs Taki
TBEp AKEHHA.

Hezati G - neckinuenna epyna 3 ymosorw Min-(non-norm). Axwo G nenepioduuna,
mo sona abeavosa; Axwo # G AOKGALHO CKiHuena, mo 6oHa abo dedexindosa, abo
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YEPHIKOECHLKA.

3ayBaxumo, 1o y npauax [132, 136] posrasjganu ysaraibHeHHA HaBeJeHHX TYT BH-
najakis. Mu e 6yaeMO JeTajdbHO PO3rAAAATH 1X, OCKIIbKH BOHYM BIJ0OpaX2H] B IHIINX
OF/IAJOBMX CTATTAX (AWB., Hanpukaaj, (133, 134, 100, 128]).

[JlyanbHo0 40 yMOBH MIHIMAJbHOCT] € yMOBa MaKCHMaJbHOCTL. I'pynu, B AKKUX cuc-
TeMa Lpon-norm(G) 3340BOIbHAE YMOBY MaKCHMMaJBHOCTI (rpynu 3 yMoBoio Max-(non-
norm)) poaraagaiucsa B npausx J1. A. Kypgadenka, M. ¢. Kyaennoro, M. M. Cemxa
[109] Ta Jx. KyTono [22]. flkmio ki1ac JOKalIbHO CTYMIHYaTHX rpyn 3 ymosoio Min-
(non-norm) € mpocTnM 06’¢JHAHHAM KJacy AefileKiHJOBUX IPYN Ta KJAacy TPyl i3 3BU-
YailHOKO YMOBOIO MiHIMAaJBHOCTI, TO A8 Tpyn 3 ymoBolo Max-(non-norm) cuTyanis
inma. OcHOBHI pe3ynbTaTH MUX Mpallb MOXHA CHOPMYJIOBATH Y TAKOMY BHIVIAML.

Hezati G - A0KGAbHO CMYnNiK¥ama 2pyna, AKa 3a006804bHAe ymosy Maz-(non-
norm). Todi G - epyna 00K020 3 HACTMYNHUT MUNIE! i

1) G - matizce NnOMYUKAINHA 2pyna,

2) G - dedexindosa 2pyna;

3) ((G) mae maxy reasiyuxaiuny p-nidepyny P, wo G/ P - cxinuenno nopodocena
dedexindosa 2pyna;

{)G=HxL, de H=Qy, L - crinuenna neabeavosa dedexindosa epyna.

Alxuo B rpymi BCi CKIHYEHHO NMOPOJXKeHI MIArPYNM HOPMaJbHi, To 1 Bl 1l miArpyn#
HOpMasbHi. [IpHPOAHO BUHMKAE 3aNMTAHHA OPO MPOTHJEXHY CUTYALUlO: IO MOXHA
cKa3aT Npo CPYMNH, BCi HECKIHYEHHO MOPOJXeHI miArpyn# (miATpynu, WO He Ma-
JOTh CKIHY€HOI CUCTEMH TIOPO/IKYIOUYUX €NEMEHTIB) AKMX HOPMaJjbHI, TOOTO CHCTe-
Ma Lnon-norm(G) CKIaJa€TBCA TIALKHA 31 CKIHYEHHO MOPOIXKEHUX nmiarpyn. Il rpynn
posrasaann y npausx JI. A. Kypgavenko Ta B. B. ITumaes [111], Ix. Kyrono [22],
Nx. Kyroao Ta JI. A. Kypaauenko [23]. ¥ uux npauax € Taki pe3yJAbTaTH.

Hezat 2pyna G mac 3pocmarovuti pad nidepyn, koxcer Haxmop AK020 ~ AOKAALHO
natise poas’asna zpyna. Kookna neckinuenno nopodacena nidepyna epynu G modi
¢ miabku modi Hopmaabua, koau G - 2pyna 00HO20 3 HACTYNHUT MUNIE:

1) G dedexindosa;

2) G mae maxy HOPMAAbHY KEAIYUKAIUHY nidepyny K, wo G/K - cxinuenro
nopodacena dedexindosa epyna;

3) epyna G 3adosoabrAe MaKi YMo6u:

Ja) yenmp ((G) mae weaziyuxaiuny p-nidepynny K, wo G/K - minimaxca
abeab08a 2pyna 3t CKINYEHHOW NEPIOJUNHOI0 YACTUNOI,

36) Sp(G/K) = {p}:

36) G/FC(G) - epyna 6e3 ckpymy;

32) axuo A - abeavosa nidzpyna G, mo A/(A N K) cxinuenno nopodocena;

) G=Tx A, de A=Q,, T - crinuenna dedexindosa epyna;

5) epyna G 3a00604bHAE MAKL YMOGU.

5a) G = (AxT) % (g), de A= Q, das desxozo npocmozo uucaa p, T - cKinuenKa
dedexindosa nidepyna;

56) sxwo T neabeavosa, mo p = 2;

58) eaemenm g indyxye Ha cuaoscbkit p-nidepyni Tp nidepynu T cmyneneeut
asmomop@Hiam,

5e) icnye maxe wucao r € N, wo a9 = a°, de ¢ = p" abo ¢ = —p" daz wodxcHozo
a € ATy, Ty - cuaoscvxa p'-nidepyna T
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Y npausx [14] Ta [98] BBegeHO AyXe uikaBi HOBI yMOBHM CKIHYEHHOCTI — ciabki yMOBH
MaKCHUMadbHOCTI Ta MiHIMATLHOCT] AJA PI3HHX THOIB MIACPYH. YMOBM Ta NOB’A3aHi
3 HEMY Pe3yJbTaTH 3allKaBUJIM HAYKOBIIB, TOMY HeBAOB3i 6yJo HamucaHo 6araTo
Npailb, TPHCBAYEHMX UMM yMOBaM [JIA pi3HOMaHiTHEX THOiB migrpyn. Hawa mera -
PO3CJIAAATH PE3yAbTATH LUX JOCHIAKEHb, TOMY LIO iX 3rajyBalu B Orjf0BiH CTATTI
[102]. HaBegemo TLIBKM Ti Pe3yJIbTATH, AKI CTOCYIOThCA TEMATHKH HAILO] Tpalli.

Hexan 9N — gesaka cuctema marpyn rpynu G. I'osoputumemo, mo I 3a10BoabHSAE
c1abky yMoBy MiHIMalbHOCTI (BlANOBIAHO MakcuMaiabHocTl) abo rpyna G 3ag0Boab-
HA€ caabky ymoBy MiHiMaabHOCTI A48 IM-miarpyn uu ckopoyerno Min-oo-9N (Bigmo-
BIAHO MakcuMaabHOCTI aaa M-miagrpyn 4u ckopodeHo Max-oo-9M), akmo G He Mae
TakuX HeckiHveHHEX 36iraioydmx (BignopigHo 3pocraiounx) pagiB {Hp|n € N} mia-
rpyn i3 cucremu M, mwo ingexcu |Hp @ Hyy1| (BignoBiguo |Hnyq @ Hpl|) Heckindenni
ana koxsoro n € N. fAxmo M = Lnon-norm(G), TO oTpumyemo rpynu 3i crabkoio
YMOBOIO MIiHIMaJbHOCTI (BIANOBIAHO MaKCHMaJbHOCTI) AJA HEHOpMaJbHUX MIACpyN
ab0 CKOpoYeHO 3 yMoBOK Min-oo-(non-norm) (Bignosigao Max-oo-(non-norm)). Il
rpynu BrByam y npansx JI. A. Kypaadenko ta B. E. Topennkuit [45], ae BusaBieno,
IO A0KGAbHO Matioce po3e’a3na zpyna G modi i miabku modi 3ad060AbKAE YMOBY
Min-co-(non-norm) (sidnosidno Maz-co-(non-norm)), xoau eona abo dedexindosa,
a60 MIHIMAKCHA. 3a3HAYKMMO TAKOX HU3KY IHIIMX Pe3yabTaTIB PO rpynu 3 obMexeH-
HAMM Ha cucTeMY Lnon-norm(G). AKLio B rpymni Bci nukAI4Hi MArpYNyM HOPMaJbHi, TO i
Bel 11 migrpynu sopmaabhi. Tomy BUHMKae MATaHHA Npo 6y A0OBY I'pyIl, BCl HEMUKAI4H]
NiACPYIM AKKX HOPMAJbHI, TO6TO cicTeMa Lyon-norm(G) CKIaAa€THCA TIILKHU 3 LUKJII-
ypux migrpyn. Ue nuranus cpopmyoas C. M. Hepnikos [133]. Posp’azanuio itoro
Ta posraALy AeAKUX HOro ysaranbHenb npucssdeno npaui P. M. Jlumana [113-117].
‘Takox y npamsx {118, 103-108, 119, 122, 123, 125, 126] gocaigxyBaan MeTaramiabTo-
HOBI TPYNHU - IPYNH, B AKUX CHCTEMA Lnon-norm(G) CKMaja€ThCs TibKY 3 abelbOBHX
HiArpy.

2. I'pynu 3 “Manumu” cMcTeMaMy HiACPYI, IO He € MalXe HOPMATbHUMM

Migrpyna H rpynu G BasuBaeThca Maike HopMaibHoo B G, komu clg(H)={H?|g €
G} - kaac ycix copskeHux 3 H mjrpyn - ckigyenwa Muoxusa. Hxumio mjrpyna H
nopMaiabHa B G, To clg(H)={H}, Tax mo MaiXe HOpMaJlbHI HIACPYNH — L NpHU-
pOJHe y3aralbHeHHA HopMaabHuX migrpyn. Iliarpyma H Tojl i Tiabk# TOAI Maike
sopmaibHa B G, xomm ii nopmaiisatop Ng(H) mae ckinvenuui ingexc B G (3Bigcu
i noxoauTh HasBa Takux migrpyn). OdueBHAHO, NMepeTHH JBOX MaiXe HOPMATbHMX
NiATPYN Ta MiArpyna, NOpojXKeHa ABOMa Maike HOpMalbHUMU MArpynamu, 6y AyTh
Maiie HOpMaJbHUMHM MiArpynamu. lHakiue Kaxy4u, MHOXHHA Lan(G) BCix maixke
HOPMATLHUX MATPYN rpynu 6yje rpaTkoo. Ha BigMiny BiJ rpaTK# BCIX HOPMaJbHAX
niArpyn, uA rpaTka He 6yae nosHow. [pynu, B Akux L., (G) 6yae noBHOIO rpaTKoIo,
poarasgaiu J. A. Kypaasesko ta C. Pinaypo [42]. PeayrpTaTu ui€l npaui 3acBij-
YYIOTh, IO JOCHTH 6araTo TaKMX PPyl MalOTh UEHTP CKIHYEHHOrO 1HJAeKCY, TOOTO €
cxinuennumu nad yenmpou. CKiHYeHHI HaJ UEHTPOM TPYMH BIAITPAOTh TYT poOib,
moaibHy Ao Tiel, AKy BIAICPalOTh AeAeKIHJOBI IPYNH NpY BMBYEHHI IPYl 3 MAaJol0
MHOXHHOIO Lpon.norm(G). IIpo ue cBig4aTh, 30Kpema, Taki ABa pe3yIbTaTH, IO
pxke cTanu kiacudaumu. I'pyna G, xosxcwa nidepyna axoi matdce HopmaabHa (mob-
Mo Lnon-an(G) = 0), cxinuenna nad yenmpon (B. Heiiman [63]), i 2pyna G, xooxcna
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abeavosa nidepyna axoi matioce Hopmasvua (mobmo Lpon.an(G) crxaadaemovca 3 nea-
Geavosur nidepyn), maxosxe ckinuenna xnad yeumpon (I. I. Epemin [94]). 1. 1. Epemin
MOYaB PO3TJAANATH TPYNH, B AKUX MHOXUHA [Lnon.an(G) ckaagaeTshes 3i- ckinyeHHMX
miarpyn. BiH oTpuMaB feski YMOBH, 3a AKUX TakKl I'PylIH CKIHYeHHI HaJ UEHTPOM
[95]. Omuc Takoro pody rpyn 3a YMOBH iX JOKaJbHOI MailXke PO3B’A3HOCTI OJepxKaJiu
JI. A. Kypaadenko, C. C. Jlesienko Ta M. M. Cemxo [124].

Herati G - nenepioduuna aoxaabHo matidce po3e’a3na epyna.

I Axwo G nenepioduuna, mo KodcHa Heckinuenna nidepyna G modt i miabxu modi
matixnce nopmaavna, koau G — 2pyna 0dno20 3 MAKUT MUNIG:

la G mae yenmp crinuennozo indexcy,

16 G = A(b), |b] = p - npocme wucao, A = Cg(A) ~ siabna abeavosa nidzpyna
0-paney p—1, b indyxye na A payionasbHo He3sidnutl asmomopdiam (mobmo xodxcua
neodunuuna (b)-ineapianmna nidzpyna A mae crinuennudi indexc);

le G mae maxy cxinuenny nidepyny F, wo G/F - epyna muny (2).

I Axwo G nepioduuna, mo xoxHa Heckinuenna nidepyna G modi 1 miabku mooi
Matince nopmaavua, xoau G — 2pyna 00no020 3 MAKUT MUNIE:

lla G mae yenmp cKiHUEHHO20 THOEKCY,

116 G = D{g), D = Cg(D) - nodiabna abeavoea nidepyna cneyiaabnozo paray
p—1, p - npocme uucao, g° € D, xodxsna saacna (g)-ineapiawmmua nidepyna D
CKINUEHHA;

IIe G = D{g), D = Cg(D) - nodiabna abeabo6a p-nidzpyna CNeyiasbHoz0 pan-
2y € (g — 1), de ¢ - natimernwe npocme wucao 3 muoxcunu I((g)), |g| - p’-uucao,
dan koawcnozo eaemenmy 1 £ y € (g) koxcna eaacwa (y)-ineapiaummua nidepyna D
CRIHYENHA,

/12 G mae maxy ckinuenny nidepyny F, wo G/F - epyna muny (2) abo (3).

[1i peayasrary ysaraasdeno y npauax C. dpanuiosi, P. ge 2Kiosanni Ta JI. A. Kyp-
nadenka [30], ne poarasianum rpynu, B AKMX MHOXUHA Lnon.an(G) ckaagaeThes ai
CKIH4eHHO MOpOo/KeHux marpyn. Bussuiock Take: sxuyjo G - epyna, Aka mae 3poc-
mawuutl pad nidepyn, kodxcen HarmMop AK020 ~ AOKAALHO HIABNOMENMIA A6O A0KAb-
HO CKIMUEHHA 2pYyna, § KOJMCHA HECKINYEHHO NMOpodicera nidepyna AKoi matidxce Hop-
mamna, mo abo G/((G) cxinuenna, abo G — matioce po3s’azna Ag-zpyna. Maiixe
po3B’A3Hi Ag-rpynu, B AKAX MHOXHHA Lpon.an(G) CKAagaeThed 31 CKIHYEHHO HOpO-
PKeHUX TIArPYI, po3najaloThcs Ha 6araTo THMIB, AKl JOCHTb AeTalbHO BUBYEHO Y
[30]. 3aysaxumo, mo y uiit npaui poarasaaiu nocrasiene M. C. Yepnikosum [133] 3a-
NUTanHA Tpo Gy0BY rpyn, B AKHX MHOXHHA Lnonan(G) ck1agaeThcs 3 HOIUKIIYHUX
miarpyn. [pymu, B axux MHOXUHA Lnon-an(G) 3ag0BoabHAE YMOBY MiHIMAlTbHOCTI —
rpymu 3 ymosoio Min-(non-an) — posrasgamn JI.A Kypgadenko Ta B.B.Ilnracs [110],
AKI OTPHMANH TAaKUH Pe3yJbTaT.

I Henepioduuna epyna G modi i miabxu modi 3adogsoabuse ymosy Min-(non-an),
KOAU 80HA MAE YENMP CKINUEHHO20 THOEKCY a60 MICTRUMD MAKY CRINUEHNKY HOPMAAbHY
nidepyny F, wo H = G/F - 2pyna odnoeo 3 maxuzr munis.

I H=Ax/(b), |bl| =p - npocme uucao, A = Cy(A) - 6tabna abeavosa nidepyna
O-paney p— 1, b indyxye na A payionaabno nezeidnuti aemomopdiam.

2 H=K x L, K - nodiabna uepnixoscoxa nidepyna, L - 2pyna muny (1).

11 Jlokaavro cxinuenna 2pyna G modi i miavku modi 3adosoavmse ymosy Min-
(non-an), Koau 60Ha 4EPHIKOBCHKA A6O MAE YERMP CKINUENHO20 tHJEKCY.
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Ipynu, B akux MHOXUHA Ljon.an(G) 3a40BoNbHAE YMOBY MaKCHMAaJbHOCTI — IPYNH
3 ymoBono Max-(non-an) — posrasgamu JI. A. Kypaasenko, M. P. Kyszennnit Ta
M. M. Cemxo [109]. Bonu MaioTh 6iabul mpocTy 6yAOBy, a CaMe .A0XKG4bHO Mat-
e po3e’azna epyna G modi i miabku modi 3adosoavuae ymosy Maz-(non-an), xoau
soHa Matidce noalyukaiuna abo Mae yenmp crinuennozo indexcy. ['pymu, B AKX
MHOXNHA Lyjon.an(G) 3an0BonbHAE cnabky yMOBY MiHiMaJbHOCTI (BIAMOBIAHO Mak-
CHMaJibHOCTI) — rpynu 3 ymoBowo Min-oco-(non-an) (Bignosigno Max-co-(non-an)) -
poaraagamu y npausx [x. Kyrono ta JI. A. Kypaauenko [24]. Axwo epyna G, axa
mae 3pocmarwuuil pad nidepyn, Koxiex Haxmop AK020 — A0KAALHO Matdlce pO36 AIHA
epyna, 3a00604abHAE Yymoey Min-co-(non-an) (6idnosiono Maz-co-(non-an)), mo abo
G/C¢(G) cxinuenna, abo G - matisce pods’s3na Aj-zpyna.

3asnauumo, mo y npanax C. Ppanniosi, . ge XKiosanni Ta JI. A. Kypaasenko
[31] posraaganu rpynu, B AKHX MHOXHHA Lnon.an(G) ckiagaeThes 3 cy6HOPMaIbHUX
mACpyn.

3. 'pynu 3 “manumu” cHCTeMaMH HiArpym, IO He € cCyOHOpMalIbHAMK

Bigomo, 1o CKiHYeHHa rpyna, BCi MiACpynu fKoi cy6HOpManbHI (TO6TO MHOXHHA
Lyon-sn (G) nopoxns), HiabnorenTHa. IlloJo HeckiHYeHHUX Ipyn CATYyalis 30BCIM
inwa. ICHYIOTH JOKaJIBHO HUIBIIOTEHTHI PO3B’A3HI rpyn: Ge3 HeHTPY, BCI BAACHI M-
rpymu akux cybsopmaibii. Taki mpukaaau no6yaysam I'. Xaunekern Ta 1. Moxames
[37-39], B. Xaprai (33], ®. Meneranuo [55]. Mu ne 6ysemo JeTalpHO PO3LIAAATH
NUTaHHA Npo 6yI0BY IpyI, BCl MIATPYNH AKUX CyGHOPMAaJbH1, OCKIILKY HOTO feTalb-
HO omMcaHo B aiTepaTypi, 30kpema y kuusi Jx. Jlennokca ta C. Croynxesepa [53].
3a3HAYNMO JMLle AeKiNbKa BaXKJAWBUX Pe3yJAbTAaTIB, OJepXaHUX OCTaHHIM 4acoMm.

Herati G - 2pyna, 6ct nidepynu sxoi cybropmaavni. Todi G poss’sana (B. Meopec
57)).

Herat G - 2pyna, 6ci nidepynu axoi cybropmavi. G 6yde Hiabnomenmuow 6 Ko-

scHomy 3 maxur sunadxic: |) axwo G nepioduuna ma 2inepyenmpaavra (B. Mbopec
(58]); 2) axwo G nepioduuna i peaudyaavro cxinuenna (X. Cwmir [75]); 3) axuo G
Ma€E MaKy HOpMasbHy Hiabnomenmuy nidepyny A, wo G/A obmexcena (X. Cumit [76]);
4) axwo G nepioduuna 1 pesudyaabno niabnomewmua (X. Cmit [77]); 5) axwo G -
epyna 6e3 ckpymy (X. Cmit [78]).
Jlesiki YMOBH HLIBIOTEHTHOCTI TPy, BCl MArpyNHM AKAX cyGHOPMAJbHI, 110B’A3aH] 3
BJACTUBOCTAMY HOPMAaJbHUX 3aMKHeHb eleMeHTiB, gochijxysam JI. A. Kyprasenko
ta X. CwmiT [43]. [pynu, B axux MHOXHMHA Linon.sn (G) 3210BONBHAE yMOBY MIHIMAJBHO-
cti — rpynu 3 ymoBoio Min-(non-sn) — poaragaaau C. Ppanuiosi Ta P. ge 2Kiosanni
(30]. IIpu gocHTH 3BHYAMENX OOMEXEHHAX TaKi IPyNu BUYEPNYIOTHCA Y€PHIKOBCHKU-
MM Ta MPYNaMH, BCI MACpYyn#u AKUX CyGHOPManbHi. BuB4eHHA rpym, y AKMX MHOXHHA
Lyon-sn(G) 3a0BoJbHAE YMOBY MaKCMMalbHOCTI — IPYIl 3 YMOBOIO Max-(non-sn) —
BuABMIOCH peayabTaTussimuM. IIi rpynn poaraagam JI. A. Kypaayenko ta X. Cmit
[43]. [loBeaeno, WO A0KAMHO HiAbNOMEHMHA 2pYna Modi ¢ miabku mModi 3ado60ab-
nae ymosy Maz-(non-sn), xoau xoscua ti nidepyna cybuopmasvra. Joxaabro matdice
po3e’s3na epyna G modi i miabku modi 3ado6oabHAe ymosy Maz-(non-sn), xoau 6ona
€ 2pynow 00HO20 3 MAKUL MUNIE:

1) G — matisce noatyuxaiunag 2pyna;

2) xoacna nidepyna G cybropmaavna;
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3) G # B(G), G/B(G) - cxinuenno nopodiucena, matiae abeabo6a ma ne mac
ckpymy, B(G) wniabnomenmna, das 6yov-sxoeo eaemenma g ¢ B(G) xoxmcen G-
ineapianmnut abeavoeuti Paxmop nidepynu B(G) cxinuenno nopodacenii ax Z(g)-
#nodyav. Yepea B(G) nosnaveno pagnkan Bepa rpynu G, To6To miArpymy, mopojsxe-
HY BCiMa CyOHOPMalbHUMM UMKIIYHUME migrpynamu 3 G.

[yxe 61M3bKUMHM A0 FPyN 3 yMoBoo Max-(non-sn) BHABMIKCE I'PYNH, B AKHX MHO-
®uHa Lyon.sn(G) ckaafaeTbea 31 CKIH4€HHO IOPOJXKEHUX MArpYyI. Ix poaraazamm
I'. Xaitnexen Ta JI. A. Kypaauenko [36]. I'pynu, B skux MHOXHHA Linon.sn (G) 3aj0-
BoJIbHAE c1abKy YMOBY MIHIMalbHOCTI — Ipynu 3 ymoBolo Min-oo-(non-sn) — poaras-
aaan JI. A. Kypaadenxo ta X. Cwmit [44]. TyT curyanid nogibHa 4o 3BHYaiHOI yMOBH
MiIHIMAJILHOCTI, AK NOKa3ye OCHOBHMH pPe3yJbTaT i€l po6oTH.

Hezaii epyna G mae apocmarnovuti pad nidepyn, xoxcen Gaxmop AK020 - A0KAAbHO

niabnomenmua abo aoxaabHo cxinuenna zpyna. fAxwo G 3adosoavrac ymosy Min-
o0-(non-sn), mo abo xoxna nidepyna 6 G cybropmaavna, abo G maidce po3e a3na
1 MIHIMOAKCHA.
[pynu, B Axux MHOXUHA Lpon.sn (G) 3a40BoabHAE c1abKy yMOBY MaKCHUMAalbHOCTI —
rpynu 3 yMoBoio Max-0o-(non-sn) — poarasjaau JI. A. Kypaasenxo Ta X. CwumiT [45].
CuTyalid 3HaYHO CKAaJHIMIA. 30KPEMa, AKUO A0KAAbHO cKinuenwna zpyna G 3ado-
goabHae ymoey Maz-oo-(non-sn), mo abo xoxcwa nidepyna 3 G cybropmaavra, abo
G - uepnikoecbra epyna; axwo A 2pyna Bepa 3adosoavnae ymosy Maz-oo-(non-sn),
mo kodscHa nidepyna 3 G cybropmasbHa.

4, Minimanpsui He X-rpynm Ta GIH3BKiI 0 HUX I'Pynu

Jlo neaBHBOrO Yacy Hebarato 6y.10 Bi fOMO PO HeCKiHYeHHI rpynu 6e3 BracHol dak-
ropusauii. Tlepmum HeckinyeHHy abeiboBy rpyny 6e3 Brackol dakTopusauil (To6ro
kpasimukaiany p-rpyny Cpe ) nobygysas I'. Ipiodep [67] y coiit aucepranii (1921).
[lepw nix 6yna no6yaoBaHa mepiua HeabGeJbhoBa HECKIHYEHHa rpyna 6e3 BaacHol da-
KTOpU3aLil TPOULLIO MalXKe MOJOBHHA CTOMITTA.

[lepummu npukiajg poss’asHol rpynu Ges BAacHOI ¢akTopusauil nobyaysann
I'. Xairaeken Ta I. Moxamen [3?]. [lo6ygoBaHa rpyna BUABUIACH HEHIIBIOTEHTHOIO,
Toai Bel il BaacHl miArpynyu HilbNOTEHTHI Ta cybHopMadbHi. [le cnpuunnnio nojgans-
(e BUBYEHHA IPYN 3 HiTbMOTEHTHAMY BJAaCHUMY MArpynaMu (feTanbHiie fuB. [112,
70, 38, 54, 33, 137, 11, 55, 48-50, 34, 10, 3, 52]) i rpyn i3 cy6HOpMaIbHUMM BAACHUMY
miarpynamu (aus. [15, 7%, 20, 72, 73, 21, 57-61]).

HeHinbmoTeHTHI I'pyny, Bci BIACHI MiArpyNH AKUX HITBNOTEHTHI Ta cy6HOpMalb-
Hi, B 4YecTh TMepINOBiJKPHBaYiB NPUMHATO HA3WBATH 2pynamu muny Xalwexena-
Mozameda. OpHa BAacTHBICTH rpyn Tuny XaiHekeHa-Moxamega ¢GaKTHIHO CIIpH-
YMHKAA BHJITEHAS Takoro o3HadeHHA. [pyna G Ha3HBAETHCA HEPOIKAGOHO0I0, AKILO
6yap-AKi api il BAaCH! MmiArpymH 3HOBY NMOPOJXYIOTh BiacHy miarpyny B G; 1 Ha-
3MBAETHCA po3xaadnorw — B IHmoOMY Banagky. ['pynm Tuny XakHekera-Moxamega €
nprKJiajaMu Hepo3kAajgHuX rpyn. /laio4u BignoBiAb Ha 3anuTaHHA 1 13 kauru B. Am-
6epra, C. dpanyiosi i P. XKiosauni [1], oauH i3 aBTOpIB BUABHUB, IO HEJOCKOHAAA
2pyna nepoikaadna modi 1 MiabKU MoJdi, KOAU 60HA HE MAE 64GCHOT Paxmopu3ayii.
Hepoaknagui poss’ssni rpynu BuB4as O. [I. Apremosuy [83, 84]. fxumo abeabopa
rpyna Hepo3K/lajHa, TO BOHA € p-TPYNOIO A JeAKOro NPOCTOro YHcia p i i3oMop-
¢dua abo uukaiuHii p-rpymi Cpe, abo kBasinmkmysin p-rpyn Ge . Byas-axa rpyna
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Tuny XalHekeHa-MoxaMea e Hepo3kaaJHOIO HeabelboBOIO M'PYIOIO.

Came fociaifKeHHA B UbOMY HampAMi CIOHYKaJdd IO 3ajadl orapaxmepusyeamu
Minimaavi ne X-epynu (axwo eonu icnyioms ), de X - desxuil xaac epyn. Haragae-
Mo, mo rpyna G, sxa He € X-rpynoio, Tofi Ak Bcl 11 BaacHl miarpynu € X-rpynamu,
HA3UBAETBCA MIHIMAALNOI0 He X-2pynow. 3pocTaoya 3auiKaBAeHICTb JOCHIIHUKIB
Jo rpyn Tuny XaiHekeHa-MoxaMesa, AKi € TAKOX MIHIMaJIbHUMHU HEHLIbNOTEHTHUMHA
FpyIIaMHi, 3HAYHOIO MIpOI0 CTUMY.IOBajla BUBYeHHA MiHiMaapHuX He X-rpyn. Heo6-
Xi/HICTh y BUBYeHHI TaKUX Pyl NPHPOAHO BUHUKAE | MPU JOCHIKEHH] PI3HUX 3aja4
MiHiMaabHocTi. MiniManbHi He X-rpynm — ue rpynu 3 “manon” MHOXWHOIO He X-
nigrpyn. Hanepro, HepeaibHO MOBHICTIO OXONMKTHM BCI JOCHIXKEHHA B ILOMY HAIPAMI.
OnuureMo Ha#IikaBimi 3 HUX. [cTOpUYHO Nepwnit pe3yabTaT HajJexXxuTb I'. Minnepy
ta X. Mopeno [56], Aki, ik BXXe HEOZHOPA3OBO 3a3HAYANOCH, JOC/IKYBaIM CKIHYEHH]
minimManbHi HeaGeabosi rpymnu. Ilisuime O. FO. Wimiar [139]1 B. Xynnepr [40] BBean B
pO3CAAA CKIHY9eHH] MiHIMAIbHI HEHIIBNOTEHTHI | BIANOBIIHO CKIHYEHHI MIHIMAJ/iEH] He-
Haapoap’Asni rpymu. JI. Pegel [68] oTpumas onuc cKiHYeHHMX MIHIMAJIbHUX HEHIIBIIO-
rentaux rpyn. Yuri JI. O. lllemerkosa [138, wactura VI] nocrigxysaiu MiniMaibHi
rpymnu, AKi He HanexaTs uii ¢popmamnil. Heckinvensi MiniMalbHi HEHUIBIOTEHTHI IPY-
nu noganu suuatn H. Heiomen 1 /[x. Bairoag. Chopmy/ioeMo jedki pesyabTaTH
[ION0 HECKIHYeHHUX TPyl

Hezaii k € N, G - epyna, 6 ax0i Lyonnix)(G) = {G}. Todi G mooke bymu
nopodacena wonatibiavwe k + 1 esemenmanu.

Hezati k € N, G - epyna, 6 ax0i Lponaiix)(G) = {G}. Todi G/Fratt(G) -
neabeavosa npocma 2pyna.

Herati k € N, G - npocma 2pyna, 6 #x0i Lponnik)(G) = {G} (sidnoseidno
Luonniny(G) = {G}). Todi (a) xoxna napa marcumaavnuz nidepyn G wmae 00u-
nuunut nepemun; (6) axwo 1 # ¢ € G, mo 3naidembca maxutll esemenm g, wo
(g7'zg,z) = G; (8) G ne mac eaemenmie nopadky 2. (M. Heromen, [Ix. Yauroas
[64]).

flk Bxke araiyBajoch, npukianu Takux rpyn nobyaysas O. K. Oabumancexui
(121, §28]. Axwo G - 2pyna, 6ct 64acwi nidepynu AKOT HIALNOMENMHI, MO abo
G cxinvenno nopodacena, abo G aoxaavro nisbnomenmua. Ilpuknaau, nobyroBaHi
0. K. OapmanchbkuM, MOKa3yIOTh, IO ONAC TAKWX CKIHYeHHO NMOPOJAXKEHNX rpyn
npakTuyHo Hemoxmusmil. 1llojo HeCKIHYEHHO NOPOIKEHUX T'PYI, BCl BAACH] I ATPYIIN
AKMX HIIBMOTEHTHI, TO, AK 3a3HAa4aJI0Ch, PUKJIa | rpyH, noby gopaHi I'. Xaunekenom
ta [. MoxamenoM, MaioTh 110 BracTHBICTh. Onuc TakuX rpyn TaKOX Ilie He OTPUMAHO.
Taxi pesyasTaTu foBis X. Cmit [74].

Hezati G - po36’°A3Ma HEHIAbNOMENMHKA 2PYNa, 6Ci 6AGCHT Nidepynu AKOI HiAbNO-
menmui. Axwo G He MAE MAKCUMAALHUT NIO2PYN, MO EUKOHYIOMbCA MAKI YMOBU: a)
G - 3uucaenna p-zpyna daz desxozo npocmozo wucaa p; 6) G/[G, G - keasiyuraiuna
p-2pyna; 6) Kovcna nidzpyna 2pynu G cybuopmaasvna; 2) [G,GP # [G,G] i xoana
einepyenmpaavna @axmop-zpyna epynu G e abeavosow (30xpena, (G,G] = 1a(G)
das sciz n 2 2); 9) C(G) micmumy y cobi xoxeny nodiabny nidepyny; €) Co([G, G]) -
abeavosa nidepyna i [G, G] - necymmesa nidepyna (mobmo 3 pienocmi H[G,G] = G
saswcdu sunausae H = G) (3oxpema, G e mae 6 cobi 64aCHUT NIG2PYN CKINUENHOZO
mdexcy); €) axwo H - cxinuenna nidepyna (G, G), mo HS # [G,G); x) 2inepyenmp
epynu G 36izaembca 3 11 YEHMPOM.
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Hezati G — 1epo36 ’A3HA A0KAALHO HIADNOMEHMMHA 2PYNA, 6Ci 6AGCHT NIdepynu AK01
niavnomenmui. Todi euxonyromecs maxi ysoeu: a) G - p-2pyna das deaxozo npoc-
mozo uucaa p; 6) G - epyna Pimminea; 6) G 360060AbHAE HOPMAAIZEMOPHY YMOEY;
2) ((G) micmumb y cobi xodcHy eaacny nodiabry nidepyny; d) icHye maka wiabno-
menmua nidzpyna H, wo G = HE; e) ainepyenmp epynu G 36icaembvea 3 it yen-
MpPOM.

P. Bpauan, C. ®panygiosi Ta P. ae Kiosauui [9] BuBYaIM Ipynu 3i CKIHYeHHUMH
MiHIMAJbHUME HEHIIbIOTEHTHUMH FpynaMy aBToMopdismis.

CucTeMaTH4YHe BUBYEHHA MiHiMaibHuX He X-rpyn nodaax 3 npaub B. B. beas-
esa. Bin jgocaianB Mminimanbii He FC-rpynu [93, 90, 91]. 3 ioro pesyawTaTiB i
npaui M. Kysyuyoray Tta P. Pianinca [51], 30kpeMa BUNINBAE, IO A0KAALHO CKIH-
uenna minimaavna we FC-zpyna € p-epynow. B. B. Beases i M. ®. Cecekin [93,
90] mocaigxysanu MiniMaabhi ke BFC-rpynn (a60, mo €KBiBaJIEHTHO, TPYNH THIY
Minnepa-Mopeno); B. B. BeaseB nokasas, Mo J0CKOHAAG A0KAALHO CKIKNEHHA MINi-
smaavna we FC-2pyna abo npocma, abo p-zpyna 0as 0eAx020 Npocmo20 wucaa p.
M. Kyayuyoray Ta P. Pinainc [51] gonossman nei peayibTaT, NOKa3aBlIM, IO HE
ICHYE NPOCMUT AOKAALHO CKIHUEHHUT Minimaavnur we FC-zpyn. fx Bxe 3a3Hava-
nock, A. Asap [3] Ta @. Jlnitnen [52] Takox poaragjanu MiiManbhi He FC-rpynu.
K. XKenr Ta K. lllym [81, 82] Buana4min, WO HedOCKOHAAG 2pYna, AKA HE € CKiN-
UEHHUM POSUWUPEHKAM CE020 YEHMPY, aae OYOb-AKG 64ACHA NIJ2PYNA AKOI CKIHUERNA
nad yewmpom, € Minimaavnorw e FC-zpynoto. BuB4aiown TOKalIbHO CKIHYEHHI IpyLH
3 Maiike abeIbOBUMH BIacHWME migrpymnamu, B. B. Benses [92] BusBuB, mo soxaabHo
CRINNENNA MiNIMaabHa He Malince abeavoea zpyna € abo epynorw Yapina (gus. [127,
92]), abo meposxsadnoio memabeavosorw zpynow. Heaarexuo MiHIMaJbLHI He MaW-
xe abenbosi rpynn supyaia B. Bpyno [16-18]. O. [I. Apremosuy (83] 3’acysas, mo
Hepo3KJaAHI MeTabenboBl IPYNH B JA€AKOMY PO3YMiHHI Ayxe 6aM3bKl 4O TPyN TH-
ny Xaitnekena-MoxaMesa, i po3s a3ni Hepo3kaadwi epynu € p-gpynasu. B. Bpyho 1
P. diagine [19. 12] Takox A0CH AXKYBaIu HeJOCKOHAI MiHIMaJbHI He MalXKe HLIBIO-
renthi rpymu. B. Bpywo i P. ®iaginc [12] BusHainm, mWo nedockonasa MmiHiMaabHA
ne matixce abeabosa zpyna (610N0610HO MINIMAADHG HE MAUNCE HIAbNOMENMHA 2PY-
na nepioduuna. 3 pesyawraris B. B. Beasesa [92] Ta B. Bpyuo [16-18] Bunansae,
o po3zzasdyeani epynu abo posx.aadui (i modi eonu 6ausvxi do epyn apina), abo
neposxaadui. 3a pesyabraTamu A. Azapa [6] Boru HeOCKOHAI.

X. Oran, X. Ilena, B. XapTai [65, 35), A. Azap, A. Apikan [8] Busyau MiHiMaabHI
ge CC-rpynu (npo fxi jgoci Bce me Malo Bigomo). B [65] Buspmam, mo toxasbro
cmyninvama minimaasna ne CC-zpyna G € F-00cKon64010 3414€HR010 JOCKONAA010
A0KaAbHO CKINuEeRHO010 p-2pynotw. M. Xy [79] oxapakTepuayBas rpynu, Bci BJacH miJ-
rpynu skux € rpynamu Bepa, 3 MakcHMaJabHOIO MIATPYNOIO; MOKA3aB, WO MIHIMAAD HI
nebeposi zpynt He MICMAMbCR 6 Kaaci epyn muny Xatnexena-Mozameda. Ilisniwe
M. Xy [80] i mesanexno M. [dikcon, M. Esanc, X. Cmir (28, 29] sus4amu rpynu,
BCi BJACHI HiACPYNM AKAX € HIIIOTEHTHUMH PO3NIMPEHHAMY CKIHYeHHUX Ipyn i Big-
[IOBIfHO I'PyN CKiHYEHHOTO paHry. DIM3bKHM [0 3a3HaYeHMX JOCIHI[XKEHb € LUK
po6iT A. Asapa 3 yunamu (3, 4, 5, 7]. X. Orax 7a X. Ilena [66], . Hanonirani Ta
k. Ileropapo [62] wykanu MiHiMaibHi rpynH, AKi He € PO3MKPEHHAMMA HUILNOTEHTHAX
rpyn 3a gonomoroto depHikocbkux rpyn. O. [. Apremonud [85]) oxapakTepuayBan
MiHIMaibHI He MalXe rinepueHTpa/ibHi rpynmu. 3ajgadl npo MiHiManbHl He X-rpynu
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3aMMIAI0ThCA aKTyalbHUMU 1 ny6akanii, NPUCBAYEHH] IM, IPOOBXYIOTH NEPIOAUIHO
BUXOAUTH 3 APYKY.

5. I'pynu 3 “manumMn” cucreMaMu HeabelbLOBUX | HEHIABIIOTEHTHUX
oigrpyn ra geAki 6AM3Ki A0 HUX rpynu

Ax ME BXe 3a3HadasH, ONMC CKIHYEHHUX HeabeJbOBHX I'pyn, Bcl BAacHI migrpynu
axux abenbosl (To6To Lyon.sn(G) = {G}), 3pobaero y npaui I'. Miazepa ta X. Mope-
Ho [56], € OAHEM 3 MepIIMX BaXIMBHX pe3yabTaTiB abcTpakTHOl Teopii rpyn. Moao
HeCKIHYEHHUX FpPyN 3 ILI€I0 BIACTUBICTIO, TO 1X ICHYBaHHA BHABUB [OCHThL HeJaBHO
0. KO. Oavwancekun (guB. xaury {121, §28]). Boanouac pesyasratu O. 0. Onb-
[IAHCHKOT'O 3aCBIAYYIOTh, [0 TOBOPUTH TPO OMKC UUX I'PyN 3apa3 NPakTUYHO HEMO-
KJIUBO.

I'pynu, B AKUX MHOXMHA Linon.ap(G) 3840BO/bHAE YMOBY MIHIMaJBbHOCTI — TPYyIH
3 ymosoto Min-(non-ab) — noyas posrasgara M. C. Yepnikos [131]. 3 jioro peayis-
TATIB BATIMBAE, MO HeabelhoBa JOKAILHO PO3B’A3Ha rpyna 3 ymoBoo Min-(non-ab)-
yepnikopcbka. B. II. Ulynkos [143] posmmpns uel pe3yibTaT Ha JOKaJbHO CKIHYeHHI
rpynu. Ipynu, B Axux MHOXHMHA Lpon.ab(G) 3aJ0BOMBHAE YMOBY MaKCHMaJbHOCTI
- rpyn# 3 ymosoio Max-(non-ab) — we BnyepnyioTbcs abefbOBMMH Ta FpyNaMu, 1O
sagoBonbHAI0OTE Max. IlpocTui mpuxiaj rpyn#, Wo € BiHUeBUM JO6YTKOM Ipynu
IIPOCTOrO NMOPSAIKY Ta HeCKiHYeHOl UMKIIYHOI rpynd, 3acBigyye ne. I'pynu 3 ymMoBoio
Max-(non-ab) posraasmyau suagso miskime [. 1. 3aiues Ta JI. A. Kypaauenxo [101],
a’AcyBaJu, WO 20KaabHO matxce po3s’a3na epyna G, AKa He € Matlidce NOAYUKAINHOIO
modi i miavku modi G 3adosoavnse ymosy Maz-(non-ab), xoau eona micmume y
cobi nopmaavry abeavosy nidepyny A 3 maxumu saacmusocmanu: a) A = Cg(A),
b) G/A cxinuenno nopodacena, matioe abeavosa i ne mae cxpymy, c) Z(g)-modyav
A cxinuenno nopodycenutl 0ax xodtcHozo eaemenma g ¢ A.

Mpupo Huil HACTYOHUM eTan AOCHIKeHb — BUBYEHHA TPYM, y AKUX MHOXUHA
Luon.ab((G) 3aa0BoabHAE C1abKy yMOBY MiHIMaJbHOCTI (CpyIl 3 yMOBOIO Min-oco-{non-
ab)). Ii rpynu poaraagas /. 1. 3anues [99]. TyT curyauis noJi6Ha fo 3BU4ANHOI yMO-
BY MiHIMaJBHOCTI, OCKIIbKN Heabeavosa matioce po3e’sana 2pyna G modi i miabku
modi 3adosoabmse ymosy Min-co-(non-ab), xKoau eona matizce po3s’A3Ha 1 MINIMAKC-
na. Tpynu, B AKAX MHOXUHA Lpon.sn(G) 3a40BoaBHAE C1a6Ky YMOBY MaKCHMAJbHOCTI
— rpynu 3 ymoBoio Max-oco-(non-ab) - posrasganu JI. C. Kasapiu, JI. A. Kypgadenko,
I. A. Cy6orin [41]. Curyauia TyT ckrajHima, HDX Aag rpyn 3 ymosowo Max-(non-
ab), e HeaGeabOBi JOKaILHO CKIHYeHHI Ipym# 3 yMoBolo Max-co-(non-ab) 6yayTh
miniMakcHEMY (TO6TO 46pHIKOBCHKMME), ONMC iHINUX KJaciB HoTpebye cneuianbHUX
TepMiHiB 1 Mu He 6yJeMO HOro HABOJAMUTH.

Hacrigywoun [. I. 3auuesa [96], HasuBaTHMeMO HIIBNOTeHTHY rpyny G kaacy
HUIBIOTEHTHOCTI k cmaao Hiabnomewmmoi0, AKIIO KOXHA HeCKIHIeHHa MArpyna 3
G, 110 Ma€ KJac HIILNOTERTHOCTI k (30KpeMa, cama rpyna), Mae BIacHY HeCKiHYeH-
HY MIATPYNY KAacy HUILIOTEHTHOCTI k. KOXCHA HECKIHUENHA HIALNOMENMNA 2pyna
G xaacy Hisbnomenmuocmi k MA€ 64GCHY HECKIHUEHHY NId2pyny KAGCY HIALNOMEH-
muocmi k. Axwo G - nisbnomenmua 2pyna 6€3 cKpymy, Mo KONHCHA i1 HEOOUHU-
una nidepyna € cmaao Hiavnomenmuorw. Heratl G - Hiabnomenmna 2pyna, 6 K0l
Lo (G) = {G}. Todi G cxinuenna. ([. 1. Saitues [96)). Joxasvro nisbnomenmna
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epyna G, wo Mae HiabnoMeENMHY nidepyny Kaacy wiabnomenmuocmi k, modi 1 miav-
Ku modi micmume y cobi CMA.A0 HIAbNOMENMHY NIO2PYNY KAACY HIAbNOMENMHOCTI
k, koau eona ne € uepnixoscvxoiw. (M. 1. 3aiues [97]). )

[IuTaHHa Npo ICHYBaHHA y NEpPIOJMYHHX I'PYN HUILNOTEHTHUX HIArpyn kiacy < k
poarasagas A. H. Ocrunoscskuit [120], Akuit oTpUMaB TakKi pe3yibTaTH.

Hezait G - 6inapno cxinuenna zpyna, sxa He 3adosoabrac Min. Axwo xomxcna
HECKIHUEHNA N102pyna, w0 Mac Heckinuenwut indexc, 3adosoavrae Min abo € Hiab-
nomenmuoiwo Kaacy < k, mo G - niabnomenmua 2pyna xaacy < k.

Hezat G - 61HAPHO CKINYEHHA 2pYyna, wWo HE € Hisbnomenmuow xaacy < k. Ax-

wo muoxcuna Ly (G) = {G} 3adosoavnae caabry ymosy minimaavnocmi, mo G -
uepHiKo6chKa 2pyna. ‘
O. [I. ApremoBud4 [86] BUB4aB JIOKAIbHO CTYMIHYATI I'PYNH 3 YMOBOO MIHIMaJIbHOCTI
MJIA He Mainke rinmepuedTpaisux niarpyn. X. Cwmit [74] né4yas poarasgatu rpymu G,
y AKUX MHOXHUHA Lyon nil (G) 33 10BOMbHAE YMOBH MiHIMAIBHOCTI 1| MAKCHMAJBHOCTI Ta
cnabKi YMOBM MIHIMAILHOCTI i MAKCHMAJIbHOCTI. 30KpeMa, JOKalbHO HIIbMOTEHTHA
rpyna 6e3 CKpyTy 3 HUMHU yMoBaMy HiabnoTeHTHA. I'pynn, B AKMX Lponnil (G) = {G}
3a10BOAbHAE YMOBY MakcumaibHocTi, Busdaan M. likcon ta JI. A. Kypaadenko [26,
27]. Mepia npais MiCTHTH JOKAIBHO HIILIOTEHTHI TPYIA 3 WI€IO BAACTHBICTIO, APyTa
- po3p’as3ui. HaBejleMo OCHOBHI pe3yJIbTaTH Mepiiol npaui.

Hezati G - aoKkaabHo Hiabnomewmua 2pyna 3 ysoeorw Maz-(non-nil), T - ii nepio-
duuna wacmuna, R — cxinvennutl pesudyas G. Axwo G neniavnomenmua ma G/R
HeCKiHUEHHO nopoddcend, mo euxonyiombea maxi ymoeu: a) R < T ma T/R cxin-
uenna; 6) G/T - wmiabnomenmua sminimaxcua epyna i Sp(G/T) = {p} das deaxozo
npocmozo wucaa p; 6) R — p-nidepyna; 2) G Mae maxy HIAbROMEHMHY HOPMAALHY
nidepyny U, wo G/U xeasiyuxaiuna p-epyna; 0) axuo S - neniabnomewmua nio-
epyna 3 G, mo G =US.

Hezati G - aokaavHo Hiabnomewmua 2pyna 3 ymoeorw Maz-(non-nil), R - ckin-
uennuti pesudyaa G. Axwo G weniavnomenmmua, G/R ckinuenno nopodocena, a R
HIABNOMENMHA, MO BUKOHYIOMbCA Maxi ymoeu: a) R — nodiavna uepuixoscbxa nio-
2pyna; 6) xoscna éaacna G-ineapiawmua nidepyna R cxinvenna; 6) [G, R] = R.

Herati G - aokaabno wiabnomewmmua 2pyna 3 ymosow Maz-(non-nil), T - i1 ne-
pioduuna wacmuna, R - cxkinuennut pesudyaa G. Arxwo G newiabnomewmna ma
neminimarcrua, a G/R ckinuenno nopodocena, mo suxkowywomvca maxt ysmosu: R
NeploduuKa, He MAE BAACHUT NIOZPYN CKINYEHHO20 IHOEKCY, HEHIAbBNOMEWMMNA, aae
KodcHa 11 eaacwa nidepyna Hiabnomewmua, G po3e’asna i, xkpim mozo, R € pos-
WUPEHHAM HIABNOMENMHOT 2pYynt 3G JONOMO2010 NEPHIKOGCLKOL, 30kpema, R — p-
nidepyna das deAx020 NPOCMO20 YUCAG P, WO MAE 3POCMAN UL PAJ HIABNOMEHMHUT
G-insapianmuuz nidepyn (1) = Ag € A1 € --- € An €+ *Unendn = R,

ITpaua M. Jlikcona ta JI. A. Kypaadenka [27] MICTUTB ONHC PO3B’A3HHX I'PYI 3 YMO-
Boio Max-(non-nil). O. /I. Apremosuy [87-89] socniqxyBaB NOKaqbHO BLILNOTEHTHI
PPYNH 3 YMOBOK MaKCUMAaJIbHOCTI JIf HerinepueHTpalbHuX miarpyn. Mu ne 6yje-
MO JeTalbHO pO3raAjaTH ixHio 6yjoBy. ['pynu, B AKHX MEOXHHE Lyonnil(G) = {G}
3aJ0BOABHAE cI1abKy ymMoBy MakcumanisHocTi, BuByaau JI. A. Kypaagenxo, I1. Ily-
maupkui Ta 1. f1. Cy6oTin [47]. 3okpema, TOKaIbHO CKiHYeHHI FPyNy 3 Li€l0 yMOBOIO
¢ a60 JOKANBHO HIMBIOTEeHTHUMH, abo yepHikoBcbkumu. C. Ppandiosi, P. ge Kiopa-
uui, f. II. Cucax [32] oxapakTepuayBanu JefKi KJack IPYIN 3 yMOBOIO MiHIMaIbHOCTI
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aaa ge FC-miarpyn. M. C. Yepuikos [129, 130] BuB4aB rpynu 3 pisHEMHE yMOBaMu
(caabkol) m-makcuMaabHOCTI Ta (c1abkoi) r-miiMaabHocTi. O. . ApTemoBny (2] xo-
CAIXYBaB PO3B’A3HI IPyOu 3 YMOBOK MIHIMaJbHOCTI Ta BIJINOBIJHO MiHIMAJbLHOCTI
U4 MACPYN, AKI He € YePHIKOBCHKUMHM HAJ HIIbINOTEHTHUMH.

3 nbOro BHMIMBaE, M0 MiHIMaabHi He X-rpynu oco6amBO IOB’A3aH] 3 IpynaMy 3
yMOBaMU MiHiMaJabHOCTI Ta MakcuMmaibHOCTI gua He X-miarpyn. lle cnoctepexenns
i Ta ocobiuBa poak, AKY BIJINpaEe MOHATTA “HIILNOTEHTHICTH” (I Taki MOro MoX-
VBl y3araqbHeHHA AK “MalKe HIIBIIOTEHTHICTH”, “riNepueHTPaIbHICTL’, “Maiixe
rineplueHTpaJbHEICThL” ) ¥ Teopii rpyn, a TakoxXx (Ha npukiaji rpyn Tuny XakHeKkeHa-
Moxameaa) 38’430k HaABHOCTI “MaJoi” POJAMHM BIACHMX HEHUIBNIOTERTHHX MiArpyn
3 BIACYTHICTIO BJacHUX (pakTOpu3aUiil y rpymi MATBEpAXYIOTh HEO6X1IHICTH AO-
CALJKYBATH JOCHTH Majo BABYEHI rpynH, 6Au3bKi 0 HepO3KJlajiHUX, TO6TO rpynu
2 “ManuMu”’ MHOXMHAMY HeHINbNOTeHTHuX (BIANOBIJHO HerinepueHTPalbHHUX) Mij-
rpyn. Ha uboMy muiaxy Bunukae 6araTo nepcneKTHBHUX, IIKaBUX 1 BaXAMBHX 3a]a4,
pO3B’A3KN AKUX MOTPe6yIOTh HOBUX MiAXOAIB I HANPAIIOBaHHA HOBUX METOAIB. 3Ha4-
1010 MipPOIO 3aCTOCOBYIOTH METOAM TEOPii KiJelb Ta MOAY.IIB, AEMOHCTPYIOUH raunbok1
B3a€MO3B’A3KU Teopil rpyn i Teopil Kijenb.
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PO AUPEPEHUIAJIBHI KLUIbLA, HAA AKUMHA
BCI JUPEPEHUIAJIbBHI CKPYTHN TPUBIAJIbHI

Mukoaa KOMAPHUIILKHUM, Boaogumup CTEPAHIK

Jveiecorutl HayionaabHutl yHisepcumMem iMeHt Ieaua Ppanxa,
eya. Ynisepcumemcoxa, 1 79000 Jlvsis, Yxpaina

3anponoHoBaHo JedKi cnocobu nobygosu AudepeHLaTbHUX PAaaNKaIbHUX ¢iabTpiB
Y HeoAMHAPHUX AMpepeHLialbHUX KiabUAX. 3'ACOBaHO, IO KOXKHOMY TaKoMy biabTpy
BignoBigac gudepeHUiaNLHUI CKPYT Y KaTeropii iBUX AudepeHuiatbHuX MOIY1iB HAJ
6a30BUM gudepeHiaTbHuM Kiasuem. OnucaHo oiuy THN fudepeniiatbHux Kilelb, Hal
AKMMU BCl audpepeHniaibHi CKPYTH TPHBIAIbHI,

Kawouoesi caoea: gudepeHuiloBanns, JudepeHuiarstl Kiabua, fudepeHialbHo npo-
cTi KiAbuA, gudpepeHiiaiLii Moayai, AudepeHLianbHi CKpyTH, AudepeHuianbil paju-
KaabHi GiALTpU, TPUBIaILHI IUgepeRUianbHl CKPYTH.

1. 3ayBaxmuMo, WO Teopid CKPYTIB y KaTeropii MoAy/aiB HaJ aCOLiaTHUBHUM KiJb-
ueMm JocuThk gobpe poO3BHHEHA. Iit npucssyeno 6araro monorpadii. Hadyngamen-
TankHiWo©o 3 uiei ranysi e npaus JAx. Conama [1]. B kxareropii ogunaprux ande-
peHIIATLHUX MOJAYJIIB HAajA OAMHADHMM AudepeHUiajlbHUM KiAbleM andepeHiaibHl

CKPYTH | AMGepeHIiaibHi pauKabii biabTpy Bepire posraagamn B [2]. 3ararsaum
UTAHHAM TeOpil PAJUKAAIB Yy KiAbUAX, MOAYIAX i, HaBiTh, B AOBIILHUX abeleBUX I
[poTeHANKOBMX KaTEropifix, TakoX NPUCBAYEHO HU3KY MOHOrpadii i cTaTeit, cepej
Akux sasHagumo [3, 4, 5]. Ilpore pagukanam 1 ckpyTaMm y xaTeropii gudpepeHuiaib-
HUX MOJY1iB npuiteno masio yBary. [Ipuynnoro € Te, WIo Us KaTeropid isomopgHa j0
KaTeropii 3BM4aHHUX MOAYJIB HaJ KiJblieM JudepeHiialbHIX ONepaTOpiB OCHOBHOI'O
JudeperniarbEoro Kiabud. [Ipore 3a3gayenui i3oMopdiaM BAPIIye TUILKY 33T a1bHO-
TeopeTH4Hl NpobaeMy i 30BCiM He BHpIllye KOHKPETHHX MUTaHb PO JoKaJizallii au-
(bepeHNiaTbHIX KiJelb Ta PO pajuKalibHi GLIETPH B mudeperuiaabEnX Kiabuax. Le,
30KpeMa, MOACHIOETHCA CKJAaAHICTIO MeXaHi3My 3B'A3Ky MIX 1jealaMu (ogHOCTOPOH-
HiMYP 91 ABOCTOPOHHIMU) KifblA KoedinienTiB Ta ifeanaMu xiabus AndepeHniaibHuX
onepatopis (aue. [6]). Tomy BuHUMKae noTpeba (AoCHiKyIO4H JOKaTi3auil fudepen-
LiaIbHIX Kiiellb) MaTH 3MOT'y KOPHCTYBATHCh aJeKBaTHOIO MOBOIO JidepeHliatbHiX
NOHATH, a He iX TpaHchopMauiamu B Kinbli AudepennialbHUX ONepaTopiB.

3a anajorieio 3 [2] 3’acoByemo, mo AeAKi HaWnpocTiun GakTH NPo 3BUYAUHI pa-
auxanbHi iabTpu 6e3 ycKialHeHb NMEPEHOCAThCA Ha BUMAJOK Kileub 3 GaraTbma
nudepennioBaiHamMu. CnoyaTky y3aralbHIOKOTBCA TaKi MOHATTA, AK audepenuia-
ANBHUI CKPYT, AudepeHuialbHUi paiuKalbHAE QBT TOMO Ha BUMAJOK Kijelb 3
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6araTbMa AAdepeHNiIoBaAHHAME Ta GOPMYIIOIOTECA 1 JOBOAATHLCA HAHNPOCTIiILi iXHi
ractuBocTi. CKpyTH, BH3HA4YeHI UMMH paJUKaJlbHUMH QLILTPaMu, TiICHO MOB’A3aHi.
JokpeMma, kiabue ApobiB, nobygoBaHe 3a JONOMOI0I0 OTPHMAHOI0 AU epeHIialbHOT O
pajnKalbHOro (hiAbTpa, Opu NeBHUX OOMEXEHHAX Ha CKPYT MOXHa NepeTBODUTH B
AudepeHuiaNbHe Kilblle CTOCOBHO AWdepeHIIOBaHHA, ke MPOJAOBXYe AudepeHuio-
BaHHA OCHOBHOrO Kiabud. llel akT BUKOPUCTOBYIOTH NOTIM /1A BUBYEHHS OLMHAp-
HHUX KOMYTATHUBHHX JUdepeHUiadbHUX Kilelb, Bci AudepeHniaibhi CKpyTH Ha g AKMMHE
TpUBIaAbHI.

2. [Tonepeani BigomocTi Ta dakTu. Bei posrasaypani Kinreua npunyckaTume-
MO acoIiaTHBHMMHY 3 OAWHHAIIEI0, a BCi MoAy i AiBuMu i yHiTapEuME. [loTpi6HI 0cHOBHI
NOHATTA 31 3BUYaNHOI Teopii Kizenb MoXHa 3HalTH B [7], a MaTepian 3 gudepenui-
anbHOI anrre6pu MoxHa BukopucTaTy 3 [8] abo [9].

Hexait R - kiasue. Togi Bifobpaxenns 6: R — R HasuBacThca Moro dudepenyi-
106AHHAM, AKIIO Ans Oy Ab-AKUX eneMeHTiB a i b 3 R npasuabHi piBHocTi d(a + b) =
5(a) 4+ 6(b) i 8(ab) = d(a)b + ad(b). Enement a € R, ana axoro §(a) = 0, nasuBaeTsb-
ca xoncmanmorw wodo §. [JudepeHuiloBaHHA, CTOCOBHO AKOT'O BCi €eMEHTH Kilbld
€ KOHCTAaHTaMH, Ha3UBaE€ThCA mpusiasbrum. Kinblie 3 3ajaHUM Ha HbOMY Judepes-
HiIOBaHHAM Ha3MBaeThcA odunaprum dudPepenyiasbrum xiavtem. Ha npakTuni vacro
JTOBOJNTBCA poaraajaTu 6iablile, HiX ogHe gndepeHuiloBaHHA. Tomy Haganl Kiabne
R nasuBaTHMeMO dudiepenylasbrum, SKUIO Ha HbOMY 3aJaHO CKIHYeHHY MHOXMHY IO-
[TAapHO KOMYTYIO9MX AuepeHuiloBans 4y, ..., §,. Koncmanmasmu J0BiAbHOTO AU epen-
HiaNbHOTO KilblA HA3WBAIOTE EJEMEHTH, AKiI € KOHCTAHTaMHU IIOJ0 BCIX CTPYKTYPHUX
audepenuioBaib Uboro kiapus. Akuo R — audepenuiajpHe Kiable 3 AupepeHuio-
BanHAME 0;,¢ = 1,...,n, To Moxna 36yaysBaTu HoBe Kiabie Dg, ke Ha3MBaeTHCA
KidblileM JIHIHHUX AndeperlialbHUX onepaTopiB Kiabusa R.

Harajzaemo, mo JiHiWHME audepeHUiaJbHUH onepaTop Bl AudepeHUIOBaHb
81, ... ,0n 3 KoedilicHTaMy 3 Kiabua R 306paxaeThcs y BULAANI

ki.ka,... ka
- ] ig in
aflfg.,.indl 1d2 dn )

11=0,i3=0,... ia=0
A€ Qii,.. i, € R, di - qudepenniarsHi HeBiOMi.

il Takoro oneparopa Ha eJleMeHT KUIbIA 3a]al0Th 3a NIPABAIOM
ki,ka,... kn
i1 4 8 i
Z ailfz---fndl l"1'-,2 B4 .dn * (a) —
11=0,12=0,... i.=0
klik'-h--- ,k“

= Z iyigoin (617 08,0 -048,") (a)

1‘.130,1‘2:0,... ,i,‘:{}

ans koxHoro a € R. CykynsicTh ycix Takux JiHIMHUX ONepaTOpiB MOXHa IepeTBOPH-
TH B Kiable. Sk onepaniio gojaBaHHA GepeMo 3BUYANHe J0JaBaHHA JIBAX MOJIHOMIB
Bi,1 HEKOMYTATUBHUX HeBijomux dy,dy, . .., d,, a AK MHOXEHHA — onepauiio, Aka iHjy-
KYeTbCA CriBBiAHOMenHsaMY §; -a = ad;+6;(a),a € R, 3 BpaxyBaHHAM ANCTPUOY TUBHO-
c1i Ta aconiaTuBHocTi. Ile Kifblie Ha3WBAETBCA KidbyeM AIHIUNUT Judeperyiaabnur
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onepamopis Bij AudepenuitoBanb dy,ds, ... ,d, 3 koedilicHTaMi 3 AudepeHnianb-
HOro Kinbla R i mo3HavaloTh vepes Dg (auB., Hanpukiag, [8]).

AHanori9HO BU3HAYAIOTh JiBi Moyl 3 6araTeMa audepenniioBaHHaMK. Tounire,
nexan M - nisuin R-moayas. Bigo6paxenns 0: M — M HasuBaeTbca duepenyiio-
BaHHAM MOOYas M, aximo aad BCiX m,my,my € M i KoXHOro a € R BUKOHYIOTbCA
piBHOCTI:

1) 8(my +mg) = 8(my) + (m2);

2) d(am) = §(a)m + ad(m).

Moayas M, Ha AkoMy 3ajaHO CKiHYeHHY KUIBKICTh MOMapHO KOMYTYIOYHX IH-

depenuiosanb dy, 0y, . .. ,On, HA3HBACTHCA At6uM Judepenyiasbnum R-modyaem. fAk-
o M; i My - niBi audepenuiaabai R-moayai 3 audepenuioBanuamu 97,05, ... ,0, i
i, 8Y,...,0! signosigno, To R-MoayabHui romomopdiam f: M1 — M, HazusaeThCA

Juepenytaavrum zomomop@izmon, Axmo ans 6yab-akoro i, 1 € i < n, BUKOHYIOThCA
pisrocti f(8{(m)) = 8{'(f(m1)) ana 6yab-axoro m € M;. Kareropiio Bcix aiBuxX A1-
depenuiaabHuX R-MoayaiB i BCix gudepeHialbHUX TOMOMOP}I3MIB NO3HAYATHMEMO
qyepes R — Dmod. IIpu n = 1 wio kaTeropiio Ha3sMBATHMEMO 0JUHAPHOW KATEropieo
niBux audeperuianbHux Moayai. lo6pe Bigomo, mo kateropis R — Dmod izomop-
chHa g0 KaTeropil JAiBMX MOAYJIB HaJ KinbneM AudepeHLiaTbHAX ONepaTopiB Kiabus
R. Lleit iaoMopdisM BuaHa4YaeMo Tak: AKuio M — gipui gudepeduianbiuin R-Moayis,
10 Dp-MoAyabHa CTPYKTYpa Ha M 3ajJaeThcA 3a JONOMOIO CIiBBiJHOIIEHHA

Ky K2 Kn
i g i
) @iyiy..ind1 'd2"? ... dp™ | (M) =

$1=0,85=0,.c. gu=0

kl}kgi"-lkn . . .
; i ; ;
N i isigin (B1" 0By 0 08,™) (m),
f1=0,53=0.,,.‘3'n=0
kika,....kn

—

ae 3 Qiyiy. i, d1d2"? .. .dy"" € Dr,m € M. Hasnakn, axmwo M — niBuit
11=0,i2=0,...,i,=0

Dpr-mMoayab, To Bijobpaxeuns 0;: M — M, axi 3agaioTh 3a 3akoHoM J;(m) = d; - m,

1 € 1 € n, € gudepenuiopannamMu Moayaa M. Orxe, xkoxuun Dr-Moayab MOXHA

posrasgaTin Ak gudepenuianbanii R-mofyab. Jlerko mepeBipuTH, mo koxuui Dg-

MO1yALHUHM roMOMOpPdIZM aBTOMATHYHO € AudepeHuiatbHuM R-romoMopdiamMoM.

AHanoriyHo 40 TOro, sk ue po6UThCA B OJUHAPHOMY BHMNAJKy, BU3IHAYAEMO IIO-
HATTA Au(epeHLiaJbHOTO CKPYTy B KaTeropil aiBux AudepeHUialbHUX MOJYJIB 3
6araTbma AudepenuiloBanaamu. ['oBopuTnMemo, mo B KaTeropii £ — Dmod 3aano
Jduepenyiarvnuti ckpym o, AKIIO KOXHOMY JiBOMy AudepeHUialbHOMY R-Moxy./io
M 3icTaBaseTbca JeAKHHA HOro gudepeHUiaJIbHHI MIAMOAY/Ib o'(M) 1 TpaBUAbHI TaKi
YMOBH.

AC1. dna xoxnoro gudepesuiarsHoro romomopgiamy f: M — N

f(e(M)) € o(N).

JIC2. Axmo N C o(M), ae M,N € R— Dmod, To o(N) = N.
AC3. 6(M/o(M)) = 0 paa koxuoro M € R — Dmod.
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Andepenuianbaui migmoayas (M) C M Ha3sHBAcThCH T-nePioduuHO0 YACTRUKOW
Aucdepeniaasroro moayia M. flkwo o(M) = M (sigoosigno, (M) = 0), To M
HAa3MBAETHCA O-nepioduunum (o-Hanienpocmum, abo modyaexn 6e3 o-cxpymy). fAxuio
OJHAa 3 UMX YMOB BMKOHY€ETLCA JJA BCiX AudepeHUiaTbHUX MOAYAIB M | To HazBeMo o
mpustaabHum ckpymom. O6uUaBa TpHUBiaIbHI CKPYTH € AndepeHUiaJbHUMHI aBTOMAa-
TUYHO.

Hexau R - gudepeHuiaibHe Kiablie 3 ,mcpepeﬂuuosanﬁamn 01,02,...,0n. BBene-
Mo nozuavenus aliv iz in) — (6 o 52” ‘0 5n'") (a) ansa 6y Ab-AKOro efeMenTa a
kiabua R. KpiM Toro, Hexait a(®) = {a(u. -"") Fdrgoss ide=015:: } ;

Harapnaemo, wo aiBui igeat | xiabna R HasuBaeThca dudepenyiaabrnum, AKIIO A5
KoxHoro a 3 I maemo 4;(a) € I pas Bcix i = 1, n.

Hexait R — pudepennianbie Kiabue 3 audepennioBanam 0. Cucrema F nisux
nudeperniatbHuX igeanis kirbua R nasuBaeThes dudepenyiasbrum paduxasbrum @i-
Abmpos Kiibug R, AKIIO BEKOHYIOTBCA TaKl YMOBH. ‘

APl. Axmo I € Fi I C J, ne J — gudepenuianbuui ifean kiavua R, To J € F.

2. Axmo [ € Fia€ R, 1o (I :al™®)) € F.

NP3, Axmo I C J, ae J € F ~ Takuit, mo (I : al®)) € F gaa xoxworo a € J TO
ITeF.

fAx i y BAna Ky 3BHYailHUX paJuKalbHEX PUILTPIB, Jerko nepesipury, wo I () J €
F. 3ayBaXuMo Take: Koin R pO3rAsifaTH 3 TPHUBIaIbHUM AH(DEPEHLIIOBAHHAM, TO
AucbeperIiaTbHuil pajuKalbHUi (IABTP 3BOAMTHCA JO 3BMYANHOIO pajUKalbHOrO
¢insTpa. B upomy Bunaaxy ymosu AP1, A2, 1P3 nosnasaTumemo yepes Pl, P2,
&3 BIANOBIAHO.

Cucrema B niBux AudepeHuialbHIX 14€aliB, 10 HaaexaTb 10 AudepeHuialbHOr o
pauKa/jbHOI o qu.anpa F, nasupaeThcs 6a3ow aas F, AKIO KOXHUN audepeHiianb-
HUIT 1eal, AKWH HaJeXUTh Ao F, MicTuTh feakmit Audepenuianbuui igean 3 B. [las

(e o] oo
CHPOILICHHA TepMiHOJOr] AiBUM 1 1€al, NOPOAXKeHNH MHOXUHAMH ag o) ag ),. ce,(1 ),
HA3UBATHMEMO 1JeaqaoM, dufepenyiaabio nopodicenuMm ay, ay, . . . , Gn. Taki ifearn 18-

KOJMH HA3UBAIOTBLCA OUPEPEHYIAADHO CKIHNEHHO NOPOOHCEHUMY.

3. 3B’430K MIX 3BMYANHAMM I JUdepeHIiaNnbHIMY PaJUKATLHIMA (liab-
Tpamu. HacTynri Tpu JeMn JOBOAATHCA aHAJOTIYHO A0 BIANOBIAHMX JIEM /A 3BU-
YaHHUX pajuKalbHUX (GiabTpiB. 3ayBaXMMO, IO Nepil ABI 3 HAX He BUMaraloThb
icHyBaHHA OJWHUUI B Kinem R.

Jlema 1. Heratt R - dufepenyiasbne xiavye i B - cucmema cxinvenso nopodicenur
(ax aisi dudepenyiaabni ideaau) dudepenyiaabnur deocmoponniz ideaaisé xiays R,
3AMKHEHA COCOBHO MHONCERHA ideaats. Todi cucmena aisur dufeperyiaavrur 1dea-
ai6 Fg = {T|T — ateuti duepenyiaavnuii ideas, T D B, B € B} ¢ dufepenyiaabnum
paduxaavnum Gravmponu xiavys R.

Jlema 2. Hezati R - duepenyiaavne xiavye, I- idemnomenmmuii deocmoponmit io-
eaa xtavya R. Toot cucmema aieur dufepenyiaabnur idearis Kiabys I, axt micmams
ideaa I, € duiepenyiaabrum paduxasvrus Gravmpons.

3ayBaxuMo, O B JeMmi 2 gndepeHuianbHICTs iJeana | He BAMAraeTbcs, OCKIALKY
KOXHHUH 1eMIOTeHTHUY iJean AudepeHialbHOro Kilbld € AupepeRuialbHuM.
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Jlema 3. Hezati S - deocmoponniti dufepenyiaavnuti ideaa xiavys R 1 6 xiavyt R
xodcnutl ateutl dudepenyraavnutl ideas € deocmoporrim. Todi cucmema ateur dude-
penyiaavnuz ideaaise Fs = {T|T — aisuti dufepenyiaapnutl ideas, S +T = R} ¢
duepenyiaasnum paduxasvnum Piavmpom xKiavys R.

Hagpegeni semu 3acBifuyoTh, o AudepeHiliaibil pajukaibHi GiTbTpH ICHYIOTS.
Jas popeaenus Toro ¢akTy, 10 KOXKHOMY AudepeHnialbHOMY paluKalbHOMY (iib-
Tpy Bianosijgae ckpyT B KaTeropil R — Dmod, Ham Tpe6a foBecTH TakKi IABi JeMHu.

Jlema 4. Hezati R ~ duepenyiasvne xiavye i F ~ dufepenyiaavnuti paduxaabnuti
Pravmp. Todi cucmema F maxur aieuz ideaaié xiavysa R, wo eidnoeidae maxum
B € F, wo BCT, e paduxasonwum @iabmpom xiavys R (3suvatinum).

Josegenns. Ymoy P1 11a cucremn F nepesipsemo TpuBlanbHo. [lepeBipumo Baa-
ctusicTh P2 pajuxansHaro ¢iaeTpa. Hexait K € F ia € RH. Toai icaye I € F Takuu,
uo I C K. Orpumyemo

(K:a)2(I:a) D ([:a®) e F.

3 &1 punausae, mo (K : a) € F. . N
Nas nepesipku ymonu P3 wexat K D T,K € F i (T : A) € F npu 6yab-akomy
A € K. Toni icuye I € F takuu, wo [ C K, # icuyiors I\ € F Taxi, mo (T : A) D I,

nia Koxuoro A € 1. Iosnadumo depes S HoBuit gudepenniarpuuit izean S (),
AEl
Toai 1S - andepenniaabuuit aisui igean kinvug R i INS c I € . Kpim Toro,

INS : A} D I, npu 6yas-sikomy A € I. Orxe, 3a BractusicTio AP3 IS € F.
Mu ogepxaan, mo T D S D IS € F, asigkn punausae, mo I' € F.
Jema gomejeHa.

Jema 5. Hezaii R - dudepernyiaabne wiabye 3 Kiavyesm amitinuzr dudepenyiaabuur
onepamopts Dg. Axwo F - dudepenyiaavnutl paduxaabuuti giavmp xiavys R, mo
cucmenma F aieur 1deari xiavya Dg, xoocnutl 3 Axuz micmumo aieutt 1dean 6u24293y
Dri, de I € F - padurkaabnuti gravmp xiavys Dp.

Nopegenns. Jlerko nepesipuTn, wo ymosa P1 Bukonyerbca. Ilepepipumo ymoy

Ey. Ky kn e :
2. Hexan Te Fid= 3 Giyiy. i.d1"'d2"? ... dy"" € qoBlIBHMM eleMeH-
11=0,i2=0,... i,=0
ki k.. K ()
tom Kiasua Dr. Toxi Ky = N (Loeyei o) EF, T DDl TEF

11=0,i3=0,... ,i,=0
Orxe, Ky C Dgrl, To6to (T : A) 2 DrK),. Hoseaemo Tenep, mo F Boaoiie Bia-
crusictio P3. Hexan £X D T,K € F i (T : A\) € F npu 6yge-akomy A € K. Toxi
icuye I € F takuni, uwio K O Drl i gaa xoxsoro A € K icaye Iy € F rakuii, uo
(T : A) C Ir. 3okpema, IZA(®) D TN T npu 6yas-axomy A € I. llosnaunmo vepes S
aipni audepenuiansruit inean Y, [LA®) Toxi SNI C I'iSNI: A D I, npu
Aed
6yab-axomy A € I. Orxe, 3a Baacrusictio P3 ogepxyemo, wo S()I € F, 3Bigku
TOINT2SNI=T2Dgr(S({), wo i Tpeba 6yn0o fOBECTH.

Teopema 1. Axwo F - dudepenyiaabruti paduxasvriuti Fiavmp dudepenyiavrnoeo
kiavys R, mo Pynxyia 7(M) = {z|e € M,Iz = 0,1 € F} ,de M € R— Dmod, ¢
Jdudepenyiaabrum cxpymon 6 kameeopii R — Dmod.
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Nosegennsa. Ockinbku 3a neMoio 5 F € paJukaibHuM AudepernialbHUM (labTpoM
kinmeus Dr, To 3a Teopemow [abpiens-Mapaugu ([11]) itomy Bignoeigae ckpyT 7 y
kaTeropil Dg—mod. Ane xareropia D —mod iaomopdna kateropii R— Dmod, i npu
HLOMY i30MOPdI3Mi CKPYT T NepexoguTh y AeAKH#N cKpyT 7 B KaTeropii R — Dmod.
Jerko nepekonaTucb B ToMy, wo 7 = 7. TeopeMy aoBejeHo.

Y HacTynmHOMY NpHKJAaj[l BHKOPHCTOBYEMO TEPMIHOJOIiI0 Teopil y3arajlbHEHHX
byHKILiH, 3 AKOK MOXHa o3HauomuTuch B [10].

Ipuxaas. Hexait R — xiable HeCKiH4eHHO- U epeRninoBHNX (PIHITHUX AIICHO3HAY-
HiX PYHKIIH, AKe PO3N/IAJA€ThCA AK OJUHAPHe AudepeHlialbHe Klible CTOCOBHO 3BU-
yayigoro JudepenuioBanua. Toal cyKynHICTb ycix y3arajbHeHNX (GYHKUIM 3 KiacoMm
GbiniTHUX OocHOBHUMX GYyHKUIH R € gudepenuniaipuM R-molynem mofo 3BU4aMHOrO
audepenuiloBaHHA y3aralbHeHuX GYHKIIA. 3ayBaXaMo, IO e IPUPOJHUIH [IPHKIa ]
IAndeperIiaIbHOro MOYJId, AKHH He Mae CTPYKTYpH AudepeHmianbHoro Kiabus. [lo-
6yayemo AndepeHUiadbHAN paJUKaIbHEA GITbTP Kiabua K. [lag uboro BiabMeMo He-
Hy/AbOBY (iHITHY HeckindeHHO-AnudepeHuioBHY QyHKIlO f(z), AKa B Hy/Ii pasom 3i
BciMa CcBOIMH MOXiAHUMM JopiBHIOE Hymo. PoarasnaeMo gudepeHnialbHO MOMOBHAHM i1~
ean I, mopoaxennu dyukuieo f, TobTo

N, N

[puiimemo F = {I,I?,... . I",...}. 3a nemoro 1 F — pucpepenuiaibHuil pajnKa-
AbHUH inbTp, a 3a Teopemon 1 oMy BiinoBijae CKpyT T Yy KaTeropii
R — Dmod. BusBaseTbcs, mo audepeHuiatbHa nepiojguyHa HacTHHA MOAYIs y3a-
rajbHeHHX (DYHKIIN 36ira€ThCA 3 MHOXKHHOIO BCIX PeryJAPHUX y HYJl y3araibHeHUX
hyHKLiH, TO6TO lie MHOXMHa yCiX y3araibHeHux dynkuin Tuny [lipaxa.

Ax 6a91MO, 3 KOXKHUM JUdepeHiliadbHUM paJiKalbHuM piasTpom F nos’A3ani Ana
3BHYalHl pajukaibHi GiabTpu F i F xinvua Dg i kinena R signosigro. [Mosnadumo
qepes @ Kiablie APo6iB KiblA R CTOCOBHO pajRKalbHOrO GlibTpa F, a 4epes Qr
- xiapue Apo6is kiabus Dy 3a pajnkalbEuM diabTpom F.

Jlema 6. flkmo R - audepenmianbhe Kinbue i F — AudepeHIialbHUN PajuKallb-
HUl BiABTP Kinbua R, AkoMy BiAnoBijae TouHWH CKpYT y Kareropii R — Dmod, To
nudepernioBania § Kiapua R MoxHa NPOJAOBXKATH Jo AudepeHiioBanis Kiabls QF.

JloBesenns (e Hachizok 3 ocHoBHOI Teopemu lonana 3 [11]).

Teopema 2. Hezaii R - dufepenytaavne xiavye 1 F - dudepenyiaspnut paduxaan-
Huti Pravmp xiavys R. Todi
Qz = Do;.

IlepeiiieMo A0 3aCTOCYBaHHA TeXHIKH AUdepeRNialbHUX PalUKalbHUX PLILTPIB
1ia vac po3B’A3aHHA 3aBJaHHA PO Te, KOIM B KaTeropil judepeHUialbHUX MOAYIiB
HaJ KOMyTaTHBHMM KiableM BCi JudepeHuiarbhi CKpyTH TpuBiaibHi. [lia nboro Ham
noTpibHi Aeski pe3yIbTaTH, AKi HalexaThb 10 AWdepeHiialbHOl alre6pu.

Nlo KiHLA CTATTI PO3NIAZATMMEMO JMIUe OJMHApHI AudepeHmianbHI
KLJIbIIA.

Haragaemo, 1o KOMyTaTuBHe gudepeHniaabHe Kiible HasuBaeThcA Jufiepenyiaab-
HO npocmuM, AKIIO B HLOMY HEMae HETPUBIAILHMX AudepeHniatbaux igeanis. 3aysa-
JKVMMO, [0 KOXKHe TaKe KiJblle Mac OAMHMLIO Ta XapakTepucTuKy (aus. [12]).
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Teopema 3. Hezati R - xomymamuene dufepenyiaapio npocme Kiabye rapaxme-
pucmuxu p > 0 3 dudepenyirosannan 8. Axwo ag + a1d + ...+ a,6" = 0, de
ag,ay,...,a, € R,a, # 0 npu desaxomy namypasvromy n, mo .

R= K([z]/(P),
de K - desaxe noae rapaxmepucmuxu p > 0.

Aosegennsa. Ockinbku 6(zP) = 0 aaa 6yap-akoro z € R, To zP R — nudepenitians-
HUM 1jeas kiibus R npu foBinkHOoMy r € R. 3a ymoB audepeHiiajJbHOI NPOCTOTH
Kiapua R maemo, uio abo zP R = 0, abo 2P R = R. lle o3na4ae, mo z abo 3BOPOTHHH,
ab60 HiabNoTeHTHUM, To6TO, mo R — JoKalbHe Kilblle 3 MaKCUMaJbHUM igeasom N,
AKUK € Hi/lblJeaJ oM. ,

Bu6epemo Tenep onepatop

3 HaliMeHIMM MOX/AuBuM k TakuM, wo by # 0. Toxi xoediuienTn by, AKi TpanIALTL-
cA B onepaTopax suraaay (1), yrBopioloTh AudepeHUialbHUN ieas, BiAMIHHEA Bl
nyasoporo. Ha migcrasi gudepenuiaibHol IpocTOTH Kiabld R oTpuMmaeMo, mo uen
igeas 36iraeToca 3 KiabueM R. lle o3navae, mo

coteid+...+ek18 M+ =0 (2)

Npu AeAKHUX Cg,C1, ... ,Ck—1 € K.

Bpaxosyioun (2), orpumaemo, mio N - HiaebmoTeHnTHRH igean kiasusa R, To6To mo
(N)* = 0. CnpaBgi, Hexall z = y1¥z2 - . .Yk ~ A06YTOK k HOBIABHHX enemeHTIB igeany
N. Ouepnano, §(z),48%(z),...,8%"1(z) anoBy 6yayTs enementamu igeary N, a saBjs-
ku (2) i 6%(2) € N. Audepennionun (2), 3acTocoBane o eleMenTa z, 6a4MMO, HIO
§"(z) € N npu 6yab-AkoMy HaTypaibHoMmy n. [ludepeHumlarbHuy 1jean {z}, mopo-
JUKeHUN €IeMEeHTOM z, € AudepeHUialbHuM ifeanom, AKUMA MicTUTbCA B ijean V. Ha
migcTaBi audepenuniaasHol npoctoTu Kiasug R mMaemo, mo {z} = 0, a orxe, i z = 0.
Ockiibky 2z — JOBLIbHMN ejemeHT 3 N*, mo N¥ = (.

[lna 3aBepiienHa AOBeAEHHS JOCTATHBO 3aCTOCYBATH Teopemy 4.1 3 npaui Baokka
(12], sixa cTBepAXY€E TaKe: AKIIO B KOMyTATHBHOMY An(pepeHIialbHO IPOCTOMY K1/IbLil
R xapaxrepuctuku p > 0 iCHye Takuil eJleMeHT I # 0, mo zN = 0, To ue xiabue
isomoppue K[z]/(zP), e K - mone xapaxTepuCTUKH p.

Teopema jgoBejieHa.

Hexait R — goBiabre kinbue (6e3 gudepenuiloBanna). Posrasuemo kiasue R{z] no-
AiHOMIB 3 koediuienTamMn 3 R Bij KomyTyiodoi aMinHOl z. [IpunycTumo, mwo Kinsie
R mae HenyaboBy xapakTepuctuxy p > 0. Toai R[r] e audeperuianbHum Kinbuem
CTOCOBHO 3BHYalHOTO JudepeHnioBaHHA, a igean (27) € AudepeHUialbHAM ieanoMm,
Tomy dakTop-kiasue R, = R[z]/(z”) e audepenuiatbHuM KiablleM, iKe HA3UBAETHCA
K14bUEM 3PI3AHUT NoatHOMIE 3 Koediyienmamu 3 R.

[IpapunbHe Take TBEPAXKEHHA.

Teepaxenna 1. Herai K - xuavye rapaxmepucmuxu p > 0. Todi xisvye ainii-
HUT Juepenyiatb HuT ONepamopi6 Kiabys 3PI3AHUT noaiHomie 3 Koefiyienmamu 3 K
13omopPre 3o Krabys p X p-mampuyp Had xKisvyes K.
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Hosegenns. Hexan R = K[z]/(zP) i Dg — kiable AiHiHERX AudepenniaabHuX omne-
p-1 i
paropis Kiabua R. Toai xoxuuit exeMent 3 D Mae suraag » . a;;z'é?. llo6yayemo
i,j=0
Blgo6paxennsa 3 Dg y Kiibie MaTpuub nopaaky p Hajg K. Hexain

0 0 0 0 g L 0 . 0
1 0 0 0 0 0 1 . 0
A=10 2 0 Uk 222§ suesveuseviens s ;
.................... 0 0 O 1
0 0 p—1 0 0 0 0 0
TOAL NIPHAMEMO
p=1 p—1
K Z a,-j:‘Jj = Z ainiDj.
ij=0 i.j=0

Jl1s mepeBipKM TOro, 11O K — KiAbUeBHHE roMOoMOP(}iaM, JOCTATHLO NEPEBIPHTH, IO
DX = XD + E, ge E — opuEAYHa MaTpHUIA, aJe e NepeBipAeTbCA 6eanocepeHiM
oBYUCACHHAM.,

[lokaxeMo, 110 K — clop eXTHBHME romoMopdiaM. [aa nboro obuucaumo Jo6yTKu
X'D? i D'X7. Orpumaemo

/0 0 0 0 0\ (0 01 0 0
s s g S 0 0 I 0
0 0 0 0 O | ..o
xp=1% 0 0 0 0o 00 0 1}

o G g 0o offo 00 0 0
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e % MOo3HaYae JeAKuH eJeMeHT Kiibla K, IpuYoMy 3BOPOTHUM, a KOXKHAN 13 BEPXHIX
640KIB MaTpUIbL Ma€ ! PAJKIB.

3 Burasgy Matpunb X' D7 i D'XJ nerko aposyMiTH, WO 3a JONOMOI'OK HUX MO-
Ha OTpUMAaTH Bci MaTpu4Hi oguHmui kiabug Mat(K, p). OTxe, k£ — clop’eKTHBHUN
roOMOMOP(I3M.

IH’eKTUBHICTD Bl f06paKeHHA K BUILINBAE 3 TOT'0, IO KOXXHAa MaTPHIIA BUPaXaeThCA
yepes MaTPUYHI OJUHMII OJHO3HAYHO (lle MOXHA NepeBipuTH Ge3nocepesHbo).

TBepaKeHHA JOBeJeHO.

Teepaxenna 2. Hezat R - maxe xomymamuene dupepenyiasbno npocme Kiabye
raparmepucmuxy p > 0, wo xiavye Di 13omopdue do xiavys mampuys nad deaxus
miaom K. Todi xiavye R 13omopdre 00 Kiabya 3p13anur noainomie Had JeAKuM noem
rapakmepucmuxu p > 0.

Nosegennn. [lozask Dpr AlBui BeKTOPHUE NpoOCTip CKiHYeHHOI BUMipHOCTI Haj Ti-
aoM KN, TO mpy AeAKOMY 7t

k0+k1§+...+kn6n20. (3)

Posraanysmm exeMentu k; Ak onepatopu 3 Dy 1 3BiBUIK (3) mo Buraaxy ao + a0 +
ot kmfim = (), 0iepXUMO 3AEKHICTD, AKA € B yMOBAaX TeOpeMH 3, 3BiAKH | BANIUBAE
Halle TBEPAXKEHHA.

Teopema goBegeHa.

Teopema 4. Hezati R - xomymamusne dugepenyiaabno npocme xisvye. Axuo 6
xamezopii R — Dmod eci dufepenyiaabni cxpymu mpueiaabi, mo R izomopPne do
K1AbUYA 3PI3AHUT NOAIHOMIE HAD noaem Tapaxmepucmuxu p > 0.

JoBesenns. Poarasuemo cnoyaTKy Bunaok xapakTepuctaku 0. [Tosnep [13] 1osis,
mo KoMyTaTuBHe nudepeHuiaibHO npocTe Kinble R xapaktepuctnku 0 € obaacrio
HijgicHOCTI, @ oTXKe, 1 Kiabue Dy € obaacTio uinicsocTi. [IpoTe naj o6aacTio HiAICHOCTI
BCi CKPYTH TpHBiajbHi JuIle B TOMY BUNMAJKY, KOAM Id 061acTb ULIICHOCTI € MOJEM.
Nozask B Dgr eremedT ¢ 3aBX[AM He3BOPOTHUHM, TO 3BIACH BUILIMBAE, WO HaJ Ju-
depeHiialbHO MPOCTUM KijiblleM XapakTepucTHKK ( 3aBXA¥ ICHYIOTb HETPUBIaJbHI
andepenHLiagbHl CKPYTH.
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Hexait Temep charR = p > 0. Toai 3a pesyasratom B. A. ArgpyrakieBuya Ta

10. M. Pabyxina [14] xinbue Dg € KinblleM MaTpUNb HAJ JOKAILHAM JOCKOHAIAM
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ON DIFFERENTIAL RINGS FOR WHICH
ALL DIFFERENTIAL TORSION THEORIES ARE TRIVIAL

M. Komarnytsky, V. Stefanyak
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1 Universitetska Str. 79000 Lviv, Ukraine

Some methods of constructing differential radical filters are proposed. In addition
every differential radical filter is in correspondence with some differential torsion
theory in the category of left differential modules over the basic differential ring.

One kind of differential rings for which all differential torsion theories are trivial is
described.
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CIHEKTPAJIbHA 3AJAYA
OCECUMETPHUYHOI TEOPII IIPYXXHOCTI

BixTop PEBEHKO

Incmumym npuxaadnur npobaes MAMEMAMUKY 1 METAHIKY
wmerit A. C. [Tidempuzave HAH Yxpainy,
eéya. Hayxoea, 36 79053 /lveis, Vrpaina

OTpHMaHOo 306pakeHHa HanpyXeHo- tedopmosanoro crany (HIC) npu aoeiasromy
OCeCHMETPUYHOMY HABAHTAKEHHI HA TOPLAX TOBCTOCTIHHOIO UMMHAPA Y BUTAALL DALY
3a BracHAMY yHKUiaMH. [JoBefeHO ICHYBaHHA 3/M€HOI KIABKOCTI BAACHMX 3Ha“eHb.
KoediuicHTn pagy 3HAXOJATb 3 YMOBM MIHIMyMy IMTerpana KpaipaTa BlAXWIEHH:A
po3B’A3Ky Bif 3aJaHUX IPAaHUYHHX YMOB Ha TOpPUi. J3aNpoNOHOBAHO NBAa “YMCENbHI
METO NN 3HAXOMKEHHA KoedilieHTIB pAfy. 3HailgeHo po3B’A30K KPaioBol 3ajfa4i I8
6irapMOHIYHOro PIBHAHHA B UM/IH/APMYHINA CHCTEMI KOOPAUHAT.

Karouosi caocea: 6irapMoHidHe pPIBHAHHA, BJACHI 3HAYeHHA, BJAAacHl yHKuil,
npobaeMa MOMEHTIB, Uit dyHKUIl, OCECHMETPAYHA TEOPifA NMPYXXHOCTI, HAMpPYXeHO-
nedopMOBaHMIA CTaH, HWIIHAD.

Y crarti poarasayro HJIC ToscTocTiHHOro uMIiHApa: BHYTPIWHIA pajlyc
- Ry, sosuiumiit - R, HeckinyeHHol abo ckimdenmnoi jgosxumm H, Bick 2
36iraeThcA 3 Biccio cumerTpii mmmiwgpa. LlMaiHAp HaBaHTaXeHMH JOBIALHUMU
OCECHMETPHYHMMY TOPLEBMME 3YCHASAMH NPY BITbHUX Bij HaBaHTaXeHHA GOKOBUX
NOBepXHAX. JanpononopaHe GOPMYMOBaHHA 3afadi MOXe ONUCYBATH NpYXKHMUN
NiBIpOCTIp, KyAA, KyIa ab0 MBOPOCTIP 3 BEPI3OM, CyLinbRMA aiHAp i T.1. [las Toro
o6 auaiiry HJIC TOBCTOCTIHHOTO HNMAIHAPA, NOTPIGHO NMPOIHTErpyBaTU PiBHAHHA
Jame [1-3] npu 3ajanux rpanudsux ymopax. OcecumeTpuyHi 3ajadi poarisaiy
8 [1-7]. Orasg nitepatypu masegemo B [2-3]. Y mpauax [5,6] sanpononosano
YcenbHMI po3B’A30K piBHARL Jlame, B [4] HaBesenmit HabmmxeHui poss’ssok. B
[7] nogano po3paxyHOK TOHKOCTIHHOIO WMAIHAPA y BHUNAAKy, KOMM HOTO MOXHA
MO/IeNIOBaTH UuAiHApudnOK oboaonKow. IIpoTe mpobaema mobygoBn HabAHXKEHOTO
3 3aJaHOI0 TOYHICTIO aHAJITHYHOrO PO3B’A3KY AAA AOBLILHOrO HaBaHTAXEHHA Ha
TOPUAX 3ATAIIANACA HEBUPIIIEHOIO.

1. 3HaXOJXEeHHA PO3B’A3KYy MeTO/JOM PO3KJaJaHHA B PAJ 3a BJIACHHMH
dyuxmismu. Jas (1], Bupasusuy nepemiileHHs | HaNpyXeHHA Y BATAAAL

1 & 1

—— L, u=— 2(1—U)V2L—6—2-L] o —-6—(VV2L—8—2L)
2G 8réz” " = 2G az2" |’ "7 Oz or2" )’

w =

© Pesenko BikTop, 2003
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a2 i} 92
g T . 2F = o = A s s
by = e ((2 v)V*L asz) y Wy W e ((1 v) VL 31:2L> ; (1)
3BiB pO3B’sAi3aHHA PiBHAHL JIAMe 10 3HaxoxeHHA Girapmosiynoi dyukuii L = L (z,r),
IO 3aJ0BOJBHAE BiJAMOBI/IHI TPAHWYHI YMOBH Ta PiBHAHHA

¢ 18  &*

2¢72 - Wi B S B
VIV L(z,r) =0, V= g5+ o+ o, (2)

ae v - xoediuieut [lyaccona, G - MOAYIb 3CyBY.

CdopmyaroBany 3ajady po3paxyHky H/C ToBcTocTiHHOrO HMJIIHApa 3BeeMO [0
JHAXO/MKEHHSA TAKOrO pO3B’A3KYy 6irapMOHIYHOrO piBHAHHA (2), AKWH 3a40BOJbHSAE
HYJbOBI FPDaHUYHI YMOBM Ha HOKOBUX MOBEPXHAX

oy (2, ;) =0, T(I,Rj) =0, §=1.2 (3)

i 3ajaHi rpaHMYHi YMOBU B HANpYXXeHHAX Ha TOpuAX umainjpa [ams. 1, 2, 3]. Ilei
pPO3B’A30K MOJ4aMO METOAOM PO3JIIEHHA 3MIHHHX Y BUIIAAL pAAY

L(z,r) =Y Re{(Z3, (Ber) + 721 4 (Brr)) exp (—Brz)+
k=1

+ (245 (Ber) + 722 (Ber)) exp (Bex)}, (4)

ne Bk € C - wykaHi cHeKTpaibHI NapaMeTpH, I AKHAX OKpemi DO3B’A3KH B
306paxenHi (4) 3a40BOMbHAIOTE TPankuYHi yMosy (3). Beegeni dyukuii Z] , (Bkr) =
gk.idm (Bkr) + ck,jNm (Bkr), § = 1,4 € nuningpu4nnvu, Ae gk j,Ck,j - Heijowmi
3araioM KoMIuieKcHI koedimienTH, Jm (Bk7) - dynkmii Becceas nepworo poay,
N (Bkr) - dynxuii Beccens apyroro poay a6o dynkuii Heiimana (8].

CnodaTKy NpUNYCTUMO, (IO UWIIHAP 3a 3MIHHOIO T B CTOPOHY JOJaTHUX 3HAYeHb
¢ nis6esMexHnM. 3 (I3UIHUX MipKYBaHb BHIUIMBAE, U0 B IbOMY BHNAIKY OKpeMHUH
YacTKOBHMIT PO3B’A30K GirapMoHiYHOrO piBHAHHA (2) y 306paxenH] (4) NOBUHEH MaTH
BUTIAL

L(z.fr) = Re{(Z5 (Br) + rZ; (Br)) exp (—Bz)}, (5)

ae Re (8) >0, Z} (Br) = gJo (Br)+cNo (Br), Z¢ (Br) = bJo (Br)+aNo (Br), a,g,c,
b, - HeBigoMi koMmmaekcHi xoediuientu. Axmo dynkuis Jasa L (z, fr) 3agoBoabnse
rparu4Hi ymoB# (3), To ii HasuBaTHMeMo BracHow0 dynkuieo. [ligcTaBusum GyHKUIO
Jasa (5) y so6paxenns HanpyxeHb (1) i Bukopucramm BracTusocTi Becenesnx
qyHKI#, BAPa3UMO HOPMalbHI Ta JOTUYHI HANpYXeHHA 4epe3 BBeJeHI UMIiHAPU4HI
byHKuil:

B

or = Re{f ((1 - 21})[)‘25.(51') + ;zf (8r) — B*Z3 (Br) — B*rZ] (ﬁr)]) exp (—Az)},

oz = —Re{B [2(2 - v) BZ; (Br) — 8% (2§ (Br) + rZi (Br))] exp (-Bz)},  (6)
™= Re{g* [BZ} (Br) — 2(1 - v) Z] (Br) — BrZ; (Br)] exp (—Pz)}.

3HalijeMO PIBHAHHA, fiKe TIOBUHHO 3aJOBOJBHATH CIEKTpaibHUU nmapameTp [, wob
dyukuis L (z,8r) crasa paacuow ¢yHkuieo. 3 3o6paxenss (6) puniusae, wmo
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rpaHuyHi yMoBH (3), 3 AKMX MOXHA BH3HAYMTH BIacHI 3HaueHHA (3, HabyBaiOThb

BHTJIAOLY
1 7 R v -
R; E(ﬂ J') +(1-2 )Zé (ﬁRj) ﬁZg (ﬁRj) ~ BR;: li ( J)] .

(87} (BR;) — 2(1 - v) Z] (BR;) — BR; Z; (BR;)] =0, j =1,2. (7)

Buxopucrasmu Bupas BiaacHux ¢yHkniu (5), 3BegemMo rpamuyni ymosm (7) go
YOTUPHOX JIHIAHMX PIBHAHB 3 HEBIJIOMHMH KOMIUIEKCHUMHU KoediuienTamu a,g,c,b

B(bJy (BR;) + aNy (BR;)) — 2(1 = v) (91 (BR;) + cN1 (BR;)) — BR; (9o (BR;)+
+cNo(BR;) =0, (bJy(BR;) + aNy (BR;)) + (1 - 2v) R; [9Jo (BR;) + cNo (BR;)] -

—BR} (9J1 (BR;) + cNi (BR;)) — BR; (bJo (BR;) +aNo (BR;)) =0, j=1,2. (8)

Ak BigoMO, BiAMIHHMI Bijf Hy/aA po3B’A30K cucTemn (8) MOXIUBHA TLIBKM 33 YMOBH
piBHOCTI Hy/II0 BUBHAYHUKA Uiel cHcTeMH. fIKIIO pO3KPUTH BU3HAYHUK, TO OTPUMAEMO
XapaKkTepUCTHYHe DIBHAHHA, AKe MOXHa po3p’a3aTh uucenbHo. OTxe, norpibuo
3HAUTH HAGIp ClIeKTpaJbHUX mapameTpiB Bk 1 BracHux GyHkuil (5), ki 6 y sarasai
pAAY 3a10BONBHAIM BiANOBIAHI FPaHMYHI YMOBH B HaNPYXEHHAX Ha TOPUAX UMAIHApA.
Bpaxysapum 306paxenss (6), (7), rerko BU3HAYATH TaKe.

Teopema 1. Axuo Fynxyis Jssa (5) 3adosoavuse dpyey epanuuny yrosy (7), mo
HOPMAAbHI TMOPYEST HANPYIICEHNA, AKL itl 610N0610a0Mb, € CAMOIPIEHOBANCEHUMY.

[loBejeHHA. 3a O3HAYeHHAM, HOPMalbHI TOPIEBI HAIDYXEHHA € CaMO3pPIBHOBA-
JKEHUMH Tofgi 1 TLIbKH TO/i, KOMM CymMapHe iHTerpalibHe HOpMaibHe sycmias Ti.
Ake Al Ha TopHi MUAiHApa, gopiBHIoe Hymo. Teopemy JoBejemo 6e3niocepeiHIM
obyucaenHAM. BpaxyBasliy cHiBBlJHOLUIEHHA (6), smangemo aycuana Ty, ke Jl€ Ha
TOpII UMAIHpA

H;
T. = 9 f roy (0,r) dr = 2n8° [822 (Br) — 2(1 - v) 2} (Br) — BrZ} (Br)] -

R,

BukopucTapmiy ApPYyry rpaHudHy yMmoBy (7), OTPHMAaEMO TBEPJXXEHHSi TeOpeMH.
Teopema 1 nmpaBuJIbHA TAKOX [JIA OKPEMHX PO3B A3KIB (4), a oTxe, i gaa 6yab-AKOro
na6opy po3n’sakis y Burasi (4), (5). 3Bijcu BUIIMBaE, MO OJHUX PO3B’A3KIB BUTIANY
(4), (5) y Bumagky, Koaum Ha TOpul LMIiHAPa Ai€ HECaMO3PIBHOBaXEHe CyMapHe
ayennas Ty # 0, HegoctaTHbo. CnoyaTKy Tpeba po3s’s3aTh BioMy 3ajady [1,2] ans
PiBHOMipHO poanogiﬂeﬂui Ha TOPI MAAiHAPa HOPMAJbHAX HANPYXKEeHb Oz 1 JOIY1ATH
B mogauna dynkuii Jlasa (4) goganok Lo (z,r) = Fooz (vr? + 122022), pe 00 = %ﬁ,
S - muowa Topuesoi mosepxui, E - mogyas IOnra. ®Pymkuia Lo (z,r) sianosigae
HYJAbOBOMY 3Ha4YeHHIO CIIEKTPalbHOrO NapaMeTpa By = 0. Jlerko mepesipuTH, LIO
BOHA € BJACHOK (PyHKHIEIO.

2. O6uncaenna H/[C cyninsHOro quaingpa. PoarasseMo cyuinbuui nuainap
R, = 0, R, = R,. BeegeMo 6espoaMipry pajiaibry aMiEny 7, 0 <y < 1, 7 = Ry.



252 BIKTOP PEBEHKO

Y usomy Bunajky koediuieHTH a,c B 306paxeHHi (5) NOBHHHI JOPIBHIOBATH HYMO i
XapaKTepHCTUYHe PIBHAHHA cucTeMu (8) cmpomyeTscs 4o BATAALY

2 (J2 (2) + J2 (2)] = 872 (2), ' (9)

ned = 2(1—v), z = BR - 6eapoaMipHnii cieKTpaibHui napameTp. Jlerko 3ayBaxuTi,
1o AifCHI PO3B’A3KH XapaKTepUCTHIHOro piBHAHHA (9) MOXIUBI TiabkK 32 22 < —g— 3
noBeginku dynxuin Becceas npu z? < % BHIIMBAE, IO XaAPAKTEPUCTHYIHE PIBHAHHA
(9) mae TinbKM OfMH AiWicHME KOpiHB zg = 0, AKOMy BijnoBijae BIacHa yHKIUiA
Lo (z,7). IHmi xopeHi XxapakTepUCTUYHOT'O PIBHAHHEA 6y yTh KOMILVIEKCHAMHU 1 MAIOTh
Buraaf zr = (*px xiax) R. Mu noBnEHI BR6pATH KOpeHi 3 JONATHUMH JINCHUMH
YacTHHAMH Zzx = pk + 10k, 2k = pk — tak, e px >0, k=1,2,3..
Poap’sayBanua piBaaHHA (9) 3BefeMo J0 3ajavi NONIYKY ‘HyJIiB byHkii

F(z)= 22 [J2(z) + J2(2)] - 8J2 (2). (10)

BuKOpHCTOBYIOYH O3Ha4eHHA MOpAAKY 1 Tuny dyHkuii [guB. 9, 10}, MoxHa nokasaTu,
wo ¢yHkuis F (z) e uigoo nopaaky 1 Tumy 2.

Teopema 2. Pynxyia F (z) mae 3atuenny xiabkicmd Hyais zx = Rf;.

JoBegeHna. Hpuﬁueuo z =+/C . Pyukuia F (\/E) CTOCOBHO KOMILIEKCHOI 3MiHHO1
( e dyHKUIEO nopﬁm\y . 3 Teopemu 5 [10, ¢.268] BunIMBac JoBeJeHHA.

Teopema 3. Cucmexa Pynxyit { Jo(z7), i{z7y)}, k = 0,1,2,... € nosnorw 6
xomnaexcrnomy xpyat |y < 1.

Jloegenna. Ockiavkn Jo (z),J1 (z) - uim dynknii nopaaky p =1 Tuny o =1, a
k
JIIA1 IOCAIJOBHOCTI HYJIB zx = Rk BUKOHYETHCA yMOBa hm —— < €, TO JOBEJCHHA

00 |z ]
TeopeMy 3 BUILIMBAE 3 TBepAxeHHs Teopemu 18 [guB. 9, c. 283].

Hacaigok. Cucmema gynxyiti {Jo (zx7)}, k = 0,1,2,... € nosenow na odunuunomy
sidpiay v € [0,1] 6 xaact anaamuunuz Gyrxyi.

3 rpannynux ymos (8) (y BUMajky CynibHOrO HMIiH/Jpa) BUNMBAE, WO HEBIAOMI
KoedillieHTH gk, bk KOMINIEKCH] Ta JiHIHHO 3aneXH] MiX cobolo
mg +4

B '
PoamicTumo kopeHi zx , a orTxe i Bk, B NOPAAKY 3POCTAHHA I1X HIACHUX YaCTHH.
KoXHOMY KOpeHIO zx BianoBijae okpemmit poap’sasok (5), (11), B AkWH BXOAWTH
JOBITLHIH KOMIUIEKCHUN KOeDILIEHT gk -

2.1. 3naxomxxenns HJ/IC nin6eaMexHOro HATIHAPA METOAOM MOMEHTIB.
Y ubomy Bunajxy dynkuia Jasa, sxa pusnadac HIC cyniabroro nuainapa, sabysae
BUTJIALY

be = Cegk, de Gk = me = /8 — ()% (11)

L(z,Ry) = Lo (z,Ry) + Z Re{gkpk (2x7) exp (=Bkz)}, (12)
k=1

ey =% ek (27) = o (2x7)+RYN (2k7). KomnaekcHi koedinieHTH gx 3HAK MO
3 BIAOMMX I'paHMYHEX yMOB. [IpAmMycTHMO, IO Ha TOPHi WMIIK/APa 33JaHO HOPMAJIbHI
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Ta JOTHYHI HANpYXEHHA, AKI MOXHA NMOJATH Y BArAAAL

oo
c)=cot+f(M) =00+ a7, re(1) = fa(7) = Zb 42+ 0y <, (13)
j=0 j=0
ne 0o # 0 - 3agae piBHoMipHEEM cTHCK-po3Tar muaiagpa. Pymkuii fi (v), f2(v)
NOBUHHI 32 JOBOJLHATH KOPeKTHI ¢isngHl yMoBH

] ThMdr=0, L1)=0, [h(Ml<oo, (I, ve0,1].  (14)
0

3o6paxennsa (13) He Hakjafae o6MexeHb Ha 3Ha4eHHA NPHKJIANEHMX 3O0BHIIIHIX
AOTHYHMX 1 HOPMAaJbHMX 3YCW/b, OCKINIBKM JOBiIbHY OYHKIiIO IHTErpoBHY Ha
npomixxky [0, 1] MoXxHa anpoxcuMyBaTH 3 3aJaHOI0 TOYHICTIO NAPHMMHU Ta HETAPHUMY
NOJIHOMAMH. '

[lns 3HAXO0KEHHA HEBIAOMHUX KOeiUieHTIB g BUKOPHCTAEMO METOA MOMEHTIB [11]
pa’oM 3 MeTOJAOM HaWMeHIUMX KBajgpaTiB. Bpaxysasum criesigromenns (11), (12),
(13), nogamo rpaHu4Hi YMOBM Ha TOPUI UMIIHAPA y BUTAAAI

L =) a7 =) Releaxx ()],
j=0 k=1
f2 {‘r) Z bjvy ! =" Relextn (7)), (15)
k=1

ae xk (7) = (me — 2)Jo (2k7) + 2671 (27) s ¥k (7) = muedy (26y) — zkvJo (27)
Ck =Tk +iYe = ngk, Tk, Yk - BU3HAYalOTh AIMCHY W YABHY YaCTHMHY HeBiJJOMOIO
KOMILTEKCHOT O Koec}nmem‘a ck, i - yABHa ojMHEMUA. Bugiimmo y yHkumin Xk (7v),
Yk (7) Aliicay @ yasry wacrmny Xk (7) = Xk () + ixye (7)), @x (1) = ¥re (v) +
ityr (1) -

3 macaigky Teopemu 3 BunamBae, mo cucrema dyskuin {xx (y)}, kK =0,1,2,...€
nosHoo Ha Bigpiaky v € [0,1], a {¥x(y)}, &k = 1,2,3,..- nosHoo B Ka1aci
aHaldiTHYHEX byHKOiR, aki gopisHioloTs Hymo npu ¥y = 0, v = 1. lle Bignosigae
obMexennaM (14) Ha rpaHWYHI HaBAHTaXEeHHA.

PoarjAHeMO iHTerpail KBajpaTHYHOrO BiJXW/IEHHA LIYKAHOI'O PO3B’A3KY BIA
3a/JaHMX 30BHIIIHIX FPaHHYHUX HaBaHTAaXeHb Ha TOPUI UWIIHAPa

N 2
@ {z1,...2N, U1, - YN} = _/ { [Zkxrk (V) = Yrxyk M- A (7)} F
k=1

N 2
+ {E [zx¥rk (1) — wetbyr (7)] = f2 ('r)} d, (16)

k=1

ae N 3agae xinpkicTs yneniB pagy (15). KommrekcHi koedinieATn Cx, BUIHAYAMO 3
ymoBu Mirimymy dyrxunionata (16). Jas oro misimisanii anaiemMo HacTHHHI NOXigH

8®{z1, ....oN, Y1, - ad{zy, ....zN ) e UN . TR s 3 i
= '31:;1.”1 W}, = By, Aok }, j = 1, N i npupiBHAEMO iX 0O HYyJA.
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[Ticas rpomizikux o64MC/IeHb iHTErRatiB oJepXuMo cucTeMy 2N JiHIUHMX PiBHAHDL
AaA Bu3Ha4YeHHA 2N HeBIAOMHX Tk, Yk, k= ,ﬁ y BHIAALL

N ' 1 - o . )
S (Bl - wBE;} = j YU () xes (4) + F2 () s ()
k=1

N

I 1 . : S
Y {zxB}; —wBi;} = fo YA@Xxi N+ (ML i=LN, (17)

k=1
ae Bé’j = Re (N ;) , BEJ = Im(Nk ;) , Bf.j = —Im(Ax;), lej = Re{Ax;),
2Nk ; = Dij (2k, 2j) + D j (2, %) + Mk j (2x, 23) + Mi j (2, Z;),
2Ak,j = =Dk j (2k, 2j) + D j (2%, Z;) — Mr,j (2, %) + Mk, (2, 7).

Koediuientn My j (2x,2;), Dij(2x,2), k=1,N, j=1,N ana 3nadens infge-
KCiB k # j 3HaXofATh 3a popMylamu

My ; (zk, 2j) = mem; Fy )y (2x, 2) =M 2 G (25, 26) —mj 2k G (2, )+ 2k 25 Fo3 (2k, 25)
Dy i (2, z;) = QkQ; Fo,1 (2k, zj) + QuziG (2k, ;) + Q2 G (25, zi) +
+2kzi F1,3(2k, 23) Fo,1 (2, 25) = W (2, 25) [26J1 (26) Jo (25) — 2301 (25) Jo (2)]
G (zx, 2;) = W (zk, 27) [2eJ1 (2k) J1 (25) + 25.J0 (25) Jo (2k) — 22 Fo,1 (25, )],
Fi 3(2k, 2;) = W (2, 2;) [22G (2, 2j) — 22;G (25, z&) — zxJo (2) J1 (25) +
#3300 (5) 1 ()], W (ow, ) = 5 Qe =me =2,

1
Fo,3(2k, 2j) = "y [z F1,3 (2k, 2j) + J1 (2) Jo (25) — 2G (25, z)] ,

Fy 1 (zk, 25) = W (2, 2;) [z J2 (2) 1 (25) = zjJ2 (z5) Ja (2)].
Koedimientn Di i (zk, 2k), Mi k(2. 2), k= 1, N 3HaxoaaTh 32 popMysamu
6Dk k (2, 26) = 3Q [JZ (zk) + JE (20)] + 2k [J7 (2k) + J3 (a)] +6QuJT (k) ,
12M; x (2k, 2) = 6m2 [JF (2k) — Jo (2x) J2 (2¢)] - 12m J7 (2x) +

+22 (207 (%) + 3J5 (2x) = J3 (a)] -

A 6auumo, inTerpaisHi xoediniewrs Bf;, k=1,N,j=1,N, m= 1,4 y niBint
qacTuHi cucTemu piBHAHb (17) 3HalfleRO B ABHOMY BHrAAAl Yepe3 dyHkuil Beccens,
a B mpaBiit yacTHHI — iHTerpaau Bif Bigomux ¢ymkmii. Poas’siemo mio cucTemy
2N ninifEAX PIBHAHDL, OfEPXHUMO JIHCHI il yABHI aCTHHH KOMIUVIEKCHHX KOe(ilieHTIB
¢k, k = 1, N. 3maiiaeMo IyxaHi KOMIUIEKCHI KoedimieHTH gi = -‘:35-::,,_. Nani 3a
nozasuamu (1), (12) suaigemo HAC cyninproro uuaisjpa. '
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2.2. 3naxogxkenna H/C o6MmexeHoro cyniasHoro nuaigapa. PoarashHemo
UUJIiHAp CKiH4eHHOl BHcOTH H , HaBaHTaXXeHuH 3 JBoX 60KiB JOBIIEHEMHE HOPMAIbHUMMU
Ta JOTHYHUME HaNpyXeHHAMH 3 OJHAKOBUM HOPMAILHUM 3YCHIIAM Te = Sop

N-1

oN (Bm,y) = 00+ Z a4, 1(Bm,y)= ) 0N, (18)
j=0

Je 1HJIeKc m = Bi,qnonigas HHXHLOMY TOpIio, m = l- BepxasoMy Topuiwo, By =
0, Bi = &, a pynkuii on (Bm,7), 7y(Bm,7), m = 0,1 crocoro aminmoi vy
3a/JOBOJLHAIOTH YMOBH, aHAJOII4HI (14) Pynknia Jlmaa. AJA CKiHYeHHOro NUIiH/Apa
Mae 306pax<emm

N

L = Lo(z,Ry) + ) Re{[skJo (267) + 11 (267)] [oret=F) 4 gue®o). (19)
. k=1

JInA 3HAXOXKEeHHA HeBiJOMHX gk, ¢k BUKOPHCTAEMO METOJ PO3KJaJeHHA M'PaHuYHUX
yMOB B pAJ 3a CTeneHAMH 3MiHHOI v. Bpaxysasmm 306paxenns (6), (19) i sosniumi
HaBaHTaxeHHa (18), micis nepeTBOpeHb OAEPXKUMO I'DAHUYHI YMOBHM Yy BHLAAAL JBOX
PIBHAHD

N
Y Re{ [gx exp (— 2k Bm) — g €xp (25 Bm )] [(mi — 2)Jo (247) + zxv/1 ()]} =

N-1

N
= )_“,am M, ) Re{Bilon exp(~2Bm) +

k=1
N-1 '
+qk exp (zx Bm)] [me J1 (2x7) — 2xvJo (267)]} = E P, (20)
4=0

ne m =0, 1. lpupisuasum B pisaaHEAX (20) xoediieHTH NpH OAHAKOBUX CTENEHAX
IMIHHOl 7y, OJePXMMO YOTHPH CHACTeMH mo N JiHIMHEX PIBHAHD AJIA BUIHAYEHHA
HEBiJOMUX KOMIJIEKCHYX KOeiliEHTIB gk,

ZRE { 2343 (my, — 2 — 25) [gk exp (= 2k Bm) + gk €xp (szm)]} = 2(j +1)A;07",

" .
ZRe{ZEj+2(mk 2 — 25) [gk exp (— 2k Bm) — qr exp ( szm)]} Ajai,  (21)

ge j=0,N—-1, m=0,1, A; --( 1)’ 22 j1j1R2.

Poss’sxeMo cHCTeMy JiHiMHuUX piBHAHb (21) i BuaHaummo HeBifoMi gk, qk. [ani
3a dopmynamu (1), (19) snaigemo HAC unringpa saganoi pucotu H.

3. 3maxomxenas HJAC mniB6e3MexHOro TOBCTOCTIHHOIO LWIHAPA.
Bpegemo 6eapoamiphi amiHHi 2R=Ri+ Ry, 2h =Ry - Ry, eR=h, r =Ry, z=
BR, BR;= zaj, aj=1+(- 1Y €, j = 1, 2. [licaa rpoMi3AKuX NepeTBOPeHb MOAaMO
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YMOBY PiBHOCTI HYJII0 BU3HAYHUKa CUCTeMH DIBHAHS (8) y BUArAf i TPaHCLEHAEHTHOI O
PiBHAHHA CTOCOBHO KOMILIEKCHOI'O CIEKTPANLHOrO NapaMeTpa 2z

(a?2? - §) (a32? — 8) B (2) + ala2z*Byo (2) + (alz® - 6) azzsz (z)+

422 2 84
P

+ (0322 - 8) al2? By (2) - = (02 +a3) + - =0, (22)

Je
Byj (z) = [Jk (a12) Nj (@2z) — Jk (a22) N; (alz)]z, k=01 =01

BeanocepeaHiM 064HCIeHHAM MOXHA nepeBipuTd, wo jas bynkuiit Bik (z), 22Bo (2),
z?Byo(z) Touka z = 0 e peryaspHoio. OTxe, XapaxTepucTuiHe piBHAHHA (22)
BU3HAYa€e Uiny DYHKIIIO, AKa Mae BeCKiHYeHHY KLIbKiCTb HYaB 2, k=1,2,3....

IiacraBusmu 306paxeHna (5) AnA KOXKHOrO 3HaYeHHA 2y B PPaHMYHI YMOBH
(8), (amajoriyHO AK AMA CYHIIBHOTO UHJAiHApPa), BHPa3HMO HeBiJoMi KoedimieHTH
ak, Ck, bx depes gx y Buraami by = Rk 19k, ¢k = Sk,20k, Gk = Rck 3gk. Pynxuia
JlsaBa B ubOMy BUMAAKY Mae 306paxKeHHA

L(z,Ry) = Lo(z, Ry) + Y _ Re{Rg[yJ1 (z7) +
k=1

—ZkT
+6k1Jo (26Y) + Sk,2YN1 (2k7) + sk,3No (zxy)] exp ( R )}- (23)
3.1. PosknajgeHHs PaHAYHEX YMOB Y pPAAM 3a CTeNeHAMH pajaianbHOl
amiaHol 7. Hexait Ha Topui IMAIHApa 3aan » BiJOMi 30BHILIHI HOPMaJbHi Ta JOTUYHI
3ycuais, Kl 3aJOBOJBHAIOTH BiITIOBIAHI A/ JOBCTOCTIHHOI'O NMJIIHJPa YMOBH (14),
Je BpaxoBaHo, o a; K 7 < az. I'panumdni jMOBH Ha Topui umxm,qpa B 3arajLHoMy

N-

BrUnagKy MaloTb Buraan ox (0,v) = oo + Z a;v¥4, v(0,7) = Z biv*+1, ne
ay € v € az, N 3ajgae TOYHICTH anpoxjcnma.uu CPaHUYHHX ymoa 1 KiIbKicTh
qneniB pagy (23). Illo6 poskaacTu B pax 3a crenesamm 7y ¢yukuio Jlssa (23),
noTpibuo ampokcumysaTH In(y) Ha mpoMiXKy @y € Y € @2 HOJIHOMOM CTOCOBHO
~. 3a/J0BOALHMMO Ui TPaHMYHi yMOBM 3 BpaXyBaHHAM nogass (1), (23) i npupiBEAEMO
KoedillieHTH NpPH OJHAKOBAX CTENEHAX 3MIHHOI 7, MCIA HECKJIAaJHHX IepeTBOPEHb
oaepknmo cuctemy 2N ginifiHuX DIBHAHD A/A BU3HaYeHHA HeBigomux gk, k=1, N

ZRe{zkgk{Blsz (Zk¢k1—5 “2(J+1))+zk<k3 k"f'(zk(kﬁ 5‘;*2)'33*}}"

N
= R%;, Y Re{dfar{2(i +1) B}z (zxr1 — @) + 2 B} 1+
k=1

+2kSk,26; -1 & + (2KSk,3 — ASk,2) i)} = Ba;, j=0,N -1, (24)

Ae

: . 2 ) "
chp=mzp "V [B} (fu —dj = 1) + 2By — g 0], m=~, 1= (25 +2) 5
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405.:‘-‘ = 3 [zk (2C-1) - 27?102.;1] , V) = — (1 -—62)_2, v= -2 (1 +62) vy,

e 1, 1+e (-1)* e ]
=] i s = —in — i - . e
fe =In[(1+¢€)z] + o ca i lnl-—&" B, PRF (k4 )R d; nE__l =
a = 2(2-v), c}_llk = 0, J} - cumBoa Kpomekepa, C - nocriuna Eiaepa-

Mackaposi (8]

Poas’axeMo cucTeMy JgiHiitHuX piBHAEb (24) i BusHaumMo Hewigomi gk, k = 1, N.
[Jaui 3a 306paxennamu (1), (23) anaigemo H/IC ToBcTocTiHHOrO tmaingpa. fAk i aas
CYIILHOrO MUIHAPa cKingernol BucoT H moxHa pospaxysatu HIC ToBecrocTinbHoro
uuaiHApa BucoTow H .
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SPECTRAL OF AXIALLY SYMMETRIC PROBLEMS
OF ELASTICITY THEORY
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NAS of Ukraine, 3b Naukova str. 79053 Lviv, Ukraine

A presentation of the stressed-strained state (SSS) for a cylinder, end-loaded arbi-
trary of axially symmetrically, is obtained in the form of series in own functions. It
is shown that spectral values will be complex conjugate numbers and there will be
an infinite number of them. The series coefficients are defined from the condition of
integrals minimum of deviation quadratic for the solution from the given boundary
conditions on the end. Two numerical methods for calculation of the series coefficients
are proposed. A solution of the boundary problem for a biharmonic equation is found
in cylindrical coordinate system.
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entire functions, axially symmetric elasticity theory, stressed-strained state, cylinder.
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YAK 512.4

TPHU 3AIAHYI IMPO CTAHOBO 3AMKHEHI I'PYIIHA
ABTOMOP®I3MIB OAHOPIJHOT'O KOPEHEBOI'O AEPEBA

Bitanin CYIIAHCBKHNI

Kuiscoxutl nayionaabnutl ynisepcumem imeni Tapaca Ilesuenxa,
6ya. Boaodumupcexa, 64 01033 Kuis, Yxpaina

CdopmMyanoBaHo TpH npo6ieMu Npo Taki 306paXkeHHA rpyn aBToMopdiaMiB kopeHe-
BOro gepesa, o6pa3 AKMX € CTAHOBO 3aMKHEHOIO CPYIIo0 aBToMOpdi3mib.

Kawouosi caoea: xkopeneBe fepeBo, rpyna aBToMopdiaMmis, rpyna CTaHOBO 3aMKHe-
Hux aBroMopdiaMis,

1. KopeHeBMM Ha3MBAacThCA [AEPEBO 3 BHUIJIEHOIO BEPUIMHOI — MOI'O KOPEHEM.
Muoxnua epummn gepea (T,zo), wo nepebyBaloTe Ha 3ajaHii Bifcrani k (y
NPUPOAHIA MeTpHUUl cuUMIiLiagbHOro rpaca) HasmpaeThcsi cheporo papgiyca k.
Kopenesa BepumHa xo yrsopwoe cdepy pagiyca 0. [epeso (T, zp) HasuBaeThcH
cepudHO OJHOPIAHMM, MKINO CTeMeHl BCIX BEPIIMH KOXHOI 3i cdep OJHAKOBI.
lle osmauvae, mo koxua BepmmHa k chepu (k > 0) gepesa (T, zo) 3’¢gHana 3
TuUM camuM uucioMm ng BepwuH (k + 1)-1 chepu. Koxne HeckindeHHe chepHuHO
OJHOPiHE KOpeHeBe AepeBo OJHO3HA4YHO, 3 TOYHICTIO [0 i3oMOpdiaMy, BUSHAYAETHCH
MOC/i JOBHICTIO uMcen < nj,Ny,... >, AKa HA3UBAETHCA HOro CHEPUYHUM TUNOM
[1]. KopereBe gepeso T' HasWBa€ThCA OAHOPIAHUM, AKLIO HOTO chepUdHUIA TUI Mae
puraan < n,nm,...> ana geaxoro n € N. Yucno n Ha3uBaeThCA cePUIHAM 1HAEKCOM
oJHOpPifHOrO AepeBa. J[lif KOXHOTO HATYPAaJbHOTO M 3 TOYHICTIO AC izoMop(ismy
KOpeHeBHX JepeB iCHye Juile OJHe OJHODPijJHe KOpeHeBe AepeBO CHPEPUIHOrO IHIEKCY
n, ke mosnayatumemo T,. [Jlaa nosinbuol Bepmmuu y gepeBa T, cumsoiom T'(y)
[O3HAYMMO KopeHeBe miajepeso aepesa T, 3 kopereMm y. 3posymino, mo Ty, i T(y)
i30MOp}Hi AK KOpeHeBl AepeBa. '

2. ApToMOp(}izMOM KOPEHEBOrO JiepeBa HA3MBAETHCA Take OIEKTHBHE NEPETBOPEHHA
MHOXWHM HOro BepHIMH, ke 36epirac iHUMAEHTHICTh BepIIMH | 3a/1HUIA€ HEPYXOMHUM
Kopiub gepeBa. KoxeH aBToMopdisM kopeHeBoro jgepesa I, mepecTaBise Mix
co60I0 AMie BepHIMHM, WO HakeXaTb A0 OfHiel chepyu, npuioMy 3’€AHaHi 3 OJHIEIO
# Tiewo BepumHOI cdepu Menworo pajdiyca. Tomy aBTomopdism [ oaHOZHAYHO
BH3HAYAETLCA BEpWIMHO moMidenuM jgepesoM Dj; (Puc.), sxe nasubaeThes [2]
noprpeTom aBTomMopdiamy f.

© Cywmancskuit Biranin, 2003
Po6ora BukoHaHa npu nigrpumui MikicrepeTpa Hayku | ocBiTu Yxpainn, rpant Ne &P7/474-2001
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Hna posireHOl BepmmHM u jgepeBa [; momiveHe kopemeBe migfepeBo Dy(u) 3
KOpDeHeM u TaKOX € HOpTPeTOM JjgeAkoro aBTomopdismy fu gepesa T,,. len
aBTOMOp®I3M HasuBaeThcA [2] u-uM craHoM aBToMopdismy f. OTxe, koXHOMY
apToMopdismy f nepesa T, BiAnmosijac MHOXHHA Ry HaUMOMXJIMBIIIMX CTaHIB L[LOIO
aBTOMOp®Ii3My. ;

ABsToMOpdi3aM f HasMBaeTHCA CKIHYEHHO cTaHOBMM, AKWo |Ry| < oo. Ak Bijgomo,

aBTOMOpdiamMu jaepeBa T, MOXKHA iHTepnpeTyBaTH AK aBTOMAaTHI MiJICTAaHOBKH
HajJ n-eleMeHTHAM aidasiToM, fKi 3ajgalorbca aBromaramm Mini [3].  Ilpu
Takiil iHTepnpeTanii ckinueHHo cTaHOBUM aBTOMOpdiamam gepesa T}, BiANOBiga0TH
CKiHYeHHO aBTOMATHI M ACTAHOBKY 1 HaBIAaKH.
3. Hexan AutT, — rpyma asromopdiaMmiB gepeBa T,. Iligrpyma G < AutT,
Ha3WBAETLCA CTAHOBO 3aMKHEHOI (2], AKIIO pajoM 3 KOXHEUM aBTOMOpP(IaMOM
MICTHTBL BCl HOTO CTAaHU. Cama AutT,, 1i nigrpyna CKiHYeRHO CTAaHOBMX
aBTOMOpdi3MiB, MArpyna aBToMopdiaMiB, AKi HETPUBIAILHO AIIOTH JHIIE HA AKOMYCh
No4aTKy JepeBa, € MPUKAaJaMil CTAHOBO 3aMKHeHuX migrpyn. Cepej iHIIMX BIAOMUX
npukaajis — rpymu [puropuyka (3], rpymu I'ynra-Cigki [4],[5] Ta 6araTo inwumx.
Wupokuit kaac rpyn, wo 3asypioloThes B AutT),, ONUCYIOTh TaKUM TBEPAXKEHHAM.

Teopema. Herati G — gpyna 3i cnadnum cybHOpMaAbKUM PAOOM nidepyn
C=Us3 Gy 5>Gs > s

maxus, wo Ny = {1} 1 Gi/Gi41 i30mopPro 3anyproembvca 6 cumempuuny 2pyny Sp
das scizrn=0,1,2,.... Todi 2pyna G izomopgdro 3anypwemovca 6 AutT,.

J/loBeZeHHA TeOpeMH BUILIMBAaE 3 Toro, wo Ana Takoi rpynmu G mnpupoaHO
KOHCTDYIOETECA Aif Ha yIbTPaMeTPUIHOMY NPOCTOPI, AKMIA 36iraeThca 3 MPOCTOPOM
KiHI[B OHOpIAHOrO AepeBa cdepuyiHoro ingexca n (zus [6]).

[IpoTe moK¥ 1O 30BCiM HE3PO3YMiNO, AKi rpymm MoxHa 3anyputu B AutT, Tax,
mo6 ix o6pasn 6yau rpynaMu CKiHYeHHO CTaHOBMX izomopdismis T,,. VY 6araTbox
BUMAJKaxX Taki 3aHypeHHsA HeBijoMi /A KOHKPETHHMX I'PyN, XOo4Ya NMUTaHHA MpO IX
icHyBaHHA UikaBe 3 6araTbox noraagiB. Tomy Mu chopMyTI0EMO Taki 3ajadi.

1. Yu 306paxaeThca TOYHO BiHUeBHH J06YTOK KPaTHOCTI m
Awm =Bl 2}l &

S —
m
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HeCKIH4YeHHOl UUKJIIYHol rpynu Z Ha cebe AK CKIRYeHHO CTaHOBa I'DYNa aBTOMOp-
¢iamis gepesa T, npu n > 27

2. Mlo6yaysaTn TOYHI CTAHOBO 3aMKHeHi 306paxeHHs BiibHOI rpymu F, paHry 2
aBToMopdiamamu gepesa In, n 2> 2. JobpaxenHa F; asromopdizMaMu JepeBa
T, cxoucTpy#oBaHo And Bcix n > 2. Ili 306pakeHHA He € CTAaHOBO 3aMKHEHUMM
(aus., nanp., [7]).

3. INo6yaysaTu MiHIMAJILHY 32 BKIIOYEHHAM CTAHOBO 3aMKHEHY I'pyny aBToMopdiamis
aepesa T, .
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