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LAWSON MONADS AND PROJECTIVITY
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We show that power monads are not Lawson. The power monads are the most natural
examples of projective monads. However there exist projective monads which are Lawson.
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0. The algebraic aspect of the theory of functors in categories of topological spaces and
continuous maps was inswestigated rather recently. It is based, mainly, on the exister.ce
of monad (or triple) structure in the sense of S.Eilenberg and J.Moore [1].

Many classical constructions lead to monads: hyperspaces, spaces of probability mea-
sures, superextensions etc. There were many investigations of monads in categories of
topological spaces and continuous maps(see for example the survey [2]). But it seems
that the main difficulty to obtain general results in the theory of monads is the different
nature of functors.

Some functional representations of the hyperspace functor were found in (3] and [4].
There was introduced a class of Lawson monads in [5] which contains sufficiently wide
class of monads. Lawson monads have a functional representation, i.e., their functorial
part FX can be naturally imbedded in RYX. In this paper we investigate connection
between the classes of Lawson and projective monads.

The paper is arranged in the following manner. In 1 we prove that the power monads
are not Lawson. In 2 we introduce an example of Lawson monad which is projective.

1. By Comp we denote the category of compact Haussdorff spaces (compacta) aad
continuous maps.

We need some definitions concerning monads and algebras. A monad T = (T, u) in a
category £ consists of an endofunctor T : £ — £ and natural transformationsn : Idg — T
(unity), u: T? = T (multiplication) satisfying the relations p o Tn = ponT =17 and
poul = poTu. | |

Let T = (T.n,u) be a monad in a category £. The pair (X, €) is called a T-algetra
if {onX = idx and Lo uX = {oTE Let (X,€), (Y.&') be two T-algebras. A map
f: X =Y is called a T-algebras morphism if £ o Tf = f o £.

For any real ¢ > 0,we denote by I; the segment [—¢ t]. If ¢;, t5 are real numbers with
0 < t; < tg, by 5;? we denote the natural embedding 7;* : I,, - I,.

Let F = (F,n, u) be a monad in the category Comp. A family of F-algebras {¢; : FI, =
I | t > 0} we call coherente iff for each t1, t, € R with 0 < #; < ¢2 the embedding Jff is an
F-algebras morphism. A monad F = (F,n, u) is called Lawson if there exists a coherente
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family of F-algebras {& : F'I, — I |t > 0} such that for each X € Comp there exists
a point-separating family of F-algebras morphisms {f : (FX, uX) = (Ii(a),i(a)) | € €
A}[5]. We will need the folloving lemma from [6].

Lemma A[6]. Let F = (F,n,u) be a monad in a category S and X 1s an object of S.
Let f,g: (FX,u) = (Y,€) be F-algebras morphism with fonX = gonX = h. Then
f=g=¢&oFh.

For X € Comp and n € N by D, X we denote the compactum X™. For a map
FoX = ¥ we-deline e map D,f : D,X - D.Y by the rule D, f(x1,...,2,) =

(f(z1),..., f(x,)). One can check that D,, is a covariant functor on Comp.

For X € Comp define the maps vX : X = D, X and puX : D X -+ D, X by
the formulas vX(z) = (,...,%) for & € X and pX({(21;...,8L),: o5 (BP0, 82)) =
(Bt for- {lnts ... Yo i (B <o) E IR X = D (D X).

It is known that the triple an = (Dp,n, p) is a monad in the category Comp, where
n = {nX}: Idcomp = Dn and p = {uX} : D2 — D, are the natural transformations
defined above [2]. This monad is called the power monad.

Lemma 1. Let {(Is, &) | t = 0} be a coherent family of the power monad D,. Then
there exists k € {1,...,n} such that & = py : I7* - I, for each t 20

Proof. Consider any t > 0. Let us remark that the following equalities follow from the
definition of natural transformations n, ¢ and from definition of D-algebras: &(I,...,1) =
| and ElEl@ls o s B )vs oo CelBY) oo 282)) = G(#),, 1.27). Défine o, € IP by the rule
al =t and a] = 0 for each j # 1. Let us show that there exists k € {1,...,n} such
that &(ax) € {—t,t}. Assume the contrary. Then we can choose ¢ < t such that
§t(a:) € I, for each k € {1,...,n}. Since the embedding j; : I, — I, is a D,-algebras
morfism, we have that & (& (a1),...,&(an)) = & (&(a1),...,&(an)). On the other haad
E(éelay), ..., &(an)) = &(t,...,t) =t ¢ I,. Hence we obtain the contradiction.

Assume that & (ax) = —t. For each | € [—t,t] consider the point ax(l) € I} defined by
af(l) =t and a}(l) =l for ¢ # k. The function f : [0,¢] — [~t, ] defined by the formula
f(l) = &(ak(l)) is continuos. We have that f(0) = —tand f(t) = 1. There exists s € [0.t]
such that &(ax(s)) = 0. Then we have af = &(¢,...,t) = t and a = &(ax(s)) = 0 for
i # k. Thus & (ax) = &(ax(s)) = 0 and we obtain a contrad:ctlon Hence & (ax) = t.

It is also easy to check that & (ax(l)) > 0 for each [ € [—t, t] using the above reasonir.g.
Assume that there exists [ € [~t,t] with &(ax(l)) = s < t. The above remark implies
that s > 0. We have &(ax(s)) = s. For each [ € [~t,t] consider the point bi(l) € I
defined by bf(l) =1 and b,(l) =t for i # k. Since bi(s) = &(¢,...,t) =t for i # k and
b (s) = &(ax(s)), we have that & (bx(s)) = t.

Put s; = inf{l € [~t,s] | &(ax(p)) < t for each p € [I,s]}. Then we have s; € [0, ),
éi(ak(sy)) =t and {;(akgl)) < t for each [ € (s1,s]. Consider the point ¢(l) € I definad
by ¢*(l) = & (ax(l)) and c“f!) & (bi(l)) for @ # k. Since & (c(l)) =t and & (ax(l)) < ¢,

we have that & (bx(l)) € {—t,t} for each | € (s;,s]. Since (s1,s] is connected and
& (bk(s)) = t, we have that. & (bx(l)) = t for each | € (s1,s]. But c‘;}(bk(m) 81 # t and
we obtain a contradiction with continuity of the function g : [—¢,¢] — [—t,¢] defined by

g(l) = &(bxk(1)). Hence & (ax(l)) =t for each [ € [—¢,¢]. We also have that & (bx (1)) =1
for each | € [~t,].
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Consider any point £ = (z1,...,2,) € IJ*. Since &(bk(l)) = [ for each | € [—t,¢], we
have that &{z) = &(&(be(2!)),. .., E&(bk(a™)) = &(bk(z*)) = z*. We have shown that
£ = pn : I — 1. Since Jff : Iy, = I, is a Dy-algebras morfism, we have that & = px
for each ¢ > 0. The lemma is proved.

Teorema 1. The monad D, is not a Lawson monad for each n > 1.

Proof. Consider any n > 1 and any coherent family {(/;,&) | ¢ > 0} of D,-algebras.
Then, by Lemma 1, there exists k € {1,...,n} such that & = p;. foreach t > 0. Let X be
any compactum with [X| > 2 and =, 23 € X with 2y # 5. Consider any i € {1,...,n}
such that [ # k. Consider y;,y2 € X™ such that y¥ = y§ and y} = 2, # 7, = yb. By
Lemma A, each D, -algebras morfism f : (D, X,uX) — (I;,&) can be represented as
follows f = & o D,,(f onX). Then we have f(y1) = pr o (f onX)™(y1) = f(¥f,...,yF) =
Fk,...,u%) = pro (f onX)™(y2) = f(y2). Hence we can not separate distinct poiats
Y1,Y¥2 € X™ by a D,-algebras morfism. The theorem is proved.

2. In this section we introduce an example of a Lawson monad which is projective.

For X € Comp we put SX = X x {0,1}. If f : X - Y is a continuous map, def ne
the map Sf : SX — SY by the formula Sf(z,l) = (f(z),!). One can check that S i; a
covariant functor in the category Comp. By S?X we denote the iteration S(SX )of the
functor S.

For X € Comp define maps nX : X = SX and pX : 52X — SX by the formuias
nX(z) = (z,0) and uX(z,l,m) = (z,max{l,m}). It is easy to check that X and X
are the components of natural transformations n: Ids — S and p: S* —» S.

Proposition 1. The triple S = (S, 1, 1) forms a monad in the category Comp.

Proof. Let X € Comp and (z,l) € X x {0,1}. Then we have uX o nSX(z,l) =
pX(z,1,0) = (z,l) = uX(z,0,1) = uX o SnX(z,1).

For each (z,l,m,n) € X x {0,1}*> = S5*X we have uX o uSX(z,l,m,n) =
pX(z,l,max{m,n}) = (z,max{l,m,n}) = pX(z,max{l,m},n) = uX o SuX(z,l,m,n).
The proposition is proved.

Theorem 2. The monad S is projective and Lawson.

Proof. For X € Comp define the map 7X : SX — X by the formula 7 X (z, s) =  where
(z,8) € SX. For each (z,4,5) € S*X wehave rXouX (x,i,j) =z = nXonFX(z,i,j) =
7X o FnX(z,i,7). Evidently, 7 X are components of the natural transformation 7 : § —
Idcomp- Hence the monad S is projective.

Let us show that S is a Lawson monad. For ¢ > 0 define the map r; : Iy — I, oy
the formula r¢(s) = min{l,s} if s > 0 and r(s) = max{~1,s} if s < 0. Now define
the map & : SI; — I by the formula &(x,0) = z and &(x,1) = r.(z). We have
reory = ry. For x € I; we have § onli(z) = z. Now consider (z,l,m) € S2X. If
Il =m =0, we have & o ul(2,0,0) = & o S&(2,0.0). In the case, when [ +m = 1,
we have & o uli(z,l,m) = &(z,1) = r(x) = & 0 S&(z,l,m). Finally, ifl = m = 1, we
have & o uli(x,1,1) = &(2,1) = ri(z) =r or(z) = & 0 S&(2,1,1). Hence (I, &) is an
S-algebra for each t > 0.
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Consider any 0 € #; < t and the natural embedding }ff : I,, = It,. Then we have
that jtt? 9 gﬁl(xio) == ‘Eiztli D) £ €t2 g S}:f($|0) and Jf: 0&1(33, 1) = Tﬁl(m) =F rtz(m) =
&ip(z,1) = &, 0 Sji?(x,1). Hence the family {(;,£;) | t > 0} is coherent.

Now consider (z,l), (y,s) € SX with (z,l) # (y,s). If z # y, consider the map
f: X = [~1,1] such that f(z) # f(y). Then we have § o Sf(z,l) = f(z) # f(y) =
& o Sf(y,s). If z =y, then {l,s} = {0,1}. We can assume that | = 0 and s = 1.
Consider the map g : X -+ [—2,2] such that f(X) C {2}. Then & o S(g)(z,0) =2 and
& 0 S(g)(y,1) = 1. Since & o S{y) is an S-algebras morphism for each ¢ € C(X, I}, we
have proved that S is a Lawson monad.
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MOHAIN JIOYCOHA TA ITPOEKTUBHICTbH
Tapac Paayxa
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[Tokxazano, mo cTenigp MOHa He € MoHanoa0 Jloycona. Creninb MOHAT € HANOUIE I
NMPUPOJHUM NPUKJIAIOM NpoekTuBHUX MOHaX. IIpoTe 1cHYIOTH NPOEKTHBHI MOHA MM, AKI
€ moHagamu Jloycona.
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